Nonlinear Sciences > Pattern Formation and Solitons
[Submitted on 19 Apr 2002]
Title:Effects of small surface tension in Hele-Shaw multifinger dynamics: an analytical and numerical study
View PDFAbstract: We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described in [S. Tanveer, Phil. Trans. R. Soc. Lond. A 343, 155 (1993)]and [M. Siegel, and S. Tanveer, Phys. Rev. Lett. 76, 419 (1996)] as well as direct numerical computation, following the numerical scheme of [T. Hou, J. Lowengrub, and M. Shelley,J. Comp. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (non-singular) zero surface tension solutions. The effect is present even when the relevant zero surface tension solution has asymptotic behavior consistent with selection this http URL singular effects therefore cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structually unstable flow, restoring the hyperbolicity of multifinger fixed points.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.