Nonlinear Sciences > Pattern Formation and Solitons
[Submitted on 3 Feb 2003]
Title:Higher order terms in multiscale expansions: a linearized KdV hierarchy
View PDFAbstract: We consider a wide class of model equations, able to describe wave propagation in dispersive nonlinear media. The Korteweg-de Vries (KdV) equation is derived in this general frame under some conditions, the physical meanings of which are clarified. It is obtained as usual at leading order in some multiscale expansion. The higher order terms in this expansion are studied making use of a multi-time formalism and imposing the condition that the main term satisfies the whole KdV hierarchy. The evolution of the higher order terms with respect to the higher order time variables can be described through the introduction of a linearized KdV hierarchy. This allows one to give an expression of the higher order time derivatives that appear in the right hand member of the perturbative expansion equations, to show that overall the higher order terms do not produce any secularity and to prove that the formal expansion contains only bounded terms.
Submission history
From: H. Leblond [view email] [via BOLINA proxy][v1] Mon, 3 Feb 2003 21:48:00 UTC (20 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.