Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 6 Feb 2003 (v1), last revised 14 Apr 2003 (this version, v2)]
Title:Painleve equations from Darboux chains - Part 1: P3-P5
View PDFAbstract: We show that the Painleve equations P3-P5 can be derived (in a unified way) from a periodic sequence of Darboux transformations for a Schrodinger problem with quadratic eigenvalue dependency. The general problem naturally divides into three different branches, each described by an infinite chain of equations. The Painleve equations are obtained by closing the chain periodically at the lowest nontrivial level(s). The chains provide ``symmetric forms'' for the Painleve equations, from which Hirota bilinear forms and Lax pairs are derived. In this paper (Part 1) we analyze in detail the cases P3-P5, while P6 will be studied in Part 2.
Submission history
From: Jarmo Hietarinta [view email][v1] Thu, 6 Feb 2003 13:43:40 UTC (21 KB)
[v2] Mon, 14 Apr 2003 09:28:03 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.