Nonlinear Sciences > Chaotic Dynamics
[Submitted on 24 Apr 2003]
Title:Creation of twistless circles in a model of stellar pulsations
View PDFAbstract: In the present paper, we study the Poincare map associated to a periodic perturbation, both in space and time, of a linear Hamiltonian system. The dynamical system embodies the essential physics of stellar pulsations and provides a global and qualitative explanation of the chaotic oscillations observed in some stars. We show that this map is an area preserving one with an oscillating rotation number function. The nonmonotonic property of the rotation number function induced by the triplication of the elliptic fixed point is superposed on the nonmonotonic character due to the oscillating perturbation. This superposition leads to the co-manifestation of generic phenomena such as reconnection and meandering, with the nongeneric scenario of creation of vortices. The nonmonotonic property due to the triplication bifurcation is shown to be different from that exhibited by the cubic Henon map, which can be considered as the prototype of area preserving maps which undergo a triplication followed by the twistless bifurcation. Our study exploits the reversibility property of the initial system, which induces the time-reversal symmetry of the Poincare map.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.