Nonlinear Sciences > Chaotic Dynamics
[Submitted on 5 Sep 2003]
Title:Universal spectral form factor for chaotic dynamics
View PDFAbstract: We consider the semiclassical limit of the spectral form factor $K(\tau)$ of fully chaotic dynamics. Starting from the Gutzwiller type double sum over classical periodic orbits we set out to recover the universal behavior predicted by random-matrix theory, both for dynamics with and without time reversal invariance. For times smaller than half the Heisenberg time $T_H\propto \hbar^{-f+1}$, we extend the previously known $\tau$-expansion to include the cubic term. Beyond confirming random-matrix behavior of individual spectra, the virtue of that extension is that the ``diagrammatic rules'' come in sight which determine the families of orbit pairs responsible for all orders of the $\tau$-expansion.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.