Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 21 Oct 2003]
Title:Poisson Pencils, Integrability, and Separation of Variables
View PDFAbstract: In this paper we will review a recently introduced method for solving the Hamilton-Jacobi equations by the method of Separation of Variables. This method is based on the notion of pencil of Poisson brackets and on the bihamiltonian approach to integrable systems. We will discuss how separability conditions can be intrinsically characterized within such a geometrical set-up, the definition of the separation coordinates being encompassed in the \bih structure itself. We finally discuss these constructions studying in details a particular example, based on a generalization of the classical Toda Lattice.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.