Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 18 Nov 2003 (v1), last revised 9 Jan 2004 (this version, v2)]
Title:The PDEs of biorthogonal polynomials arising in the two-matrix model
View PDFAbstract: The two-matrix model can be solved by introducing bi-orthogonal polynomials. In the case the potentials in the measure are polynomials, finite sequences of bi-orthogonal polynomials (called
"windows") satisfy polynomial ODEs as well as deformation equations (PDEs) and finite difference equations (Delta-E) which are all Frobenius compatible and define discrete and continuous isomonodromic deformations for the irregular ODE, as shown in previous works of ours.
In the one matrix model an explicit and concise expression for the coefficients of these systems is known and it allows to relate the partition function with the isomonodromic tau-function of the overdetermined system. Here, we provide the generalization of those expressions to the case of bi-orthogonal polynomials, which enables us to compute the determinant of the fundamental solution of the overdetermined system of ODE+PDEs+Delta-E.
Submission history
From: Marco Bertola [view email][v1] Tue, 18 Nov 2003 01:16:26 UTC (20 KB)
[v2] Fri, 9 Jan 2004 18:57:42 UTC (20 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.