Nonlinear Sciences > Adaptation and Self-Organizing Systems
[Submitted on 9 Nov 2005 (v1), last revised 11 Jan 2006 (this version, v2)]
Title:The Role of Redundancy in the Robustness of Random Boolean Networks
View PDFAbstract: Evolution depends on the possibility of successfully exploring fitness landscapes via mutation and recombination. With these search procedures, exploration is difficult in "rugged" fitness landscapes, where small mutations can drastically change functionalities in an organism. Random Boolean networks (RBNs), being general models, can be used to explore theories of how evolution can take place in rugged landscapes; or even change the landscapes.
In this paper, we study the effect that redundant nodes have on the robustness of RBNs. Using computer simulations, we have found that the addition of redundant nodes to RBNs increases their robustness. We conjecture that redundancy is a way of "smoothening" fitness landscapes. Therefore, redundancy can facilitate evolutionary searches. However, too much redundancy could reduce the rate of adaptation of an evolutionary process. Our results also provide supporting evidence in favour of Kauffman's conjecture (Kauffman, 2000, p.195).
Submission history
From: Carlos Gershenson [view email][v1] Wed, 9 Nov 2005 19:48:17 UTC (318 KB)
[v2] Wed, 11 Jan 2006 16:46:45 UTC (318 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.