Nonlinear Sciences > Chaotic Dynamics
[Submitted on 22 Dec 2006]
Title:Ring Intermittency in Coupled Chaotic Oscillators at the Boundary of Phase Synchronization
View PDFAbstract: A new type of intermittent behavior is described to occur near the boundary of phase synchronization regime of coupled chaotic oscillators. This mechanism, called ring intermittency, arises for sufficiently high initial mismatches in the frequencies of the two coupled systems. The laws for both the distribution and the mean length of the laminar phases versus the coupling strength are analytically deduced. A very good agreement between the theoretical results and the numerically calculated data is shown. We discuss how this mechanism is expected to take place in other relevant physical circumstances.
Submission history
From: Alexander E. Hramov [view email][v1] Fri, 22 Dec 2006 12:25:38 UTC (161 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.