Nuclear Theory
[Submitted on 30 Jun 2005]
Title:Bosonization of the Pairing Hamiltonian
View PDFAbstract: We address the problem of the bosonization of finite fermionic systems with two different approaches.
First we work in the path integral formalism, showing how a truly bosonic effective action can be derived from a generic fermionic one with a quartic interaction. We then apply our scheme to the pairing hamiltonian in the degenerate case proving that, in this instance, several of the features characterizing the spontaneous breaking of the global gauge symmetry U(1) occurring in the infinite system persist in the finite system as well.
Accordingly we interpret the excitations associated with the addition and removal of pairs of fermions as a quasi-Goldstone boson and the excitations corresponding to the breaking of a pair (seniority one states in the language of the pairing hamiltonian) as Higgs modes.
Second, we face the more involved problem of a non-degenerate single particle spectrum, where one more kind of excitations arises, corresponding to the promotion of pairs to higher levels. This we do by solving directly the Richardson equations. From this analysis the existence emerges of critical values of the coupling constant, which signal the transition between two regimes, one dominated by the mean field physics, the other by the pairing interaction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.