Physics > Biological Physics
[Submitted on 26 Jun 2003]
Title:Phenotypic mixing and hiding may contribute to memory in viral quasispecies
View PDFAbstract: Background. In a number of recent experiments with food-and-mouth disease virus, a deleterious mutant, was found to avoid extinction and remain in the population for long periods of time. This observation was called quasispecies memory. The origin of quasispecies memory is not fully understood.
Results. We propose and analyze a simple model of complementation between the wild type virus and a mutant that has an impaired ability of cell entry. The mutant will go extinct unless it is recreated from the wild type through mutations. However, under phenotypic mixing-and-hiding as a mechanism of complementation, the time to extinction in the absence of mutations increases with increasing multiplicity of infection (m.o.i.). The mutant's frequency at equilibrium under selection-mutation balance also increases with increasing m.o.i. At high m.o.i., a large fraction of mutant genomes are encapsidated with wild-type protein, which enables them to infect cells as efficiently as the wild type virions, and thus increases their fitness to the wild-type level. Moreover, even at low m.o.i. the equilibrium frequency of the mutant is higher than predicted by the standard quasispecies model, because a fraction of mutant virions generated from wild-type parents will also be encapsidated by wild-type protein.
Conclusions. Our model predicts that phenotypic hiding will strongly influence the population dynamics of viruses, particularly at high m.o.i., and will also have important effects on the mutation--selection balance at low m.o.i. The delay in mutant extinction and increase in mutant frequencies at equilibrium may, at least in part, explain memory in quasispecies populations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.