Quantitative Biology > Populations and Evolution
[Submitted on 2 Nov 2005]
Title:Species lifetime distribution for simple models of ecologies
View PDFAbstract: Interpretation of empirical results based on a taxa's lifetime distribution shows apparently conflicting results. Species' lifetime is reported to be exponentially distributed, whereas higher order taxa, such as families or genera, follow a broader distribution, compatible with power law decay. We show that both these evidences are consistent with a simple evolutionary model that does not require specific assumptions on species interaction. The model provides a zero-order description of the dynamics of ecological communities and its species lifetime distribution can be computed exactly. Different behaviors are found: an initial $t^{-3/2}$ power law, emerging from a random walk type of dynamics, which crosses over to a steeper $t^{-2}$ branching process-like regime and finally is cutoff by an exponential decay which becomes weaker and weaker as the total population increases. Sampling effects can also be taken into account and shown to be relevant: if species in the fossil record were sampled according to the Fisher log-series distribution, lifetime should be distributed according to a $t^{-1}$ power law. Such variability of behaviors in a simple model, combined with the scarcity of data available, cast serious doubts on the possibility to validate theories of evolution on the basis of species lifetime data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.