Quantitative Biology > Genomics
[Submitted on 16 Nov 2005]
Title:Correlation Statistics for cDNA Microarray Image Analysis
View PDFAbstract: In this report, correlation of the pixels comprising a microarray spot is investigated. Subsequently, correlation statistics namely: Pearson correlation and Spearman rank correlation are used to segment the foreground and background intensity of microarray spots. The performance of correlation-based segmentation is compared to clustering-based (PAM, k-means) and seeded-region growing techniques (SPOT). It is shown that correlation-based segmentation is useful in flagging poorly hybridized spots, thus minimizes false-positives. The present study also raises the intriguing question of whether a change in correlation can be an indicator of differential gene expression.
Submission history
From: Radhakrishnan Nagarajan [view email][v1] Wed, 16 Nov 2005 15:25:33 UTC (118 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.