Quantitative Biology > Populations and Evolution
[Submitted on 23 Nov 2005 (v1), last revised 12 May 2006 (this version, v2)]
Title:Evolution on distributive lattices
View PDFAbstract: We consider the directed evolution of a population after an intervention that has significantly altered the underlying fitness landscape. We model the space of genotypes as a distributive lattice; the fitness landscape is a real-valued function on that lattice. The risk of escape from intervention, i.e., the probability that the population develops an escape mutant before extinction, is encoded in the risk polynomial. Tools from algebraic combinatorics are applied to compute the risk polynomial in terms of the fitness landscape. In an application to the development of drug resistance in HIV, we study the risk of viral escape from treatment with the protease inhibitors ritonavir and indinavir.
Submission history
From: Nicholas Eriksson [view email][v1] Wed, 23 Nov 2005 18:50:59 UTC (31 KB)
[v2] Fri, 12 May 2006 17:43:31 UTC (32 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.