Quantitative Biology > Genomics
[Submitted on 2 Dec 2005]
Title:Parametric Alignment of Drosophila Genomes
View PDFAbstract: The classic algorithms of Needleman--Wunsch and Smith--Waterman find a maximum a posteriori probability alignment for a pair hidden Markov model (PHMM). In order to process large genomes that have undergone complex genome rearrangements, almost all existing whole genome alignment methods apply fast heuristics to divide genomes into small pieces which are suitable for Needleman--Wunsch alignment. In these alignment methods, it is standard practice to fix the parameters and to produce a single alignment for subsequent analysis by biologists.
Our main result is the construction of a whole genome parametric alignment of Drosophila melanogaster and Drosophila pseudoobscura. Parametric alignment resolves the issue of robustness to changes in parameters by finding all optimal alignments for all possible parameters in a PHMM. Our alignment draws on existing heuristics for dividing whole genomes into small pieces for alignment, and it relies on advances we have made in computing convex polytopes that allow us to parametrically align non-coding regions using biologically realistic models. We demonstrate the utility of our parametric alignment for biological inference by showing that cis-regulatory elements are more conserved between Drosophila melanogaster and Drosophila pseudoobscura than previously thought. We also show how whole genome parametric alignment can be used to quantitatively assess the dependence of branch length estimates on alignment parameters.
The alignment polytopes, software, and supplementary material can be downloaded at this http URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.