Quantitative Biology > Populations and Evolution
[Submitted on 6 Dec 2005 (v1), last revised 8 Dec 2005 (this version, v2)]
Title:Dynamics of networking agents competing for high centrality and low degree
View PDFAbstract: We model a system of networking agents that seek to optimize their centrality in the network while keeping their cost, the number of connections they are participating in, low. Unlike other game-theory based models for network evolution, the success of the agents is related only to their position in the network. The agents use strategies based on local information to improve their chance of success. Both the evolution of strategies and network structure are investigated. We find a dramatic time evolution with cascades of strategy change accompanied by a change in network structure. On average the network self-organizes to a state close to the transition between a fragmented state and a state with a giant component. Furthermore, with increasing system size both the average degree and the level of fragmentation decreases. We also observe that the network keeps on actively evolving, although it does not have to, thus suggesting a Red Queen-like situation where agents have to keep on networking and responding to the moves of the others in order to stay successful.
Submission history
From: Petter Holme [view email][v1] Tue, 6 Dec 2005 22:27:16 UTC (172 KB)
[v2] Thu, 8 Dec 2005 16:16:31 UTC (172 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.