Quantitative Biology > Biomolecules
[Submitted on 19 Dec 2005 (v1), last revised 8 Aug 2006 (this version, v3)]
Title:An irreversible growth model for virus capsid assembly
View PDFAbstract: We model the spontaneous assembly of a capsid (a virus's closed outer shell) from many copies of identical units, using entirely irreversible steps and only information local to the growing edge. Our model is formulated in terms of (i) an elastic Hamiltonian with stretching and bending stiffness and a spontaneous curvature, and (ii) a set of rate constants for addition of new units or bonds. An ensemble of highly irregular capsids is generated, unlike the well-known icosahedrally symmetric viruses, but (we argue) plausible as a way to model the irregular capsids of retroviruses such as HIV. We found that (i) the probability of successful capsid completion decays exponentially with capsid size; (ii) capsid size depends strongly on spontaneous curvature and weakly on the ratio of the bending and stretching elastic stiffnesses of the shell; (iii) the degree of localization of Gaussian curvature (a measure of facetedness) depends heavily on the ratio of elastic stiffnesses.
Submission history
From: Stephen Hicks [view email][v1] Mon, 19 Dec 2005 19:05:48 UTC (673 KB)
[v2] Tue, 21 Mar 2006 03:39:24 UTC (126 KB)
[v3] Tue, 8 Aug 2006 06:06:37 UTC (387 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.