Quantitative Biology > Populations and Evolution
[Submitted on 30 Dec 2005]
Title:Two-state dynamics for replicating two-strand systems
View PDFAbstract: We propose a formalism for describing two-strand systems of a DNA type by means of soliton von Neumann equations, and illustrate how it works on a simple example exactly solvably by a Darboux transformation. The main idea behind the construction is the link between solutions of von Neumann equations and entangled states of systems consisting of two subsystems evolving in time in opposite directions. Such a time evolution has analogies in realistic DNA where the polymerazes move on leading and lagging strands in opposite directions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.