Quantum Physics
[Submitted on 16 Jan 2007]
Title:A presentation of Quantum Logic based on an "and then" connective
View PDFAbstract: When a physicist performs a quantic measurement, new information about the system at hand is gathered. This paper studies the logical properties of how this new information is combined with previous information. It presents Quantum Logic as a propositional logic under two connectives: negation and the "and then" operation that combines old and new information. The "and then" connective is neither commutative nor associative. Many properties of this logic are exhibited, and some small elegant subset is shown to imply all the properties considered. No independence or completeness result is claimed. Classical physical systems are exactly characterized by the commutativity, the associativity, or the monotonicity of the "and then" connective. Entailment is defined in this logic and can be proved to be a partial order. In orthomodular lattices, the operation proposed by Finch (1969) satisfies all the properties studied in this paper. All properties satisfied by Finch's operation in modular lattices are valid in Hilbert Space Quantum Logic. It is not known whether all properties of Hilbert Space Quantum Logic are satisfied by Finch's operation in modular lattices. Non-commutative, non-associative algebraic structures generalizing Boolean algebras are defined, ideals are characterized and a homomorphism theorem is proved.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.