Exactly Solvable and Integrable Systems
[Submitted on 18 Feb 1994]
Title:Multi-Hamiltonian formulation for a class of degenerate completely integrable systems
View PDFAbstract: Generalizing a construction of P. Vanhaecke, we introduce a large class of degenerate (i.e., associated to a degenerate Poisson bracket) completely integrable systems on (a dense subset of) the space $\R^{2d+n+1}$, called the generalized master systems. It turns out that certain generalized master systems (with different Poisson brackets and different Hamiltonians) determine the same Hamiltonian vector fields (and are therefore different descriptions of the same Hamiltonian system), and that the Poisson brackets of these systems are compatible. Consequently, our class of generalized master systems actually consists of a (smaller) class of completely integrable systems, and our construction yields a multi-Hamiltonian structure for these systems. As an application, we construct a multi-Hamiltonian structure for the so-called master systems introduced by D. Mumford.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.