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Abstract— The problem of statistical learning is to construct (or model-free) learning, reflecting the fact that typically only
a predictor of a random variable Y" as a function of a related minimal assumptions are made on the causal relation between
random variable X on the basis of an i.i.d. training sample from X and Y and on the capability of the hypotheses fi

the joint distribution of (X,Y’). Allowable predictors are drawn t t thi lati It i | h t h
from some specified class, and the goal is to approach asymp- 0 capture this refation. [t 1S general enough 10 cover suc

totically the performance (expected loss) of the best predior ~Problems as classification, regression and density estimat
in the class. We consider the setting in which one has perfect Formally, alearning algorithm (or learner, for short) is a
observation of the X-part of the sample, while the Y-part has sequence{ [}, of mapsf, : Z® x X — J, such that
to be communicated at some finite bit rate. The encoding of the J?R(Zn’ JeFforallnandallZr € 27 Let Z = (X,Y) ~

Y-values is allowed to depend on theX-values. Under suitable . - .
regularity conditions on the admissible predictors, the udlerlying £ P€ independent of the training sequence. The main

family of probability distributions and the loss function, we give quantity of interest is thgeneralization error of the learner,
an information-theoretic characterization of achievablepredictor

performance in terms of conditional distortion-rate functions. L(J?n,P) = V(]?n(Z",X),Y)‘Z"}

The ideas are illustrated on the example of nonparametric N

regression in Gaussian noise. = / U(fn(Z™, 2),y)dP(x,y).
z

. INTRODUCTION AND PROBLEM STATEMENT The generalization error is a random variable, as it depends

Let X andY be jointly distributed random variables, whereon the training sequencg”. One is chiefly interested in the
X takes values in amput space X' andY” takes values in an asymptotic probabilistic behavior of tlezcessloss L( f,,, P)—
output space ). The problem of statistical learning is about*(F, P) asn — oo. (Clearly, L(fn,P) > L*(F,P) for
constructing an accurate predictor¥éfas a function ofX’ on everyn.) Under suitable conditions on the loss functirihe
the basis of some number of independent copie$XfY’), hypothesis clas&, and the underlying famil® of probability
often with very little or no prior knowledge of the underlgin distributions, one can show that there exist learning dgos
distribution. A very general decision-theoretic framelwéor which not only generalize, i.e., E L(f,, P) — L*(F,P) as
learning was proposed by Haussler [1]. In a slightly simgdifi » — oo for every P ¢ P (which is the least one could ask
form it goes as follows. LetP be a family of probability for), but are alsgorobably approximately correct (PAC), i.e.
distributions onZ = X x ). Each membeP of P represents .

a possible relationship betweeti and Y. Also given are a Jim P (Z"  L(fn, P) > L*(F, P) + 6) =0 (D)
loss function ¢ : ) x Y — R* and a setF of functions

(hypotheses) from X into ). For any f € F and anyP € P
we have theexpected loss (or risk)

for everye > 0 and everyP € P. (See, e.g., Vidyasagar [2].)
This formulation assumes that the training data are availab
to the learner with arbitrary precision. This assumptioryma
. _ not always hold, however. For example, the location at which
L($, P) =EUf(X)Y) = /z (f(z),y)dP(z,y), the training data are gathered may be geographically simgara
rom the location where the learning actually takes place.
herefore, the training data may have to be communicated to
the learner over a channel of finite capacity. In that case, th
learner will see only a quantized version of the trainingadat
L*(F,P) = inf L(f,P) and must be able to cope with this to the extent allowed by the
fer fundamental limitations imposed by rate-distortion thedn
and assume that the infimum is achieved by soffiec F. this paper, we consider a special case of such learning under
Then f* is the best predictor oY from X in the hypothesis rate constraints, when the learner has perfect observattitie
classF when(X,Y) ~ P. The problem of statistical learninginput partX™ = (X3, ..., X,,) of the training sequence, while
is to construct, for each, an approximation tof* on the the output pary™™ = (Y1,...,Y,) has to be communicated
basis of atraining sequence {Z;}"_,, whereZ; = (X;,Y;) via a noiseless digital channel whose capacityRidits per
are i.i.d. according taP, such that this approximation getssample. This situation, shown in Figuré 1, may arise, for
better and better as the sample siz¢ends to infinity. This example, in remote sensing, where thkigs are the locations
formulation of the learning problem is referred toagostic  of the sensors and thé’s are the measurements of the sensors

which expresses quantitatively the average performancé o
as a predictor o” from X when(X,Y) ~ P. Let us define
the minimum expected loss
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T T LEARNER [——=F,(X"¥",)

limsupE L(f,, P) < L*(F,P) + A

n—oo

(X3

for every P € P. After listing the basic assumptions in
Sec/[dl, we derive in Se¢ Il sufficient conditions fR, A)
to be achievable. We then apply our results to the setting of

. ' . nonparametric regression in SEc] IV. Discussion of results
having the formfy (X;) + Zi’, where fo : X — [0, 1] is Some o o ine of future directions are given in SEG. V.
unknown function and the’;’s are i.i.d. zero-mean Gaussian

random variables with varianee®. Assuming that the sensorsa. Related work
are dispersed at random over some bounded spatial regio
X and the location of each sensor is known following itﬁ

?aiz[?ﬁrngtéégir:szagfatherjgrrl]sgtr%r;}'tr'lsetls]:aeshvre;&;\ﬁA?‘llswede and Burnashev [7] and Han and Amari [8] from
imi ) pproximati u the viewpoint of multiterminal information theory. In thes

n .

vectorY™ = (¥3,..., ¥y) to some central location, where the_ apers, the underlying family of distributions ¢X,Y) is

vector X" of the sensor locations and the compressed versign L .
rametric, i.e., of the fornrP = {Py}sco, Where©® is a

Fig. 1. The set-up for learning from compressed data witk sifbrmation.

Breviously, the problem of statistical estimation from eom
ressed data was considered by Zhang and Berger [6],

S ) )
Y™ of the sensor measurements will be fed into a learner t %bset ofR* for some finitek, and one wishes to estimate

will approximatefo by some functionf,,(X™,Y™, ) from a the “true” parameteé*. The i.i.d. observation$§(X;,Y;)} ™,

given hypothesis class. are drawn fromPy-, and the input parX” is communicated

In this paper, we establish information-theoretic uppgy e statistician at some ratg,, while the output part
bounds on the achievable generalization error in thisrgetti y» s communicated at some rat,. The present work

In particular, we relate the problem of agnostic learningem goneralizes to the nonparametric setting the case coesider
(partial) rate constraints to conditional rate-distantitheory by Ahlswede and Burnashev [7], namely whéh — cc.

[3, Section 6.1], [4], [5, Appendix A], which is concernedii 1o he pest of the authors knowledge, this paper is the
lossy source coding in the presence of side information 8bthg ¢ 14 consider the problem of nonparametric learning from
the encoder and at the decoder. In the set-up shown in Fﬁg“r%ampressed observations with side information.

the input partX” = (X;,..., X,,) of the training sequence,

which is available both to the encoder and to the decoder [l. ASSUMPTIONS

(hence to the learner), plays the role of the side infornmatio

while the output part™ = (Y3, ...,Y,,) is to be coded using A
a lossy source code operating at the raté&ddits per symbol.
Furthermore, because the distribution &f, Y') is known only

We begin by stating some basic assumptiongo® and/.

dditional assumptions will be listed in the sequel as ndede

The input spacet’ is taken to be a measurable subseR6f

: while the output space is either a finite set (as in classifioat

to be a member of some f§m|l}?, the .Iossy codes must beor the set of real® (as in regression or function estimation).

robust in the presence of this uncertainty. ) We assume throughout that the fami® of distributions on
Let us formally state the problem. L&, 7. ¢ be given. y . v js such that the mutual informatiai{ X Y) < oo for

A scheme for agnostic learning under partial rate condBainyery p « . All information-theoretic quantities will be in

(from”now on, simply aschen_1e) operating at rateR? is bits, unless specified otherwise.

specified by a sequence of triplgée,,, dn, f2)}721, Where  \ye assume that there exists a learning algorithm which

. Ry i . ) _ , )
en o X" X Y" — {1,...,2"7} is the encoderd, : X X ganerajizes optimally in the absence of any rate constraint

{1,...,2"7%} — y" is the decoder, andl, : X" x " — 7 Therefore, our standing assumption GA, P, ¢) will be that
is the learner. We shall often abuse notation andfletlenote e induced function clas€r — {¢; : f e F}, where

also the functionf, (X", Y™,.). For eachn, the output of p(z) 2

, PR L = U(f(x),y) for all z = (z,y) € Z, satisfies the
the learner is a hypothesj$, (X", Y™, ) € 7, whereY™ = nitorm law of large numbers (ULLN) for every P € P, i.e.,
dn(X™, e, (X™ Y™)) is the reproduction o¥™ given the side

n

information X™. For any P € P, the main object of interest 1
associated with the scheme is the generalization error ?22 " > 4(Zi) —EL(Z)] =0, a.8. @
- i=1
L(f P)2E V(J? (X" v X) Y)‘Xn Yn:| whereZ, Zy, Z, ... are i.i.d. according td®. Eq. [2) implies

that, for any sequencgf,} C F,

where (X,Y) ~ P is assumed independent X, Y;)}™ ,

(to keep the notation simple, we suppress the dependence
of the generalization error on the encoder and the decoder).
In particular, we are interested in the achievable values ®his holds even in the case when eathis random, i.e.,

the asymptotic expected excess risk. We say that a pdin:) = f.(Z"™,-). The ULLN is a standard ingredient in
(R,A) is achievable for (F,P,¢) if there exists a scheme proofs of consistency of learning algorithms:(iF, P, ¢) are

— 0, a.s.

1 n
- > 4, (Zi) —Eiy, (2)
=1



such that [(R) holds, then thEmpirical Risk Minimization
algorithm (ERM), given by

—~ 1 <

n = arg min — Z;),

f gmin ;ff( )

is PAC in the sense of]1) [2, Theorem 3.2].

Next, we assume that the loss functiérhas the follow-
ing “generalized Lipschitz” property: there exists a camga
continuous functiom : R™ — R*, such that for allf € F,
z e X andu,u’ €Y

[0(f (), u) = £(f (x), w')] < n(l(u, u')).
This holds, for example, in the following cases:
o Suppose that is a metric on). Then, by the triangle
inequality we havel(y,u) < ((y,u') + £(v',u) for all
y,u, v’ € Y, so [3) holds withy(t) = t.
» Suppose thal = [0,1] and/(u,u) = |u—u'|P for some
p > 1. Then one can show that

[6(f (), u) = £(f (x),u)| < plu— |

foral f: X - Y,z € X andu,u’ € Y, so [3) holds
with n(t) = pt'/»,

®3)

the conditional rate-distortion function of Y given X w.r.t. P
is defined by

Ry x(D, P) £ inf {I(Y;?|X) Ve M(D)} ,

where I(Y;Y|X) is the conditional mutual information be-
tweenY and Y given X. Our assumption thaf(X;Y) <
oo ensures the existence &y x (D, P) [5]. In operational
terms, Ry | x (D, P) is the minimum number of bits needed
to describeY with expected distortion of at mosD given
perfect observation of a correlated random variakle(the
side information) when X,Y) ~ P. As a function of D,
Ry |x (D, P) is convex and strictly decreasing everywhere it
is finite, hence it is invertible. The inverse function isledl
the conditional distortion-rate function of Y given X and is
denoted byDy | x (R, P). Finally, let

Dy |x(R,P) = sup Dy|x (R, P).
PeP

We assume thdby | x (R, P) < oo for all R > 0.

We shall also need the following lemma, which can be
proved by a straightforward extension of Dobrushin’s rando
coding argument from [11] to the case of side information
available to the encoder and to the decoder:

Finally, we need to pose some assumptions on the metric

structure of the clas® with respect to theariational distance

Lemma 3.1. Let P satisfy Dobrushin’s entropy conditiohl (4).

[9, Sec. 5.2], which for any two probability distributionsAssume that the loss functigheither is bounded or satisfies

P1, P, on a measurable spa¢€, A) is defined by
dy (Py, P2) = 2 sup |Pi(A) — Pa(A)].
AcA

A finite set{Py,..., Py} C P is called an(internal) e-net
for P with respect tady if

i <e.

1531611% | Join dv(P,P,) <e
The cardinality of a minimak-net, denoted byV (¢, P), is
called thee-covering number of P w.r.t. dy,, and theKaol-
mogorov e-entropy of P is defined asH (¢, P) = log N (e, P)
[10]. We assume that the claBssatisfiesDobrushin’s entropy
condition [11], i.e., for everyc > 0
. H(e,P)
N e )
This condition is satisfied, for example, in the followingsea:
(1) X and) are both finite sets; (2P is a finite family; (3)
Z is a compact subset of a Euclidean space, andall P
are absolutely continuous with densities satisfying a arnif

Lipschitz condition [10], [11].

=0.

IIl. THE RESULTS

a uniform moment condition

sup E[¢(Y, y0)' ] < o0 (5)
PeP
for somed > 0 with respect to some fixed reference letter
Yo € Y. Then for every rateR > 0 there exists a sequence
{(en,dn)}5o, of encoderg,, : X" x Y™ — {1,...,2"%} and
decodersi,, : X™ x {1,...,2"%} — Y™ such that

limsup sup E £, (Y™, Y™) < Dy |x (R, P),
n—oo PeP

where Y™ = d,(X", e (X", Y") and £,(Y",Y") =
n~t Z;‘:A 0(Y;,Y;) is the normalized cumulative loss between
Y™ andY™.

Our main result can then be stated as follows:

Theorem 3.1. Under the stated assumptions, for aRy> 0
there exists a schemée,,, d,,, f,,)} operating at rate?, such
that

limsup E L(f,,, P) < L*(F, P) + 2n(Dy x (R, P)).

n—oo

Thus, (R, 2n(Dyx (R, P))) is achievable for every? > 0.

Proof: Givenn, Z" € Z™ and f € F, define the

To state our results we shall need some notions from con@pirical risk

tional rate-distortion theory [3, Sec. 6.1], [4], [5, ApmixA].

Fix someP € P. Given a pair(X,Y) ~ P and a nonnegative Lz (f) 2 : fo(Z”)
real numberD, define the setM(D) to consist of ally- =
valued random variablég jointly distributed with(X,Y) and and the minimum empirical risk
satisfying the constrairit /(Y,Y) < D, where the expectation ~, AL~

is taken with respect to the joint distribution &f, Y, Y. Then 7 (F) = ;22 Lz (f).



We shallwritefxn_,yn(f) andf}nyyn(]-') whenever we need e,, : X" x V" — {1,...,2"%} and decodersl, : X" x

to emphasize separately the roles)ot andY ™. {1,...,2"%} — y" such that
Suppose that the encodey and the decodef,, are given. ) W S
Let Y™ denote the reproduction af" given the side infor- hfl_i%pEén(y Y™) < Dy x(R,P), vPep.
mation X", i.e., Y™ = d,(X™, e, (X", Y")). We then define o o
our Iearnerfn by Substitution of this into[{1l0) proves the theorem. |
s R Corallary 3.2. All pairs (R,A) with A > 2p(Dyx (R, P))
Jn = "“J%gﬁm Ly g (£)- ©) are achievable. |

In other words, having received the side informatistt and Remark 3.1. In the Appendix, we show that a correspond-
the reproductiont’”, the learner performs ERM oveF on ing lower bound derived by the usual methods for proving
{(X;,Y;)}~,. Using the property({3) of the loss functigh converses in lossy source coding is strictly weaker than

and the concavity of;, we have the following estimate: the “obvious” lower bound based on the observation that
R R E L(fn,P) > L*(F,P) for any f,. It may be possible to
sup [Lxn yn(f) = Lyn g (f)] obtain nontrivial lower bounds in the minimax setting, whic
fer we leave for future work (see also SE&d. V).
1o IS
< sup — SOl (Xa), Vi) — (£ (X0), Vi) Remark 3.2. Under some technical conditions on the function
fer iz class{¢; : f € F} (see, e.g., [12]), one can show that
1< N
< =D on((Yi,Y) Esup |Lzn(f) - L(f, P)| < C/v/n, VPEeP
i=1 fer
<n(la(Y™,YM)). )

for some constant’ that depends off, ¢. Using this fact and

In particular, this implies that the. same b(_)ur_1d|ng mgthod that led to Hq.l] (10), .but v.vrghout
R R R R R taking the limit superior, we can get the following finite-
|Lxnyn(fn) = Lyn 5 (fa)] < 0(€(Y™,Y™))  (8) sample bound for every schen{ge,,d,, fn)}o2, with f,

g ’ given by [6) andarbitrary e,,, d,,:

an

N N . E L(fn, P) < L*(F,P) +2n(EL, (Y™, Y™)) + C' /\/n,

L yn(F) = Ly g (F)| S n(a(Y™,Y™). (9)

X whereC’ = 2C.

We then have . "
The following theorem shows that we can replace condition

—
©
N

EX",Y" (fn) 2 anﬂw(ﬁl) 4 n(ﬁn(Y", };n)) (3) with the requirement that be a power of a metric:
®b) =, " Sn Theorem 3.3. Suppose that the loss functidris of the form
= Ly gn (F) +n(la(Y™,Y™)) L(y,u) = d(y,u)" for somer > 1, whered is a metric on).
© -, " Sn Then for any rateR > 0 the scheme constructed in the proof
< Lxnyn (F) +20(6("Y™), of Theoren 31l is such that

where (a) follows from[(8), (b) from the definition g‘AL and  limsupE {L(J?n, p)l/T} < L*(F, p)l/T + 2DY|X(RaP)1/T
(c) from (9@). Suppose that the data are distributed accgrdin n—oo
to a particularP” € P. Taking expectations and using theholds for everyP e P.

concavity ofp and Jensen’s inequality, we obtain ) , .
Proof: We proceed essentially along the same lines as in

ELzn(fn) <ELy(F)+ 2p(EL,(Y™,Y™)). the proof of Theorem 311, except that the boufd (7) is replace

with an argument based on Minkowski's inequality to yield

Using this bound and the continuity gf we can write y
. T " \1/r T 1/r n yn "
limsupE L(f,, P) — L*(F, P) E[LZ (Fn) ] SE{ 2 (F) } +2(E€"(Y ¥ ))
n—oo

. ~ ~ ~ The rest is immediate using the ULLN as well as concavit
< lim E[L(fu, P) = Lzn(F2)] 9 y

N o0 and continuity oft — ¢!/” for ¢t > 0. [ |
+ lim E[L}.(F) — L*(F,P)]
n—00 IV. EXAMPLE: NONPARAMETRIC REGRESSION
+277(hm sup E £, (Y™, Yn))' (10) As an example, let us consider the setting of nonparametric

) nﬁoo. ] o regression. Left’ be a compact subset & and) = R. The
The two leading terms on the right-hand side of this 'ne“U“a“training data are of the form

are zero by the ULLN. Moreover, give®®, Lemma
asserts the existence of a sequefigs,, d,,)}5 ; of encoders Y = fo(Xi) + Z;, 1<i<n (12)



where the regression functiofy belongs to some specifiedi.e., { P, }M

classF of functions fromx’ into [0, 1], the X;’s are i.i.d. ran-
dom variables drawn from the uniform distribution o¥j,

and the Z;’s are i.i.d. zero-mean normal random variable

with varianceo?, independent ofX™. We take ((y,u) =

ly — u|?, the squared loss. Note thatsatisfies the condition

of Theoren{3.B withr = 2.

m—1 IS ane-net for P w.r.t. dy.. This implies, in
particular, thatN (e, P) < Na g(o¢, F) for everye > 0. This,
together with [(IR), proves the lemma. [ |
Bermma 4.2. For anyR > 0, Dy |x(R,P) = 022721,

Proof: Fix somef € F and consider a paifX,Y) ~
Ps. ThenY = f(X) + Z, where Z ~ Normal(0,0?)

Becausef, is unknown, we take as the underlying familyis independent ofX. Becausel is a difference distortion
P the class of all absolutely continuous distributions witmeasure, Theorem 7 of [4] says that, for any measurable

densities of the formps(z,y) = V=N (y; f(z),0?), f € F,

whereV is the volume ofX and N (y; f(z),c?) is the one-

dimensional normal density with megifz) and variancer?.
Because the functions itF are bounded betwee® and 1,

functiony : X — ),

Dy |x(R, Pr) = Dy _y(x)x (R, Pr—y),

where Ps_,; is the distribution of

it is easy to show that the uniform moment conditibh (5) of

Lemmal3.1 is satisfied with =1 andy = 0.
We suppose thatand.F are such that the function clags

Y —9(X) = f(X) —o(X) + Z;
furthermore, if Y — ¢(X) is independent ofX, then

satisfies the ULLNI Let @ denote the uniform distribution on Dy x(R, P) = Dy_y(x)(R), the (unconditional) distortion-

X and for any square-integrable functighon X’ define the
L, norm by

17120 2 /X F@)dQ() = o /X P (0)de.

Let us denote by, (¢, F) thee-covering number ofF w.r.t.
I 2,0, i-e., the smallest numbe¥ such that there exist/
functions{f,,}M_, in F satisfying

If = fmll2q <e

sup min
fer 1<m<M

We assume thafF is such that for every > 0

log N2, (€, F)

lim S0/

e—0

=0. (12)
This condition holds, for example, if the functions i are
uniformly Lipschitz or if X' is a bounded interval ifR and F
consists of functions satisfying a Sobolev-type condift®j.

rate function of Y — ¢(X). Taking vv = f, we get
Dy |x(R,Ps) = D(R,0?), the distortion-rate function of a
memoryless Gaussian source with varianéew.r.t. squared
error loss, which is equal ©?2~2% [3, Theorem 9.3.2]. Hence
Dy x (R, Py) is independent of . Taking the supremum over
F finishes the proof. |

Now we can state and prove the main result of this section:

Theorem 4.1. Consider the regression setting 6f1(11). Under
the stated assumptions, for afy> 0 there exists a scheme
{(en,dn, fn)}>2,, such that

limsup E [L(fn, Pf)l/‘ﬂ < o1 278

n—r oo

(14)

holds for everyf € F.

Proof: As follows from the above, the tripleF, P, ()
satisfies all the assumptions of Theollem 3.3. Thereforerfpr a
R > 0 there exists a schemie,,, d,, f,)}>2, operating at

n=1

Lemma 4.1. If F satisfies[(I2), therP satisfies Dobrushin’s rate R, such that

entropy condition[{4).

Proof: Given f € F, let P; denote the distribution with

the densityp;. It is straightforward to show that

1
I(PfHPg) = @Hf —9|

where I(-]|-)
between two probability distributions, in nats. Using Ri

%,Qa Vfagej:

inequality dy (Py, P») < /2I(P1||P) [9, Lemma 5.2.8], we

get

1
W(FIP) < TIf ~glaa. VigEF. (13
Givene > 0, let{f.,}¥_, c F be ace-net forF w.r.t. ||-||2,0.
Then from [IB) it follows that
If = fml

2,Q S €,

sup min dy(P¢, P < sup min
feglgmgM V( ! f’”)_feglgmgM o

1See Gyorfi et al. [13] for a detailed exposition of the vasiawonditions
when this is true.

limsup E [L(fn, Pf)l/?} < L*(F,Pp)/% 4 27 +5, (15)
n—oo

holds for everyf € F (we have also used Lemrhal4.2). It is

not hard to show that

L(g,Pp) = |f —gl3q+0®  VigeF,

is the relative entro information divergence
Py { ?EYS %/vhence it follows thatL*(F, Py) = o2 for every f € F.

Substituting this into[{115), we gdt_(114). [ |

V. DISCUSSION AND FUTURE WORK

We have derived information-theoretic bounds on the
achievable generalization error in learning from compgdss
data (with side information). There is a close relationship
between this problem and the theory of robust lossy source
coding with side information at the encoder and the decoder.
A major difference between this setting and the usual set-
ting of learning theory is that the techniques are no longer
distribution-free because restrictions must be placed on the
underlying family of distributions in order to guarantees th



n

existence of a suitable source code. The theory was apjplied t _ Z[H(Y|X') — H(Y;| X" v yic1)

the problem of nonparametric regression in Gaussian noise, p

where we have shown that the penalty incurred for using n

compressed observations decays exponentially with tlee rat > Z[H(Yi|Xi) — H(Y;| X, Wy)]
We have proved Theorenis B.1 and]3.3 by adopting ERM i=1

as our learning algorithm and optimizing the source code to n

deliver the best possible reconstruction of the trainingd = > IV Wi X))

effect, this imposes aeparation structure between learning iil

and source coding. While this “modular” approach is sinijalis

(clearly, additional performance gains could be attaingd b 2 ZRY‘X(EK(WZ"E)’P)

designing the encoder, the decoder and the learner jairitly) > ;}% (E £, (W™, Y™), P)

may be justified in such applications as remote sensing. For - Yixi=in T

instance, if the source code and the learner were desigihéeere [Ad) follows from the fact thatvV™ is a function

jointly, then any change made to the hypothesis class (s@f,Y" and X". The remaining steps follow from standard

if we decided to replace the currently used hypothesis cldgéormation-theoretic identities and from convexity. Téfore,

with another based on tracking the prior performance of the liminf E£,(W",Y™) > Dy x (R, P).

network) might call for a complete redesign of the sourcescod n—roo

and the sensor network, which may be a costly step. With tBecausek L(f,, P) = E£,(W™,Y™) + o(1) by the ULLN,

modular approach, no such redesign is necessary: one merely .. ~

makes the necessary adjustments in the learning algorithm, hnn—lgf]EL(f”’P) = Dy x(R, P). (A-2)

while the sensor network continues to operate as before. Now, given anyf € F, we can interpreif (X) as a zero-rate
Let us close by sketching some directions for future worlgpproximation ofY” (using only the side informatiotx), so

First of all, it would be of interest to derive information-r,(¢ p) > Dy|x(0,P) > Dy|x(R,P) for any R > 0. In

theoretic lower bounds on the generalization performang@rticular,L*(F, P) > Dyx (R, P) for all R, and
of rate-constrained learning algorithms. In particulastjas

Ahlswede and Burnashev had done in the parametric case [7], ~UminfE L(fn, P) > L*(F, P) > Dyx(R, P)

we could study the asymptotics of tienimax excess risk for all R. Thus, the information-theoretic lower bourid {A.2)
5u(R)2 inf  sup EL(],, P) — L*(F, P)}, is weaker than the bouridyilal)ioréfEL(me) > L*(F, P).
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