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Abstract

An upper bound on degrees of elements of a minimal generating system for invariants of
quivers of dimension (2, . . . , 2) is established over a field of arbitrary characteristic and its
precision is estimated. The proof is based on the reduction to the problem of description of
maximal paths satisfying certain condition.
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1 Introduction

We work over an infinite field K of arbitrary characteristic char(K). All vector spaces, algebras,
and modules are over K unless otherwise stated and all algebras are associative.

A quiver Q = (ver(Q), arr(Q)) is a finite oriented graph, where ver(Q) is the set of vertices
and arr(Q) is the set of arrows. For an arrow a denote by a′ its head and denote by a′′ its tail.
Loops and multiple arrows are allowed. The notion of quiver was introduced by Gabriel in [14] as
an effective mean for description of different problems of the linear algebra.

For a quiver Q and a dimension vector n = (nv | v ∈ ver(Q)) denote by I(Q,n) the algebra
of invariants of representations of Q. Invariants of quivers are important not only in the invariant
theory but also in the representational theory because these invariants distinguish semi-simple
representations of a quiver. The algebra I(Q,n) is embedded into the algebra of (commutative)
polynomials K[xij(a) | a ∈ arr(Q), 1 ≤ i ≤ na′ , 1 ≤ j ≤ na′′ ]. Denote by

Xa =







x1,1(a) · · · x1,na′′
(a)

...
...

xna′ ,1(a) · · · xna′ ,na′′
(a)







the na′ × na′′ generic matrix and by σk(X) the k-th coefficient in the characteristic polynomial of
an n× n matrix X , i.e.,

det(λE −X) = λn − σ1(X)λn−1 + · · ·+ (−1)nσn(X).
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In particular, σ1(X) = tr(X) and σn(X) = det(X).
For a real number α let [α] be the greatest integer that does not exceed α. We write δ(i, j) for

the Kronecker symbol and #S for the cardinality of a set S.
Let us recall that a = a1 · · · as is a path in Q (where a1, . . . , as ∈ arr(Q)), if a′1 = a′′2 , . . . , a

′
s−1 =

a′′s ; and a is a closed path in a vertex v, if a is a path and a′′1 = a′s = v. The head of the path
a is a′ = a′s and the tail of a is a′′ = a′′1 . Denote ver(a) = {a′′1 , a

′
1, . . . , a

′
s}, arr(a) = {a1, . . . , as},

and deg(a) = s. If a is a closed path, then define the degree of a in a vertex w by degw(a) =
#{i | a′i = w, 1 ≤ i ≤ s}. A closed path a is called primitive if degw(a) = 1 for all w ∈ ver(a), i.e.,
a is without self-intersections. Denote by m(Q) the maximal degree of primitive closed paths in
Q. Closed paths a1, . . . , as in Q are called incident if a′1 = · · · = a′s.

In [11] Donkin proved that K-algebra I(Q,n) is generated by σk(Xas
· · ·Xa1

) for all closed
paths a = a1 · · · as in Q (where a1, . . . , as ∈ arr(Q)) and 1 ≤ k ≤ na′ . For a field of characteristic
zero generators for I(Q,n) were described earlier by Le Bruyn and Procesi in [17]. Relations
between generators are described by Zubkov’s Theorem (see [26]), which for a quiver with one
vertex and char(K) = 0 was independently proven by Razmyslov in [23] and Procesi in [21]; for
an arbitrary quiver and a field of characteristic zero it was proven by Domokos in [5]. Notice that
I(Q,n) has a grading by degrees that is given by the formula: deg(σk(Xas

· · ·Xa1
)) = ks.

By the Hilbert–Nagata Theorem on invariants, I(Q,n) is a finitely generated graded algebra.
But the mentioned generating system is not finite. So it gives rise to the problem to find out a
minimal (by inclusion) homogeneous system of generators (m.h.s.g.). Given an N-graded algebra
A, where N stands for non-negative integers, denote by A+ the subalgebra generated by elements
of A of positive degree. It is easy to see that a set {ai} ⊆ A is a m.h.s.g. if and only if {ai} is a
basis of A = A/(A+)2. An element a ∈ A is called decomposable if it belongs to the ideal (A+)2. In
other words, a decomposable element is equal to a polynomial in elements of strictly lower degree.
Therefore the least upper bound D(Q,n) for the degrees of elements of a m.h.s.g. of I(Q,n) is
equal to the highest degree of indecomposable invariants. In this paper we establish an upper
bound on D(Q,n) for an arbitrary quiver Q and n = (2, 2, . . . , 2) and estimate its precision.

In characteristic zero case I(Q,n) is generated by invariants of degree at most (
∑

na)
2, where

the sum ranges over all a ∈ arr(Q) (see [17]). All the rest of known results on finite generating
systems for I(Q,n) concern a quiver Q with one vertex and several loops. Some of these results
are presented in Section 2.

If Q1 and Q2 are quivers with ver(Q1) ⊂ ver(Q2) and arr(Q1) ⊂ arr(Q2), then we say that Q1

is a subquiver of Q2 and write Q1 ⊂ Q2. A quiver Q is said to be strongly connected if there exists
a closed path in Q that contains all vertices of Q. A quiver with one vertex and no arrows is also
called strongly connected. For a quiver Q let Q1, . . . ,Qk be its strongly connected components,
i.e., Q1, . . . ,Qk are strongly connected subquivers of Q, ver(Q) = ver(Q1)

⊔

· · ·
⊔

ver(Qk) is a
disjoint union, for every a ∈ arr(Q) with a′, a′′ ∈ ver(Qi) for some i we have a ∈ arr(Qi), and
k is the minimal number satisfying the given conditions. Obviously, I(Q,n) is the tensor prod-
uct of I(Q1,n1), . . . , I(Qs,ns) for some dimension vectors n1, . . . ,ns of Q1, . . . ,Qs, respectively,
satisfying n = n1⊕· · ·⊕ns. Therefore, it is sufficient to consider only strongly connected quivers.

Given a one-vertex quiver with d loops (d > 2), there are two possibilities for D = D(Q, (2)):

1) if char(K) = 2, then D = d;

2) if char(K) 6= 2, then D = 3.

See Section 2 for the references. Note that in the first case D depends linearly on d and in the
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second case D is a constant that does not depend on d. We show that the same statement is valid
for an arbitrary quiver. Denote by Q(n, d,m) the set of all strongly connected quivers Q with
#ver(Q) = n, # arr(Q) = d, and m(Q) = m. Our main result is the following theorem.

Theorem 1.1. Let Q ∈ Q(n, d,m), where d ≥ 2.

1) If char(K) = 2, then D(Q, (2, . . . , 2)) ≤ md. Moreover, if n,m are fixed, then

max{D(Q, (2, . . . , 2)) | Q ∈ Q(n, d,m)}

md
→ 1 as d → ∞.

2) If char(K) 6= 2, then D(Q, (2, . . . , 2)) ≤ 3n. Moreover, if d is sufficiently large with respect
to n,m, then

max{D(Q, (2, . . . , 2)) | Q ∈ Q(n, d,m)}

is equal to the given bound.

As an immediate corollary of Donkin’s Theorem on the generators of I(Q,n) we obtain
that the upper bounds on degrees from Theorem 1.1 remain valid for the algebra of invariants
I(Q, (δ1, . . . , δn)) with δ1, . . . , δn ≤ 2.

The proof of Theorem 1.1 is based on the reduction to the problem of finding out maximal paths
satisfying certain condition (see Lemma 1.2). In informal way, the last problem can be stated as
“Guide’s Problem” (see below).

For a quiver Q introduce an equivalence ≡ on the set of all closed paths extended with an
additional symbol 0. For any paths a, b such that ab is a closed path and any incident closed paths
a1, a2, . . . we define

1. ab ≡ ba;

2. aσ(1) · · ·aσ(t) ≡ (−1)σa1 · · · at, where t ≥ 2 and σ ∈ St;

3. a21a2 ≡ 0;

4. if char(K) = 2, then a21 ≡ 0; if char(K) 6= 2, then a1a2a3a4 ≡ 0.

Lemma 1.2. Let a = a1 · · · as be a closed path in Q, where a1, . . . , as ∈ arr(Q). Then
tr(Xas

· · ·Xa1
) ∈ I(Q, (2, 2, . . . , 2)) is decomposable if and only if a ≡ 0.

Denote by M(Q) the maximal degree of a closed path a in Q satisfying a 6≡ 0. Lemma 1.2
shows that the case char(K) = 2 is essentially different from the case char(K) 6= 2. The longest
part of the paper is dedicated to the case char(K) = 2 and in this case M(Q) is equal to the length
of a route that provides a solution for the following problem.

Guide’s Problem. A guide shows a city to a tourist. They ride by car along streets of the
city. All streets are assumed to be one-way. (Two-way streets can be considered as two different
streets.) At the end of the tour they should come back to their starting point. At the beginning the
guide shows a plan of their route to the tourist. If the route goes through a crossroad several times
(i.e., this crossroad divides the route into parts ab1 . . . bkc, where k ≥ 1 and b1, . . . , bs are cycles
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that start and terminate at the given crossroad), then the tourist can choose order of passing these
cycles (i.e., the tourist can turn the route into abπ(1) . . . bπ(k)c for any permutation π ∈ Sk). The
route is called bad if it contains two consecutive cycles that coincide.

Guide’s payment depends on the length of their route and so his task is to find out the longest
route such that the tourist can not turn this route into a bad one.

In Section 2 we consider some results on generating systems for invariants of a quiver with
one vertex and several arrows. In Section 3 we formulate Zubkov’s Theorem, which we apply in
Section 4 to prove Lemma 1.2. Section 5 contains definitions of notions that are used in Sections 6
and 7. If char(K) 6= 2, then the upper bound on M(Q) is calculated in Lemma 6.1; otherwise,
we establish the upper bound on M(Q) in Corollary 6.11. In Lemma 7.2 we estimate a precision
of the given upper bounds. Taking into account Lemma 1.2 and Remark 4.2 together with the
fact that I(Q, (2, 2, . . . , 2)) is generated by indecomposable invariants, we complete the proof of
Theorem 1.1. An example of indecomposable invariants is given in Example 7.3.

Remark 1.3. In the next paper we will consider n, d,m satisfying Q(n, d,m) 6= ∅ and define the
upper bound M(n, d,m) such that in case char(K) = 2 we have

• D(Q, (2, . . . , 2)) ≤ M(n, d,m) for all Q ∈ Q(n, d,m);

• there is a Q ∈ Q(n, d,m) such that M(n, d,m)−m ≤ D(Q, (2, . . . , 2)).

2 Matrix invariants

Suppose Q is a quiver with one vertex and d arrows. Then I(Q, (n)) is called the matrix invariant
algebra and we denote it by Rn,d. In this section we discuss some known results on generating
systems for Rn,d.

Relying on the theory of modules with good filtrations (see [8], [10]), Donkin [9] proved that
K-algebra Rn,d ⊂ K[xij(r) | 1 ≤ i, j ≤ n, 1 ≤ r ≤ d] is generated by σk(Xr1 · · ·Xrs) for 1 ≤ k ≤ n
and 1 ≤ r1, . . . , rs ≤ d, where Xr = (xij(r))1≤i,j≤n is the n × n matrix. For zero characteristic
case, generators were found earlier by Sibirskii in [24] and Procesi in [21].

A m.h.s.g. for R2,d was found by Sibirskii in [24] when char(K) = 0, by Procesi in [22] when
char(K) is odd, and by Domokos, Kuzmin, and Zubkov in [7] when char(K) = 2. A m.h.s.g. for
R3,d was found by the author in [18], [19]. Moreover, for n = 3 and d = 2 relations between
elements of some m.h.s.g. were explicitly described by Nakamoto in [20] and by Aslaksen, Drensky,
and Sadikova in [2] (see also Teranishi [25]). A m.h.s.g. for R4,2 was described by Drensky and
Sadikova in [4] when char(K) = 0.

Regarding an arbitrary n, an upper bound on indecomposable invariants of Rn,d was given
by Domokos in [6] in terms of the nilpotency degree N(n, d) of a (non-unitary) relatively free
d-generated algebra with the identity xn = 0. If char(K) = 0 or char(K) > n, then N(n, d) ≤
2n − 1 by the Nagata–Higman Theorem (see [15]). Moreover, if char(K) = 0, then N(n, d) ≤ n2

by Razmyslov (see [23]) and Rn,d is generated by elements of degree less or equal to N(n, d).
The situation changes drastically when 0 < char(k) ≤ n, namely, Rn,d is not generated by its
elements of degree less than d. So if n is fixed and d tends to infinity, then the maximal degree of
indecomposable invariant as well as N(n, d) tends to infinity (see [7]). Observe that for an arbitrary
char(K), there exists an upper bound on N(n, d) by Klein (see [16]): N(n, d) < (1/6)n6dn. For
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more detailed introduction to finite generating systems for Rn,d see overviews [12] and [13] by
Formanek. For recent developments in characteristic zero see [3] and in positive characteristic
see [7].

3 Zubkov’s Theorem

In what follows Q is a strongly connected quiver and n is its dimension vector. The aim of this
section is to formulate Zubkov’s Theorem (see [26]) that describes relations for the algebra of
invariants I(Q,n).

Denote by S the free semigroup generated by letters {a1, a2, . . .}. Words b = ai1 · · · ait and
c = aj1 · · · ajt are called equivalent, if there exists a cyclic permutation π ∈ St such that ik = jπ(k)
for 1 ≤ k ≤ t. The cycle (in letters a1, a2, . . .) is the equivalence class of some word. The cycle is
primitive, if it is not equal to a power of a shorter cycle.

Let us recall some formulas. In this section A,A1, . . . , As stand for n× n matrices and n > 1.
For 1 ≤ k ≤ n Amitsur’s formula states [1]:

σk(A1 + · · ·+As) =
∑

(−1)k−(j1+···+jt)σj1(c1) · · ·σjt(ct), (1)

where the sum ranges over all pairwise different primitive cycles c1, . . . , ct in letters A1, . . . , As

and positive integers j1, . . . , jt with
∑t

i=1 ji deg(ci) = k. As an example,

σ2(A1 +A2) = σ2(A1) + σ2(A2) + σ1(A1)σ1(A2)− σ1(A1A2).

Denote the right hand side of (1) by Fk(A1, . . . , As). Let 1 ≤ k ≤ n and α, α1, . . . , αs ∈ K. Using
the formula

σk(αA) = αkσk(A), (2)

we obtain
Fk(α1A1, . . . , αsAs) =

∑

αδFδ(A1, . . . , As),

where the sum ranges over all δ = (δ1, . . . , δs) ∈ N
s with δ1 + · · · + δs = k, αδ = αδ1

1 · · · aδss , and
Fδ(A1, . . . , As) is a polynomial in σt(Ai1 · · ·Aij ). The polynomial Fδ(A1, . . . , As) is called a partial
linearization of Fk(A1, . . . , As).

For 1 ≤ k ≤ n and r ≥ 2 we have the following well-known formulas:

σk(A1A2) = σk(A2A1), (3)

σk(A
r) =

∑

i1,...,ikr≥0

β
(k,r)
i1,...,ikr

σ1(A)
i1 · · ·σkr(A)

ikr , (4)

where we assume that σi(A) = 0 for i > n. Denote the right hand side of (4) by Gk,r(A). In (4)

coefficients β
(k,r)
i1,...,ikr

∈ Z do not depend on A and n. If we take A = diag(a1, . . . , an) is a diagonal
matrix, then σk(A

r) (σi(A) for 1 ≤ i ≤ n, respectively) is a symmetric polynomial (the i-th

elementary symmetric polynomial, respectively) in a1, . . . , an and the coefficients β
(k,r)
i1,...,ikr

with
i1 + 2 · i2 + · · ·+ kr · ikr ≤ n can easily be found. As an example,

σ1(A
2) = σ1(A)

2 − 2σ2(A). (5)
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Consider the commutative algebra A(Q), freely generated by “symbolic” elements σk(h), where
k ≥ 1 and h is a closed path in Q. An expression p = q with different p, q ∈ A(Q) we interpret as
the element p− q of A(Q).

By Zubkov’s Theorem, the algebra of invariants I(Q,n) is isomorphic to A(Q)/T (Q,n), where
the ideal T (Q,n) is generated by

(A) σk(a1a2) = σk(a2a1), where k ≥ 1 and a1, a2 are such paths in Q that a1a2 is a closed path;

(B) σk(a
r) = Gk,r(a), where k ≥ 1, r ≥ 2 and a is a closed path in Q;

(C) Fδ(a1, . . . , as) = 0, where a1, . . . , as are incident closed paths inQ for s ≥ 1, δ = (δ1, . . . , δs) ∈
N

s, and δ1+ · · ·+ δs > na′′

1
; in particular, σk(a) = 0 for any closed path a in Q and k > na′′ .

The isomorphism is given by

σk(Xas
· · ·Xa1

) → σk(a1 · · · as)

for 1 ≤ k ≤ na′′

1
and such arrows a1, . . . , as ∈ arr(Q) that a1 · · · as is a closed path in Q. Elements

of T (Q,n) are called relations for I(Q,n).

4 Relations between indecomposable invariants

In this section Q is a strongly connected quiver. For short, denote I(Q, (2, 2, . . . , 2)) by I(Q) and
T (Q, (2, 2, . . . , 2)) by T (Q). If a and b are equal elements of I(Q) = I(Q)/(I(Q)+)2, then we write
a ≡ b.

Consider the algebra A(Q) that was defined in Section 3 and denote:

tr(a) = σ1(a) and det(a) = σ2(a)

for a closed path a inQ. The algebra I(Q) is isomorphic toA(Q)/L(Q) forA(Q) = A(Q)/(A(Q)+)2

and some ideal L(Q) ✁ A(Q). As above, an element q ∈ L(Q) is called a relation for I(Q) and
we write q ≡ 0. We say that q ≡ 0 follows from q1 ≡ 0, . . . , qs ≡ 0, if q is a linear combination of
q1, . . . , qs.

Lemma 4.1. The ideal of relations for I(Q) is equal to the K-span of the relations:

(a) tr(a1a2) ≡ tr(a2a1), det(a1a2) ≡ det(a2a1), where a1 and a2 are such paths in Q that a1a2
is a closed path;

(b) tr(a2) ≡ −2 det(a);

(c) tr(a2b) ≡ 0;

(d) tr(bac) ≡ − tr(abc), tr(acb) ≡ − tr(abc);

(e) det(ab) ≡ 0;

(f) σk(a) ≡ 0 for k > 2;
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where a, b, and c are incident closed paths in Q.

Proof. Denote by (A) relations for I(Q) obtained by factorization of (A) modulo the ideal
(A(Q)+)2. Similarly define (B) and (C):

(B) σk(a
r) ≡ αk,rσkr(a), where k ≥ 1, r ≥ 2, a is a closed path in Q, and αk,r ∈ Z do not depend

on a;

(C) F δ(a1, . . . , as) ≡ 0, where a1, . . . , as are incident closed paths in Q, δ = (δ1, . . . , δs) ∈ N
s,

and δ1 + · · ·+ δs > 2.

Let a1, . . . , as be such arrows of Q that a = a1 · · ·as is a closed path in Q and let k = 1, 2.
Obviously, σk(Xas

· · ·Xa1
) is decomposable if and only if σk(a) ∈ T (Q) + (A(Q)+)2. Consider the

grading on the polynomial ring A(Q) such that the generators have degree one. Then σk(a) is
homogeneous of degree one. Denote by T (Q)1 ⊂ A(Q) the vector space consisting of the linear
components of the elements of T (Q). We conclude that σk(Xas

· · ·Xa1
) is decomposable if and only

if σk(a) ∈ T (Q)1. The same reasoning shows that the image of q ∈ A(Q) in I(Q) ≃ A(Q)/T (Q)
under the canonical homomorphism is decomposable if and only if q ∈ T (Q)1. Thus, relations for
I(Q) are linear combinations of relations (A), (B), and (C) (see Section 3).

1. Let us prove that (a)–(f) are relations for I(Q). First of all notice that (a) follows from (A)
and (e) follows from (C). By (5), the relation (B) with k = 1 and r = 2 coincides with (b).

If δ = (2, 1), then (C) coincides with (c). If δ = (2, 2), then (C) is det(a1a2) − tr(a21a
2
2) ≡ 0.

Since (c) implies tr(a21a
2
2) ≡ 0, (d) is a relation. If δ = (1, 1, 1), then (C) is tr(a1a2a3)+tr(a2a1a3) ≡

0. Clearly, (d) follows from this relation and (a).

2. Let us prove that relations (A), (B), and (C) follow from (a)–(f). Note that (a), (c), and
(d) imply that for all incident closed paths a, b, and c we have

tr(abac) ≡ 0. (6)

Obviously, (A) follows from (a) and (e).
Consider the relation (B) with k = 1. If r = 2, then (B) coincides with (b). If r ≥ 3, then

σr(a) ≡ 0 follows from (f) and tr(ar) ≡ 0 follows from (c); hence, (B) follows from (c) and (f).
If k = 2 and r ≥ 2, then det(ar) ≡ 0 follows from (e) and σ2r(a) ≡ 0 follows from (f), so (B)

follows from (e) and (f). If k ≥ 3, then (B) follows from (f).
Now we consider the relation (C). If s = 1, then (C) coincides with (f). If δi ≥ 2 for some i,

then (C) follows from (e), (f), and (6). If δ = (1, . . . , 1), then (C) is

∑

π∈Ss−1

tr(aπ(1) · · · aπ(s−1)as) ≡ 0.

The last relation follows from (a) and (d). ✷

Now we can prove Lemma 1.2 (see Section 1).

Proof of Lemma 1.2. We have the following relations for I(Q):

(g) tr(aσ(1) · · ·aσ(t)) ≡ sgn(σ) tr(a1 · · · at) for t ≥ 1 and σ ∈ St;

(h) if char(K) 6= 2, then tr(a1 · · · a4) ≡ 0;
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where a1, a2, . . . are incident closed paths in Q. To prove this notice that (g) follows from (a)
and (d) (see Lemma 4.1). Consecutively using relations (d) and (g) we obtain:

tr(a1a2a3a4) ≡ − tr(a3a1a2a4) ≡ − tr(a1a2a3a4).

Hence (h) is a relation for I(Q).
Suppose tr(a) ≡ 0. By Lemma 4.1, the relation tr(a) ≡ 0 follows from (a)–(f). Hence this

relation follows from (a), (b), (g) or from (a), (c), (g) when char(K) = 2; and it follows from (a),
(c), (g), (h) when char(K) 6= 2. In all cases we have a ≡ 0.

If a ≡ 0, then Lemma 4.1 together with (g) and (h) gives tr(a) ≡ 0. ✷

Remark 4.2. Let a = a1 · · · as be a closed path in Q, where a1, . . . , as ∈ arr(Q). If
q = det(Xas

· · ·Xa1
) ∈ I(Q) is indecomposable, then deg(q) ≤ 2m.

Proof. If q is indecomposable, then a is a primitive closed path and deg(a) ≤ m. ✷

5 Some notations and auxiliary results

Suppose a = a1 · · ·as is a path in a quiver Q and a1, . . . , as ∈ arr(Q). Given v ∈ ver(Q) and
b ∈ arr(Q), let degb(a) = #{i | ai = b, 1 ≤ i ≤ s} be the degree of a in the arrow b and degv(a) =
#{i | a′i = v, 1 ≤ i ≤ s}+ ρ be the degree of a in the vertex v, where

ρ =

{

1, if a′′1 = v and a′s 6= v
0, otherwise

.

As an example, if a′′1 , a
′
1, . . . , a

′
s are pairwise different, then dega′′

1

(a) = dega′

1

(a) = · · · = dega′

s
(a) =

1. If a is known to be a closed path, then degv(a) = #{i | a′i = v, 1 ≤ i ≤ s} coincides with the
definition given in Section 1. Sometimes it is convenient to consider only those vertices of a that
are not equal to a′ and a′′; for this purpose introduce degov(a) = #{i | a′i = v, 1 ≤ i ≤ s− 1}. Note
that degv(a) = degov(a) for v 6∈ {a′, a′′}.

The multidegree of a path a in Q is δ = (δb)b∈arr(Q), where δb = degb(a), and we denote it by
mdeg(a).

Let x1, . . . , xs be all arrows in Q from u to v, where u, v ∈ ver(Q). Then denote by x̌ any arrow
from x1, . . . , xs, by {x̌} the set {x1, . . . , xs}, and say that x̌ is an arrow from u to v. Schematically,
we depict arrows x1, . . . , xs as

��������u

x̌
'' ��������v
.

For a path a in Q denote degx̌(a) =
∑s

i=1 degxi
(a). As an example, an expression x̌a1 · · · x̌ak

stands for a path xi1a1 · · ·xikak for some 1 ≤ ij ≤ s (1 ≤ j ≤ k). Similarly, if x1, . . . , xs are loops
in v ∈ ver(Q), then x̌k stands for a closed path xi1 · · ·xik for some i1, . . . , ik.

Suppose a = a1 · · · as is a primitive closed path in Q and a1, . . . , as ∈ arr(Q). The path a is
called δ-single if δai

≥ 1 for all i and δai
= 1 for some i. The path a is called δ-double if δai

≥ 2
for all i.
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For a v ∈ ver(Q) denote by 1v the empty path in the vertex v. Given a path b with b′ = v,
we write b1v = b and for a path b with b′′ = v we write 1vb = b. By definition, deg(1v) = 0,
dega(1v) = 0, and

degw(1v) =

{

1, if w = v
0, if w 6= v

for all w ∈ ver(Q) and a ∈ arr(Q). Denote by path(Q) the set of all paths and empty paths in
Q. If we consider a path, then we assume that it is non-empty unless otherwise stated; if we write
a ∈ path(Q), then we assume that a path a can be empty.

For closed paths a, b we write a ∼ b if a = c1c2 and b = c2c1 for some c1, c2 ∈ path(Q). A path
b is called a subpath in a path a, if the path a is closed and a ∼ bc, or a is not closed and a = c1bc2,
where c, c1, c2 ∈ path(Q).

Suppose V ⊂ ver(Q) is a subset and a path h in Q satisfies h′, h′′ ∈ V . We say that a quiver G
is the h-restriction of Q to V if ver(G) = V and arr(G) = {ã}, where a ranges over such subpaths
of h that a′, a′′ ∈ V and degov(a) = 0 for all v ∈ V . By definition, ã′ = a′ and ã′′ = a′′. There is a
unique path in G that corresponds to h and each path in G corresponds to some path in Q.

Example 5.1. Let Q be the quiver

��������v

a

ww

77
x y

��

XX

b

��������u

c
++kk z
��������w

,

h be a path in Q with h′, h′′ ∈ {u, v}, and G be the h-restriction of Q to the vertices u and v.
Then G is a subquiver of the quiver

c̃z✒✑
✓✏

❲��������u

x̃, c̃b

%-dl
ã, ỹz

��������v ỹb✒✑
✓✏
✎ .

Dealing with equivalences we use the following conventions. If we write a ≡ b, then we assume
that a and b are closed paths in Q. If we write ab for paths a and b, then we assume that a′ = b′′.
To explain how we apply formulas to prove some equivalence a ≡ b we split the word a into parts
using dots. As an example, see the proof of part 1 of Lemma 6.4.

The next lemma is well known.

Lemma 5.2. Suppose Q is a strongly connected quiver and δ ∈ N
#arr(Q). Then the following

conditions are equivalent:

a) There is a closed path h in Q such that mdeg(h) = δ and arr(h) = arr(Q); in particular,
ver(h) = ver(Q).

b) We have δa ≥ 1 for all a ∈ arr(Q) and
∑

a′=v δa =
∑

a′′=v δa for all v ∈ ver(Q), where the
sums range over all a ∈ arr(Q) satisfying the given conditions.
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6 Upper bounds

Let Q be a quiver. We start with the case of char(K) 6= 2.

Lemma 6.1. Suppose char(K) 6= 2. If Q is a quiver with n vertices and h is a closed path in Q
with h 6≡ 0, then deg(h) ≤ 3n.

Proof. If the claim of the lemma is wrong, then there is a vertex v ∈ ver(Q) such that degv(h) ≥ 4.
Then h ≡ h1 · · ·h4 for some closed paths h1, . . . , h4 in v. Thus h ≡ 0 by the definition of the
equivalence ≡; a contradiction. ✷

In what follows we assume char(K) = 2 unless otherwise stated. We will use the following
remark without references to it.

Remark 6.2. Suppose f, h are closed paths in Q and b is a subpath of f . Let the equivalence
f ≡ h follows from the formulas of the form aσ(1) · · · aσ(t) ≡ a1 · · ·at, where a1, . . . , at are closed
paths in v ∈ ver(Q) satisfying degov(b) = 0, t ≥ 2, and σ ∈ St. Then b is also a subpath of h.

Lemma 6.3. Let h be a closed path in Q and {p̌} be loops of Q in some v ∈ ver(Q). Then
h ≡ p̌kb, where k ≥ 0, b ∈ path(Q), and degp̌(b) = 0.

Moreover, suppose a ∈ arr(h) and a′ 6= a′′. If a′ = v, then h ≡ ap̌kb0; if a
′′ = v, then h ≡ p̌kab0,

where, as above, degp̌(b0) = 0.

Proof. Denote k = degp̌(h). If k ≤ 1, then the statement of the lemma is trivial. Otherwise

h ∼ p̌g1 · · · p̌gk ≡ p̌kg1 · · · gk for some g1, . . . , gk ∈ path(Q). The proof of the second part of the
lemma is similar. ✷

Lemma 6.4. 1. We have x1a1x2a2x3a3 ≡ x3a1x1a2x2a3, where x1, x2, x3 are paths from u to v
and a1, a2, a3 are paths from v to u for u, v ∈ ver(Q).

2. Let h = x̌a1 · · · x̌as be a closed path.

a) If degx̌(h) ≥ 3 and degx1
(h) ≥ 1, then h ≡ x1a1x̌a2 · · · x̌as.

b) If degx1
(h) ≥ 2, then h ≡ x1a1x1a2x̌a2 · · · x̌as.

c) If degx1
(h) ≥ 1 and degx2

(h) ≥ 1, then h ≡ x1a1x2a2x̌a2 · · · x̌as or h ≡ x2a1x1a2x̌a2 · · · x̌as.

Proof. 1. Equivalences x1 ·a1x2 ·a2x3 ·a3 ≡ x1 ·a2x3 ·a1x2 ·a3 = x1a2 ·x3a1 ·x2a3 ≡ x3a1x1a2x2a3
give the required formula.

2a) There are three possibilities: h ∼ xic1x1c2xjc3, h ∼ xic1xjc2x1c3, and h ∼ x1c1xic2xjc3
for some paths c1, c2, c3 and numbers i, j. Applying part 1, we obtain the claim. Similarly, we
prove parts 2b) and 2c). ✷

Lemma 6.5. Let h be a closed path in a quiver Q

p̌ ✒✑
✓✏

❲��������u

x̌
''gg

y̌

��������v q̌✒✑
✓✏
✎ .



A.A. LOPATIN 11

a) If degx̌(h) + degy̌(h) ≥ 1, then h ≡ p̌i x̌ q̌j y̌(x̌y̌)k for some i, j, k ≥ 0.

b) If degx1
(h) ≥ 2, degy1

(h) ≥ 2, and degx̌(h) + degy̌(h) > 4, then h ≡ (x1y1)
2f for some path

f .

Proof. a) Using Lemma 6.3, we have h ≡ p̌i a q̌j b for some paths a, b and i, j ≥ 0. Equalities
a = x̌ (y̌x̌)k and b = y̌ (x̌y̌)l for k, l ≥ 0 complete the proof.

b) Part a) implies that h ≡ p̌ixlq̌
jf for f = y̌(x̌y̌)k, where i, j, k ≥ 0 and l ≥ 1. If degx̌(h) ≥ 3,

then, taking into account part 1 of Lemma 6.4, we can assume that degx1
(f) ≥ 2. We add a new

arrow x0 to Q and define x′
0 = v, x′′

0 = u. Using part a) of the lemma together with part 2b) of
Lemma 6.4, we obtain the required equivalence for the closed path x0f . Substituting p̌ixlq̌

j for
x0, we prove the required equivalence for h. The case degy̌(h) ≥ 3 is similar. ✷

Lemma 6.6. Suppose Q is

ǧ

✒✑
✓✏
✾

p̌ ✒✑
✓✏

❲

��������v

ǎ

ww

77
x̌ y̌

��

XX

b̌

��������u

č
++kk ž ��������w q̌✒✑

✓✏
✎

and h is a closed path with degx1
(h) ≥ 2 and degy1

(h) ≥ 2.

a) If degǧ(h) = 0, then h ≡ x1y1f1x1y1f2 for some paths f1 and f2.

b) If degx̌(h) + degy̌(h) + degǎ(h) + degb̌(h) > 4, then h ≡ x1y1f1x1y1f2 for some paths f1 and
f2.

Proof. a) For short, in this proof we use one and the same symbol l for non-negative integers
that can be different. As an example, p̌lč q̌l stands for p̌l1 č q̌l2 for some l1, l2 ≥ 0. Let G be the
h-restriction of Q to the vertices u and v:

P̌ ✒✑
✓✏

❲��������u

X̌
''gg

Y̌

��������v Q̌✒✑
✓✏
✎ .

We have the inclusions

{X̌} ⊂ {x̌, čq̌lb̌}, {Y̌ } ⊂ {ǎ, y̌q̌lž}, {P̌} ⊂ {p̌, čq̌lž}, {Q̌} ⊂ {y̌q̌lb̌}.

Consider h as a path in G. Part a) of Lemma 6.5 together with degX̌(h) ≥ degx̌(h) ≥ 2 implies
that h ≡ P̌ i X̌ Q̌j Y̌ (X̌Y̌ )k for some i, j ≥ 0 and k ≥ 1. Moreover, applying part 2b) of Lemma 6.4
to X̌ , we obtain h ≡ P̌ i x1 Q̌

j Y̌ x1Y̌ (X̌Y̌ )k−1.
If j = 0, then {Y̌ } contains Y1 = y1q̌

l1 ž and Y2 = y1q̌
l2 ž for some l1, l2 ≥ 0. We apply part 2c)

of Lemma 6.4 to Y̌ and obtain h ≡ P̌ i x1 Ys1x1Ys2(X̌Y̌ )k−1, where s1, s2 ∈ {1, 2} and s1 6= s2.
The required equivalence is proven.
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If j ≥ 1, then we rewrite h as

h ≡ P̌ i x1 ysq̌
lb̌ R Y̌ x1Y1(X̌Y̌ )k−1

for s ≥ 1, R = Q̌j−1, and Y1 ∈ {Y̌ }.
If {Y̌ } ⊂ {ǎ}, then j ≥ 2. Applying part 2b) of Lemma 6.4 to y̌, we can assume that s = 1 and

R = y1q̌
lb̌ Q̌j−2. Hence

h ≡ P̌ i x1 · y1q̌
lb̌ · y1q̌

lb̌ Q̌j−2 Y̌ x1 · Y̌ (X̌Y̌ )k−1

≡ P̌ i x1 · y1q̌
lb̌ Q̌j−2 Y̌ x1 · y1q̌

lb̌ · Y̌ (X̌Y̌ )k−1.

If {Y̌ } is not a subset of {ǎ}, then {Y̌ } contains yr q̌
lž for some r ≥ 1. Applying part 2b) of

Lemma 6.4 to y̌, we can assume that s = r = 1. There are three cases:

1. If Y1 = y1q̌
lž, then the claim is proven.

2. If k ≥ 2, then degY̌ (h) = k + 1 ≥ 3. Applying part 2a) of Lemma 6.4 to Y̌ , we can assume
that Y1 = y1q̌

lž and the claim is proven.

3. If k = 1 and Y1 6= y1q̌
lž, then

h ≡ P̌ i x1 · y1q̌
lb̌ R · y1q̌

lž x1 · Y1 ≡ P̌ i x1 · y1q̌
lž x1 · y1q̌

lb̌ R · Y1.

Part a) of the lemma is proven.

b) If degǎ(h) ≥ 1, then, taking into account Lemma 6.3, we have h ≡ ǧkǎf for k ≥ 0 and a
path f with degǧ(f) = 0. We add a new arrow a0 to Q and define a′0 = u, a′′0 = v. Then the closed
path a0f satisfies the condition of part a) of the lemma and the required equivalence is valid for it.
Substituting ǧkǎ for a0, we prove the required equivalence for h. The remaining cases degb̌(h) ≥ 1,
degx̌(h) ≥ 3, and degy̌(h) ≥ 3 can be treated analogously. ✷

Remark 6.7. Note that the conditions from parts a), b) can not be omitted. As an example, if
h = g1y1z1x1y1z1x1, then for any paths f1, f2 we have h 6≡ x1y1f1x1y1f2.

Suppose a quiver Q contains a path a = a1 · · ·as, where a1, . . . , as ∈ arr(Q) are pairwise
different. Let h be a closed path in Q such that degai

(h) ≥ 2 for all i and there is a b ∈ arr(h)
satisfying b 6= ai for all i.

Lemma 6.8. Using the preceding notation we have h ≡ a1 · · · asf for some f ∈ path(Q). More-
over,

a) if b′ = a′′1 , then h ≡ b a1 · · ·asf for some f ∈ path(Q);

b) if b′′ = a′s, then h ≡ a1 · · · as bf for some f ∈ path(Q).
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Proof. Let us prove part a). Since dega1
(h) ≥ 2 and b ∈ arr(h), we have h ∼ gb · q · a1f for paths

g, q, f , where q′ = q′′ = v1, g
′′ = f ′ = v1, and q can be empty.

If q is empty, then h ∼ gb a1f . If q is non-empty, then h ≡ gb · a1f · q. Thus in both cases we
have h ≡ b a1f1 for some path f1. Continuing this procedure we complete the proof. The proof of
part b) is similar. ✷

Let a and h be paths as above. For 1 ≤ i ≤ s denote vi = a′′i . We assume that the path a is
closed and primitive, s ≥ 2, b′ 6= b′′, and b′, b′′ ∈ {v2, vk} for some k ∈ {1, 3, 4, . . . , s}. Schematically
this is depicted as

'&%$ !"#v233a1 a2

��

b

'&%$ !"#v1 '&%$ !"#v3

'&%$ !"#VV

ak

'&%$ !"#

ak−1
ss'&%$ !"#vk

.

Lemma 6.9. Using the preceding notation we have h ≡ a1a2f1 a1a2f2 for some f1, f2 ∈ path(Q).

Proof. If s = 2, then see part b) of Lemma 6.5.
Suppose b′ = vk, b

′′ = v2, and s ≥ 3. By Lemma 6.8,

h ≡ bakak+1 · · · asf (7)

for some path f . We denote by G the h-restriction of Q to the vertices v1, v2, v3 and consider h
as a path in G. Part b) of Lemma 6.6 together with (7) concludes the proof. The case of b′ = v2
and b′′ = vk is similar. ✷

Lemma 6.10. Let h be a closed path in a quiver Q and h 6≡ 0. Then there exist pairwise different
primitive closed paths b1, . . . , br, c1, . . . , ct in Q, where r, t ≥ 0, such that

mdeg(h) =
r

∑

i=1

mdeg(bi) + 2
t

∑

k=1

mdeg(ck);

and there are pairwise different arrows x1, . . . , xr, y1, . . . , yt, z1, . . . , zt in Q satisfying

yj , zj ∈ arr(cj) and degyj
(h) = degzj (h) = 2, (8)

xi ∈ arr(bi) and degxi
(h)− 2

t
∑

k=1

degxi
(ck) = 1 (9)

for any 1 ≤ i ≤ r, 1 ≤ j ≤ t.

Proof. We assume that δ = mdeg(h).
If there is a δ-double path a in Q, then we define c1 = a. Let (8) be not valid for any

y1, z1 ∈ arr(a) with y1 6= z1, i.e., there exists a y ∈ arr(a) such that degz(h) ≥ 3 for all z ∈ arr(a)
with z 6= y. Without loss of generality we can assume that a = a1 · · ·as, where a1, . . . , as ∈ arr(Q)
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are pairwise different and a1 = y. Then h ≡ a1a2f11a1a2f12 for some f11, f12 ∈ path(Q) (see
Lemma 6.9). Considering a1a2 as a new arrow, we can apply Lemma 6.9 once again and obtain
h ≡ a1a2a3f21a1a2a3f22 for some f21, f22 ∈ path(Q). Repeating this procedure we can see that h ≡
afs−1,1afs−1,2 for some fs−1,1, fs−1,2 ∈ path(Q). Since a is a closed path, h ≡ a2fs−1,1fs−1,2 ≡ 0;
a contradiction. Thus there are arrows y1, z1 satisfying the required conditions.

We diminish δ by 2mdeg(a) and repeat the reasoning to obtain c2 with y2, z2 and so on. Finally,
we obtain cj , yj, zj for all 1 ≤ j ≤ t (t ≥ 0) such that the required conditions are valid and there

is no δ-double path in Q for δ = mdeg(h)− 2
∑t

k=1 mdeg(ck).
Assume δ 6= 0. Since

∑

a′=v

δa =
∑

a′′=v

δa, (10)

there is a δ-single path b in Q with x ∈ arr(b) satisfying δx = 1. We set b1 = b, x1 = x and
diminish δ by mdeg(b). Repeating this procedure we obtain the required b1, . . . , br together with
x1, . . . , xr (r ≥ 0). ✷

Corollary 6.11. Suppose Q is a quiver with d arrows and m(Q) = m. Let h be a closed path in
Q and h 6≡ 0. Then deg(h) ≤ md.

Proof. We use notations from the formulation of Lemma 6.10. Since deg(bi) ≤ m for 1 ≤ i ≤ r
and deg(ck) ≤ m for 1 ≤ k ≤ t, we have deg(h) ≤ m(r + 2t). Moreover, there are r + 2t pairwise
different arrows in Q. Thus r + 2t ≤ d. ✷

7 Examples

Suppose Q is a strongly connected quiver. The support of a non-zero vector δ ∈ N
#arr(Q) with

respect to Q is the subquiver Qδ of Q such that arr(Qδ) = {a ∈ arr(Q) | δa ≥ 1} and ver(Qδ) =
{a′, a′′ | a ∈ arr(Qδ)}. We will apply the following remark together with Lemma 5.2 to construct
indecomposable invariants.

Lemma 7.1. Let char(K) = 2 and h be a closed path in Q. If for any mdeg(h)-double path a we
have that the support of mdeg(h) − 2mdeg(a) is not strongly connected (and is not empty), then
h 6≡ 0.

Proof. If h satisfies the condition of the lemma and h ≡ 0, then h ≡ a2f for some closed paths
a, f . Thus the support of mdeg(h)− 2mdeg(a) = mdeg(f) is strongly connected; a contradiction.
✷

Lemma 7.2. Suppose n ≥ m ≥ 2. Then for d sufficiently large there is a quiver Q ∈ Q(n, d,m)
and a closed path h in Q such that h 6≡ 0 and

1) deg(h) = md− (2nm−m2 −m), if char(K) = 2;

2) deg(h) = 3n, if char(K) 6= 2.
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Proof. 1) Suppose char(K) = 2. For d ≥ 2n −m we consider the following strongly connected
quiver Q ∈ Q(n, d,m):

✡
✡
✡✡✣

❏
❏

❏❏❪

❏
❏
❏❏❫
✡

✡
✡✡✢♣ ♣♣

a1

))
at

55
c1

))ii
e1

ck−1

))ii
ek−1

ck
))ii

ek

♣ ♣♣♣♣♣

,

bm−1

bm−2

b1

b2

where t = d+m + 1 − 2n ≥ 1 and k = n −m ≥ 0. Here we assume that if k = 0, then there are
not arrows c1, e1, . . . , ck, ek. We take h = ba1 · · · b at, where b = b1 · · · bm−1. By Lemma 7.1, h 6≡ 0.
Obviously, deg(h) satisfies the required equality.

2) Suppose char(K) 6= 2. For d ≥ 3n we consider the quiver from part 1). Then we remove
arrows a2, . . . , at from it and add one loop to each of the vertices a′1, c

′
1, . . . , c

′
k−1; we also add two

loops to each of the rest of vertices. The resulting quiver is denoted by G. Then we add d − 3n
arbitrary arrows to construct the required quiver Q ∈ Q(n, d,m). By Lemma 5.2, there is a closed
path h in Q of degree one in each of the arrows of G. Thus, deg(h) = 3n. Since dega(h) ≤ 1 and
degv(h) ≤ 3 for all a ∈ arr(Q) and v ∈ ver(Q), it is not difficult to see that the definition of the
equivalence ≡ implies that h 6≡ 0. ✷

Example 7.3. We assume that char(K) = 2 and consider the quiver prom part 1) of the
proof of Lemma 7.2. Denote b = b1 · · · bm−1, c = c1 · · · ck−1, and e = ek−1 · · · e1. We take
h = ba1 · · · b atc e c ckeke. By Lemma 7.1, h 6≡ 0.

We set B = Xbm−1
· · ·Xb1 , C = Xck−1

· · ·Xc1 , and E = Xe1 · · ·Xek−1
. Then the invariants

tr(Xa1
B · · ·Xat

B) and tr(Xa1
B · · ·Xat

BE C EXekXckC)

are indecomposable by Lemma 1.2.
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