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COUPLED PAINLEVÉ III SYSTEMS WITH AFFINE WEYL GROUP

SYMMETRY OF TYPES B
(1)
4 , D

(1)
4 AND D

(2)
5

YUSUKE SASANO

Abstract. We find and study four kinds of a 4-parameter family of four-dimensional

coupled Painlevé III systems with affine Weyl group symmetry of types B
(1)
4 , D

(1)
4 and

D
(2)
5 . We also show that these systems are equivalent by an explicit birational and

symplectic transformation, respectively.

1. Introduction

In [5, 6], we presented some types of coupled Painlevé systems with various affine Weyl

group symmetries. In this paper, we present a 4-parameter family of 2-coupled Painlevé

III systems with affine Weyl group symmetry of type D
(1)
4 explicitly given by

(1)
dx

dt
=
∂H

D
(1)
4

∂y
,
dy

dt
= −

∂H
D

(1)
4

∂x
,
dz

dt
=
∂H

D
(1)
4

∂w
,
dw

dt
= −

∂H
D

(1)
4

∂z

with the Hamiltonian

H
D

(1)
4

= HIII(x, y, t;α1,
2α2 + α3 + α4

2
, α0)

+ H̃III(z, w, t;α3,
α4 − α3

2
, 1− α4)−

2yw

t
.

(2)

Here x, y, z and w denote unknown complex variables and α0, α1, α2, α3 and α4 are complex

parameters satisfying the relation α0 + α1 + 2α2 + α3 + α4 = 1. The symbols HIII , H̃III

are given by

HIII(q, p, t; γ0, γ1, γ2) =
q2p(p− 1) + q{(γ0 + γ2)p− γ0}+ tp

t
(γ0 + 2γ1 + γ2 = 1),(3)

H̃III(q, p, t; γ0, γ1, γ2) =
q2p(p− t)− q{(−γ0 + γ2)p+ γ0t}+ p

t
(4)

with the relation

dp ∧ dq − dHIII(q, p, t; γ0, γ1, γ2) ∧ dt

= dP ∧ dQ− dH̃III(Q,P, t; γ0, γ1, γ2) ∧ dt.
(5)

Here the relation between (q, p) and (Q,P ) is given by

(6) (Q,P ) = (1/q,−q(qp+ γ0)).
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We remark that for this system we tried to seek its first integrals of polynomial type with

respect to x, y, z, w. However, we can not find. Of course, the Hamiltonian H
D

(1)
4

is not

the first integral.

The Bäcklund transformations of this system satisfy Noumi-Yamada’s universal de-

scription for D
(1)
4 root system (see [3]). Since these universal Bäcklund transformations

have Lie theoretic origin, similarity reduction of a Drinfeld-Sokolov hierarchy admits such

a Bäcklund symmetry. The aim of this paper is to introduce the system of type D
(1)
4 and

show the relationship between this system and the system of type B
(1)
4 (see [6]) by an

explicit birational and symplectic transformation. We remark that the Bäcklund trans-

formations of that system of type B
(1)
4 do not have Noumi-Yamada’s universal description

for B
(1)
4 root system. In this vein, it had been an open question whether our system of

type B
(1)
4 can be obtained by similarity reduction of a Drinfeld-Sokolov hierarchy. After

our discovery of this system, they were studied from the viewpoint of Drinfeld-Sokolov

hierarchy by K. Fuji independently (cf. [1]), and he succeeded to obtain our system by

similarity reduction of the Drinfeld-Sokolov hierarchy of type D
(1)
4 . His paper will appear

soon.

Our discovery of the system
of type D

(1)
4

W (D
(1)
4 )

Noumi-Yamada’s universal description Drinfeld-Sokolov

(by K. Fuji’s work)
for D

(1)
4 root system hierarchy

Figure 1.

Moreover, we presented three kinds of a 4-parameter family of 2-coupled Painlevé III

systems with extended affine Weyl group symmetry of types B
(1)
4 and D

(2)
5 (see [6]), whose

Hamiltonians H
B

(1)
4
, H̃

B
(1)
4

and H
D

(2)
5

are given by

H
B

(1)
4

= H̃III(x, y, t;α1, α2 +
α3 + α4

2
, 2α0 + α1)

+ H̃III(z, w, t;α3,
α4 − α3

2
, 1− α4) +

2xw(xy + α1)

t
,

(7)

H̃
B

(1)
4

= HIII(x, y, t;α1, α2 + α3 + α4, α0)

+HIII(z, w, t;α3, α4, 1− α3 − 2α4) +
2yz(zw + α3)

t
,

(8)

H
D

(2)
5

= H̃III(x, y, t;α1, α2 + α3 + α4, 2α0 + α1)

+HIII(z, w, t;α3, α4, 1− α3 − 2α4)−
2xz(xy + α1)(zw + α3)

t
.

(9)

These systems coincide with the system of type D
(1)
4 by an explicit birational and symplec-

tic transformation, respectively. In each chart of the phase space, there appear different

coupled systems with symmetries of various types.
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Figure 2. Dynkin diagram of type D
(1)
4

This paper is organized as follows. In Section 2, we introduce the system of type D
(1)
4

and its Bäcklund transformations. In Section 3, we introduce two kinds of a 4-parameter

family of 2-coupled Painlevé III systems with extended affine Weyl group symmetry of

type B
(1)
4 and its Bäcklund transformations. Moreover, these systems coincide with the

system of type D
(1)
4 by an explicit birational and symplectic transformation, respectively.

In Section 4, we introduce a 4-parameter family of 2-coupled Painlevé III systems with

extended affine Weyl group symmetry of type D
(2)
5 and its Bäcklund transformations.

Moreover, this system coincides with the system of type D
(1)
4 by an explicit birational and

symplectic transformation.

2. The system of type D
(1)
4

In this section, we present a 4-parameter family of polynomial Hamiltonian systems

that can be considered as 2-coupled Painlevé III systems in dimension four given by

(10)























































dx

dt
=
∂H

D
(1)
4

∂y
=

2x2y − x2 + (α0 + α1)x− 2w

t
+ 1,

dy

dt
= −

∂H
D

(1)
4

∂x
=

−2xy2 + 2xy − (α0 + α1)y + α1

t
,

dz

dt
=
∂H

D
(1)
4

∂w
=

2z2w − tz2 − (1− α3 − α4)z + 1− 2y

t
,

dw

dt
= −

∂H
D

(1)
4

∂z
=

−2zw2 + 2tzw + (1− α3 − α4)w + α3t

t

with the Hamiltonian (2).

Theorem 2.1. The system (10) admits affine Weyl group symmetry of type D
(1)
4 as

the group of its Bäcklund transformations (cf. [4]), whose generators are explicitly given

as follows: with the notation (∗) := (x, y, z, w, t;α0, α1, . . . , α4),
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s0 : (∗) → (x+
α0

y − 1
, y, z, w, t;−α0, α1, α2 + α0, α3, α4),

s1 : (∗) → (x+
α1

y
, y, z, w, t;α0,−α1, α2 + α1, α3, α4),

s2 : (∗) → (x, y −
α2z

xz − 1
, z, w −

α2x

xz − 1
, t;α0 + α2, α1 + α2,−α2, α3 + α2, α4 + α2),

s3 : (∗) → (x, y, z +
α3

w
,w, t;α0, α1, α2 + α3,−α3, α4),

s4 : (∗) → (x, y, z +
α4

w − t
, w, t;α0, α1, α2 + α4, α3,−α4),

π1 : (∗) → (−x, 1 − y,−z,−w,−t;α1, α0, α2, α3, α4),

π2 : (∗) → (x, y, z, w − t,−t;α0, α1, α2, α4, α3),

π3 : (∗) → (tz,
w

t
,
x

t
, ty, t;α4, α3, α2, α1, α0),

π4 : (∗) → (−tz,
t− w

t
,−

x

t
, t− ty, t;α3, α4, α2, α0, α1).

Remark 2.2. The transformations π2, π3 and π4 satisfy the following relation:

(11) π4 = π2π3π2.

Proposition 2.3. Let us define the following translation operators (see [2])

T1 := s3s0s2s4s1s2π4, T2 := s4s1s2s3s0s2π4,

T3 := s3s2s0s1s2s3π1π2, T4 := s4s3s2s1s0s2π1π2.
(12)

These translation operators act on parameters αi as follows:

T1(α0, α1, . . . , α4) =(α0, α1, α2, α3, α4) + (1, 0,−1, 1, 0),

T2(α0, α1, . . . , α4) =(α0, α1, α2, α3, α4) + (0, 1,−1, 0, 1),

T3(α0, α1, . . . , α4) =(α0, α1, α2, α3, α4) + (0, 0, 0, 1,−1),

T4(α0, α1, . . . , α4) =(α0, α1, α2, α3, α4) + (0, 0,−1, 1, 1).

(13)

Theorem 2.4. Let us consider a polynomial Hamiltonian system with Hamiltonian

H ∈ C(t)[x, y, z, w]. We assume that

(A1) deg(H) = 5 with respect to x, y, z, w.

(A2) This system becomes again a polynomial Hamiltonian system in each coordinate

ri (i = 0, 1, 3, 4):

r0 : x0 = 1/x, y0 = −((y − 1)x+ α0)x, z0 = z, w0 = w,

r1 : x1 = 1/x, y1 = −(yx+ α1)x, z1 = z, w1 = w,

r3 : x3 = x, y3 = y, z3 = 1/z, w3 = −z(wz + α3),

r4 : x4 = x, y4 = y, z4 = 1/z, w3 = −z((w − t)z + α4).
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(A3) In addition to the assumption (A2), the Hamiltonian system in the coordinate r1
becomes again a polynomial Hamiltonian system in the coordinate r2:

r2 : x2 = −((x1 − z1)y1 − α2)y1, y2 = 1/y1, z2 = z1, w2 = w1 + y1.

Then such a system coincides with the system (10).

Each coordinate ri (i = 0, 1, 3, 4) contains a three-parameter family of meromorphic

solutions of (10).

Theorems 2.1 and 2.4 can be checked by a direct calculation, respectively.

We note that the following transformations

w0 : (∗) → (x+
α0

y − 1
, y, z, w, t;−α0, α1, α2 + α0, α3, α4),

w1 : (∗) → (x+
α1

y
, y, z, w, t;α0,−α1, α2 + α1, α3, α4),

w2 : (∗) → (x, y −
α2

x− z
, z, w +

α2

x− z
, t;α0 + α2, α1 + α2,−α2, α3 + α2, α4 + α2),

w3 : (∗) → (x, y, z +
α3

w
,w, t;α0, α1, α2 + α3,−α3, α4),

w4 : (∗) → (x, y, z +
α4

w − t
, w, t;α0, α1, α2 + α4, α3,−α4)

define a representation of the affine Weyl group of type D
(1)
4 . However, we can not find

polynomial Hamiltonian systems with affine Weyl group symmetry of type D
(1)
4 described

above.

Moreover, from the viewpoint of holomorphy conditions let us consider a polynomial

Hamiltonian system with H ∈ C(t)[x, y, z, w]. We assume that

(A) This system becomes again a polynomial Hamiltonian system in each coordinate

ri (i = 0, 1, . . . , 4):

r0 : x0 = 1/x, y0 = −((y − 1)x+ α0)x, z0 = z, w0 = w,

r1 : x1 = 1/x, y1 = −(yx+ α1)x, z1 = z, w1 = w,

r2 : x2 = −((x− z)y − α2)y, y2 = 1/y, z2 = z, w2 = w + y,

r3 : x3 = x, y3 = y, z3 = 1/z, w3 = −z(wz + α3),

r4 : x4 = x, y4 = y, z4 = 1/z, w3 = −z((w − t)z + α4).

It is still an open question whether we can find a system satisfying the assumption (A).

We also give an explicit description of a confluence from 2-coupled Painlevé V system

with W (D
(1)
5 )-symmetry to the system of type D

(1)
4 . At first, we recall 5-parameter family

of 2-coupled Painlevé V systems with W (D
(1)
5 )-symmetry (see [6]) explicitly given by

(14)
dx

dt
=
∂H

D
(1)
5

∂y
,
dy

dt
= −

∂H
D

(1)
5

∂x
,
dz

dt
=
∂H

D
(1)
5

∂w
,
dw

dt
= −

∂H
D

(1)
5

∂z
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with the Hamiltonian

H
D

(1)
5

=HV (x, y, t; β2 + β5, β1, β2 + 2β3 + β4) +HV (z, w, t; β5, β3, β4)

+
2yz{(z − 1)w + β3}

t
,

(15)

where the symbolHV (q, p, t; γ1, γ2, γ3) denotes the Hamiltonian of the second-order Painlevé

V systems given by

HV (q, p, t; γ1, γ2, γ3) =
q(q − 1)p(p+ t)− (γ1 + γ3)qp+ γ1p+ γ2tq

t
.

Here β0, β1, . . . , β5 are complex parameters normalized as β0+β1+2β2+2β3+β4+β5 = 1.

The system (14) admits affine Weyl group symmetry of type D
(1)
5 as the group of its

Bäcklund transformations, whose generators w0, w1, . . . , w5 defined as follows: with the

notation (∗) := (x, y, z, w, t; β0, β1, . . . , β5),

w0 : (∗) →(x+
β0
y + t

, y, z, w, t;−β0, β1, β2 + β0, β3, β4, β5),

w1 : (∗) →(x+
β1
y
, y, z, w, t; β0,−β1, β2 + β1, β3, β4, β5),

w2 : (∗) →(x, y −
β2

x− z
, z, w +

β2
x− z

, t; β0 + β2, β1 + β2,−β2, β3 + β2, β4, β5),

w3 : (∗) →(x, y, z +
β3
w
,w, t; β0, β1, β2 + β3,−β3, β4 + β3, β5 + β3),

w4 : (∗) →(x, y, z, w −
β4

(z − 1)
, t; β0, β1, β2, β3 + β4,−β4, β5),

w5 : (∗) →(x, y, z, w −
β5
z
, t; β0, β1, β2, β3 + β5, β4,−β5).

(16)

Proposition 2.5. For the system of type D
(1)
5 , we make the change of parameters and

variables

β0 = α0, β1 = α1, β2 = α2, β3 = α3, β4 = α4 − α3 −
1

ε
, β5 =

1

ε
,(17)

t = −εT, x = 1 +
X

εT
, y = εTY, z = 1 +

1

εTZ
, w = −εT (ZW + A3)Z(18)

from β0, β1, . . . , β5, t, x, y, z, w to α0, α1, . . . , α4, ε, T,X, Y, Z,W . Then the system can also

be written in the new variables T,X, Y, Z,W and parameters α0, α1, . . . , α4, ε as a Hamil-

tonian system. This new system tends to the system (10) of type D
(1)
4 as ε→ 0.

By proving the following theorem, we see how the degeneration process in Proposition

2.5 works on the Bäcklund transformation group W (D
(1)
5 ) =< w0, w1, . . . , w5 > described

above.
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Proposition 2.6. For the degeneration process in Proposition 2.5, we can choose a

subgroup

W
D

(1)
5 →D

(1)
4

:= {< s0, . . . , s4 > |si := wi (i = 0, 1, 2, 3), s4 := w4w5w3w4w5}

of the Bäcklund transformation group W (D
(1)
5 ) so that W

D
(1)
5 →D

(1)
4

converges to W (D
(1)
4 )

as ε→ 0.

3. The system of type B
(1)
4

In this section, we propose two types of a 4-parameter family of 2-coupled Painlevé

III systems in dimension four with affine Weyl group symmetry of type B
(1)
4 . Each of

them is equivalent to a polynomial Hamiltonian system, however, each has a different

representaion of type B
(1)
4 . We also show that each of them is equivalent to the system

(10) by a birational and symplectic transformation.

y x− z

w − t

w

0 1 2

3

4

ϕ

Figure 3. Dynkin diagram of type B
(1)
4

The first member is given by

(19)























































dx

dt
=
∂H

B
(1)
4

∂y
=

2x2y − tx2 − 2α0x+ 1

t
+

2x2w

t
,

dy

dt
= −

∂H
B

(1)
4

∂x
=

−2xy2 + 2txy + 2α0y + α1t

t
−

2w(2xy + α1)

t
,

dz

dt
=
∂H

B
(1)
4

∂w
=

2z2w − tz2 − (1− α3 − α4)z + 1

t
+

2x(xy + α1)

t
,

dw

dt
= −

∂H
B

(1)
4

∂z
=

−2zw2 + 2tzw + (1− α3 − α4)w + α3t

t

with the Hamiltonian (7). Here x, y, z and w denote unknown complex variables and

α0, α1, α2, α3 and α4 are complex parameters satisfying the relation 2α0 + 2α1 + 2α2 +

α3 + α4 = 1.
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Theorem 3.1. The system (19) admits extended affine Weyl group symmetry of type

B
(1)
4 as the group of its Bäcklund transformations (cf. [4]), whose generators are explicitly

given as follows: with the notation (∗) := (x, y, z, w, t;α0, α1, . . . , α4),

s0 : (∗) → (−x,−y +
2α0

x
−

1

x2
,−z,−w,−t;−α0, α1 + 2α0, α2, α3, α4),

s1 : (∗) → (x+
α1

y
, y, z, w, t;α0 + α1,−α1, α2 + α1, α3, α4),

s2 : (∗) → (x, y −
α2

x− z
, z, w +

α2

x− z
, t;α0, α1 + α2,−α2, α3 + α2, α4 + α2),

s3 : (∗) → (x, y, z +
α3

w
,w, t;α0, α1, α2 + α3,−α3, α4),

s4 : (∗) → (x, y, z +
α4

w − t
, w, t;α0, α1, α2 + α4, α3,−α4),

ϕ : (∗) → (x, y, z, w − t,−t;α0, α1, α2, α4, α3).

Theorem 3.2. Let us consider a polynomial Hamiltonian system with Hamiltonian

H ∈ C(t)[x, y, z, w]. We assume that

(A1) deg(H) = 5 with respect to x, y, z, w.

(A2) This system becomes again a polynomial Hamiltonian system in each coordinate

ri (i = 0, 1, . . . , 4):

r0 : x0 = x, y0 = y −
2α0

x
+

1

x2
, z0 = z, w0 = w,

r1 : x1 = 1/x, y1 = −(yx+ α1)x, z1 = z, w1 = w,

r2 : x2 = −((x− z)y − α2)y, y2 = 1/y, z2 = z, w2 = w + y,

r3 : x3 = x, y3 = y, z3 = 1/z, w3 = −z(wz + α3),

r4 : x4 = x, y4 = y, z4 = 1/z, w4 = −z((w − t)z + α4).

Then such a system coincides with the system (19).

Theorems 3.1 and 3.2 can be checked by a direct calculation, respectively.

Theorem 3.3. For the system (10) of type D
(1)
4 , we make the change of parameters

and variables

A0 =
α0 − α1

2
, A1 = α1, A2 = α2, A3 = α3, A4 = α4,(20)

X =
1

x
, Y = −(xy + α1)x, Z = z, W = w(21)

from α0, α1, . . . , α4, x, y, z, w to A0, A1, . . . , A4, X, Y, Z,W . Then the system (10) can also

be written in the new variables X, Y, Z,W and parameters A0, A1, . . . , A4 as a Hamiltonian

system. This new system tends to the system (19) with the Hamiltonian (7).

Proof. Notice that

2A0 + 2A1 + 2A2 + A3 + A4 = α0 + α1 + 2α2 + α3 + α4 = 1
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and the change of variables from (x, y, z, w) to (X, Y, Z,W ) is symplectic. Choose Si (i =

0, 1, . . . , 4) and ϕ as

S0 := π1, S1 := s1, S2 := s2, S3 := s3, S4 := s4, ϕ := π2.

Then the transformations Si are reflections of the parameters A0, A1, . . . , A4. The trans-

formation group W̃ (B
(1)
4 ) =< S0, S1, . . . , S4, ϕ > coincides with the transformations given

in Theorem 3.1. �

The second member (see (4),(5)) is given by

y − 1

y

x− z w

0

1

2 3 4φ

Figure 4. Dynkin diagram of type B
(1)
4

(22)































































dx

dt
=
∂H̃

B
(1)
4

∂y
=

2x2y − x2 + (α0 + α1)x+ t

t
+

2z(zw + α3)

t
,

dy

dt
= −

∂H̃
B

(1)
4

∂x
=

−2xy2 + 2xy − (α0 + α1)y + α1

t
,

dz

dt
=
∂H̃

B
(1)
4

∂w
=

2z2w − z2 + (1− 2α4)z + t

t
+

2yz2

t
,

dw

dt
= −

∂H̃
B

(1)
4

∂z
=

−2zw2 + 2zw − (1− 2α4)w + α3

t
−

2y(2zw + α3)

t

with the Hamiltonian (8). Here x, y, z and w denote unknown complex variables and

α0, α1, . . . , α4 are complex parameters satisfying the relation α0+α1+2α2+2α3+2α4 = 1.

Theorem 3.4. The system (22) admits extended affine Weyl group symmetry of type

B
(1)
4 as the group of its Bäcklund transformations (cf. [4]), whose generators are explicitly
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given as follows: with the notation (∗) := (x, y, z, w, t;α0, α1, . . . , α4),

s0 : (∗) → (x+
α0

y − 1
, y, z, w, t;−α0, α1, α2 + α0, α3, α4),

s1 : (∗) → (x+
α1

y
, y, z, w, t;α0,−α1, α2 + α1, α3, α4),

s2 : (∗) → (x, y −
α2

x− z
, z, w +

α2

x− z
, t;α0 + α2, α1 + α2,−α2, α3 + α2, α4),

s3 : (∗) → (x, y, z +
α3

w
,w, t;α0, α1, α2 + α3,−α3, α4 + α3),

s4 : (∗) → (x, y, z, w −
2α4

z
+

t

z2
,−t;α0, α1, α2, α3 + 2α4,−α4),

φ : (∗) → (−x, 1 − y,−z,−w,−t;α1, α0, α2, α3, α4).

Theorem 3.5. Let us consider a polynomial Hamiltonian system with Hamiltonian

H ∈ C(t)[x, y, z, w]. We assume that

(A1) deg(H) = 5 with respect to x, y, z, w.

(A2) This system becomes again a polynomial Hamiltonian system in each coordinate

ri (i = 0, 1, . . . , 4):

r0 : x0 = 1/x, y0 = −((y − 1)x+ α0)x, z0 = z, w0 = w,

r1 : x1 = 1/x, y1 = −(yx+ α1)x, z1 = z, w1 = w,

r2 : x2 = −((x− z)y − α2)y, y2 = 1/y, z2 = z, w2 = w + y,

r3 : x3 = x, y3 = y, z3 = 1/z, w3 = −z(wz + α3),

r4 : x4 = x, y4 = y, z4 = z, w4 = w −
2α4

z
+

t

z2
.

Then such a system coincides with the system (22).

Theorems 3.4 and 3.5 can be checked by a direct calculation, respectively.

Theorem 3.6. For the system (10) of type D
(1)
4 , we make the change of parameters

and variables

A0 = α0, A1 = α1, A2 = α2, A3 = α3, A4 =
α4 − α3

2
,(23)

X = x, Y = y, Z =
1

z
, W = −(zw + α3)z(24)

from α0, α1, . . . , α4, x, y, z, w to A0, A1, . . . , A4, X, Y, Z,W . Then the system (10) can also

be written in the new variables X, Y, Z,W and parameters A0, A1, . . . , A4 as a Hamiltonian

system. This new system tends to the system (22) with the Hamiltonian (8).

Proof. Notice that

A0 + A1 + 2A2 + 2A3 + 2A4 = α0 + α1 + 2α2 + α3 + α4 = 1
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and the change of variables from (x, y, z, w) to (X, Y, Z,W ) is symplectic. Choose Si (i =

0, 1, . . . , 4) and φ as

S0 := s0, S1 := s1, S2 := s2, S3 := s3, S4 := π1, φ := π2.

Then the transformations Si are reflections of the parameters A0, A1, . . . , A4. The trans-

formation group W̃ (B
(1)
4 ) =< S0, S1, . . . , S4, φ > coincides with the transformations given

in Theorem 3.4. �

By using Theorems 3.3 and 3.6, it is easy to see that the system (19) coincides with

the system (22) by an explicit birational and symplectic transformation.

Proposition 3.7. For the system (19) of type B
(1)
4 , we make the change of parameters

and variables

A0 = 2α0 + α1, A1 = α1, A2 = α2, A3 = α3, A4 =
α4 − α3

2
,

X =
1

x
, Y = −(xy + α1)x, Z =

1

z
, W = −(zw + α3)z

from α0, α1, . . . , α4, x, y, z, w to A0, A1, . . . , A4, X, Y, Z,W . Then the system (19) can also

be written in the new variables X, Y, Z,W and parameters A0, A1, . . . , A4 as a Hamiltonian

system. This new system tends to the system (22) with the Hamiltonian (8).

4. The system of type D
(2)
5

In this section, we propose a 4-parameter family of 2-coupled Painlevé III systems in

dimension four with affine Weyl group symmetry of type D
(2)
5 given by

y xz − 1 w

0 1 2 3 4

ψ

Figure 5. Dynkin diagram of type D
(2)
5

(25)























































dx

dt
=
∂H

D
(2)
5

∂y
=

2x2y − tx2 − 2α0x+ 1

t
−

2x2z(zw + α3)

t
,

dy

dt
= −

∂H
D

(2)
5

∂x
=

−2xy2 + 2txy + 2α0y + α1t

t
+

2z(zw + α3)(2xy + α1)

t
,

dz

dt
=
∂H

D
(2)
5

∂w
=

2z2w − z2 + (1− 2α4)z + t

t
−

2xz2(xy + α1)

t
,

dw

dt
= −

∂H
D

(2)
5

∂z
=

−2zw2 + 2zw − (1− 2α4)w + α3

t
+

2x(xy + α1)(2zw + α3)

t
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with the Hamiltonian (9). Here x, y, z and w denote unknown complex variables and

α0, α1, ldots, α4 are complex parameters satisfying the relation α0+α1+α2+α3+α4 =
1
2
.

Theorem 4.1. The system (25) admits extended affine Weyl group symmetry of type

D
(2)
5 as the group of its Bäcklund transformations (cf. [4]), whose generators are explicitly

given as follows: with the notation (∗) := (x, y, z, w, t;α0, α1, . . . , α4),

s0 : (∗) → (−x,−y +
2α0

x
−

1

x2
,−z,−w,−t;−α0, α1 + 2α0, α2, α3, α4),

s1 : (∗) → (x+
α1

y
, y, z, w, t;α0 + α1,−α1, α2 + α1, α3, α4),

s2 : (∗) → (x, y −
α2z

xz − 1
, z, w −

α2x

xz − 1
, t;α0, α1 + α2,−α2, α3 + α2, α4),

s3 : (∗) → (x, y, z +
α3

w
,w, t;α0, α1, α2 + α3,−α3, α4 + α3),

s4 : (∗) → (x, y, z, w −
2α4

w
+

t

z2
,−t;α0, α1, α2, α3 + 2α4,−α4),

ψ : (∗) → (
z

t
, tw, tx,

y

t
, t;α4, α3, α2, α1, α0).

Theorem 4.2. Let us consider a polynomial Hamiltonian system with Hamiltonian

H ∈ C(t)[x, y, z, w]. We assume that

(A1) deg(H) = 5 with respect to x, y, z, w.

(A2) This system becomes again a polynomial Hamiltonian system in each coordinate

ri (i = 0, 1, 3, 4):

r0 : x0 = x, y0 = y −
2α0

x
+

1

x2
, z0 = z, w0 = w,

r1 : x1 = 1/x, y1 = −(yx+ α1)x, z1 = z, w1 = w,

r3 : x3 = x, y3 = y, z3 = 1/z, w3 = −z(wz + α3),

r4 : x4 = x, y4 = y, z4 = z, w4 = w −
2α4

w
+

t

z2
.

(A3) In addition to the assumption (A2), the Hamiltonian system in the coordinate r1

becomes again a polynomial Hamiltonian system in the coordinate r2:

r2 : x2 = −((x1 − z1)y1 − α2)y1, y2 = 1/y1, z2 = z1, w2 = w1 + y1.

Then such a system coincides with the system (25).

Theorems 4.1 and 4.2 can be checked by a direct calculation, respectively.

Theorem 4.3. For the system (10) of type D
(1)
4 , we make the change of parameters

and variables

A0 =
α0 − α1

2
, A1 = α1, A2 = α2, A3 = α3, A4 =

α4 − α3

2
,(26)

X =
1

x
, Y = −(xy + α1)x, Z =

1

z
, W = −(zw + α3)z(27)
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from α0, α1, . . . , α4, x, y, z, w to A0, A1, . . . , A4, X, Y, Z,W . Then the system (10) can also

be written in the new variables X, Y, Z,W and parameters A0, A1, . . . , A4 as a Hamiltonian

system. This new system tends to the system (25) with the Hamiltonian (9).

Proof. Notice that

2(A0 + A1 + A2 + A3 + A4) = α0 + α1 + 2α2 + α3 + α4 = 1

and the change of variables from (x, y, z, w) to (X, Y, Z,W ) is symplectic. Choose Si (i =

0, 1, . . . , 4) and ψ as

S0 := π1, S1 := s1, S2 := s2, S3 := s3, S4 := π2, ψ := π3.

Then the transformations Si are reflections of the parameters A0, A1, . . . , A4. The trans-

formation group W̃ (D
(2)
5 ) =< S0, S1, . . . , S4, ψ > coincides with the transformations given

in Theorem 4.1. �
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