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Abstract

The Dirac theory in the Euclidean Taub-NUT space gives rise to a
large collection of conserved operators associated to genuine or hidden
symmetries. They are involved in interesting algebraic structures as dy-
namical algebras or even infinite-dimensional algebras or superalgebras.
One presents here the infinite-dimensional superalgebra specific to the
Dirac theory in manifolds carrying the Gross-Perry-Sorkin monopole. It
is shown that there exists an infinite-dimensional superalgebra that can
be seen as a twisted loop superalgebra.
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superalgebra.

1 Introduction

In the quantum physics on curved space-times an interesting problem is to find
the algebras of operators that commute with the field equation. In general these
operators have to be the generators of isometries [1, 2] or special operators
associated with more subtle hidden symmetries that can occur in association
with some supersymmetries [3].

We mention that there are two generalization of the Killing vectors which
become of interest in physics, namely the Stäckel-Killing (S-K) tensors and the
Killing-Yano (K-Y) tensors. A symmetric tensor field Kµ1...µr

is called a S-K
tensor of valence r if K(µ1...µr;λ) = 0. The usual Killing (K) vectors correspond
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to valence r = 1 while the hidden symmetries are encapsulated in S-K tensors
of valence r > 1. A tensor fµ1...µr

is called a K-Y tensor of valence r if it is
totally antisymmetric and it satisfies the equation [4] fµ1...(µr;λ) = 0.

An example of a background presenting all these types of symmetries and
supesymmetries is the space-time of the Gross-Perry-Sorkin (GPS) monopole
defined as the Euclidean Taub-NUT space with the time trivially added [5].
The space part is known to be a hyper-Kähler manifold possessing three covari-
antly constant Killing-Yano (K-Y) tensors with real-valued components which
constitute a hypercomplex structure. This generates a N = 4 superalgebra of
Dirac-type operators [6], in a similar way as in pseudo-classical spinning models
[7, 8]. The Euclidean Taub-NUT space has, in addition, a non-covariantly con-
stant K-Y tensor related to its specific hidden symmetry [9, 10, 11, 7, 8] giving
a conserved Runge-Lenz type operator [12, 13, 9, 14, 15]. In the Dirac theory
the corresponding operator can be constructed with the help of the Dirac-type
operators produced by the four K-Y tensors of this space [16, 17]. Thus one
obtains a rich algebra of conserved observables [18] that offers many possibilities
of choosing sets of commuting operators for defining quantum modes [19, 6]. On
the other hand, hereby one can select dynamical algebras typical for the Kepler
problems [17, 18], or even interesting infinite-dimensional algebras or superal-
gebras [20]. Similar problems appear in the study of chiral supersymmetry for
spin fields in self-dual backgrounds [21].

Our main objective here is to present the content of the operator algebra of
the Dirac theory on Euclidean Taub-NUT space showing that this can be seen
as a twisted loop superalgebra in the sense of [22]. To this end we review our
previous results paying more attention to the Casimir operators involved in our
construction. Thus we define a new infinite-dimensional superalgebra, different
from that given in [20], that leads to a twisted loop superalgebra in a natural
way.

We start in section 2 presenting the main features of the Euclidean Taub-
NUT geometry and the operators of the scalar quantum theory pointing out
some useful algebraic properties. The next section is devoted to the relationships
among the Pauli and Dirac conserved operators that are given in section 4. In
section 5 we construct our improved version of infinite-dimensional superalgebra
showing in section 6 that this is a twisted loop superalgebra.

2 Euclidean Taub-NUT space

The manifold of the GPS monopole, denoted from now by M, is a 5-dimensional
Kaluza-Klein space-time whose space part is the Euclidean Taub-NUT space.
There are static charts with Cartesian coordinates xµ (µ, ν, ... = 0, 1, 2, 3, 4)
where the time is t = x0, xi (i, j, ... = 1, 2, 3) are the physical Cartesian space
coordinates while x4 is the Cartesian extra-coordinate. Taking the metric of the
flat model η = (−1, 1, 1, 1, 1) we can use the three-dimensional vector notations,
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~x = (x1, x2, x3), r = |~x| and dl2 = d~x · d~x, for writing the GPS line element

ds2 = −dt2 + 1

V (r)
dl2 + V (r)[dx4 +Aem

i (~x)dxi]2 , (1)

defined by the specific functions

1

V
= 1 +

µ

r
, Aem

1 = −µ
r

x2

r + x3
, Aem

2 =
µ

r

x1

r + x3
, Aem

3 = 0 . (2)

The real number µ is a parameter of the theory. If one interprets ~Aem as
the vector potential (or gauge field) it results the magnetic field with central
symmetry

~Bem = µ
~x

r3
. (3)

The Taub-NUT geometry possesses a special type of isometries which form
the isometry group I(M) = T (1)t ⊗ SO(3) ⊗ U(1)4 constituted by time trans-
lations, space rotations and U(1) transformations of extra-coordinate. The uni-
versal covering group of I(M) is the external symmetry group (in the sense of
[2]) S(M) = T (1)t ⊗ SU(2) ⊗ U(1)4. In Ref. [23] we pointed out that these
isometries combine space transformations with gauge ones in a non-trivial man-
ner generating non-linear transformations of the coordinate x4 under rotations.
Fortunately, the complications due to this phenomenon can be avoided in a spe-
cial gauge where the symmetry under rotations becomes global. In the Cartesian
charts this gauge is given by the gauge fields êα̂ and eα̂ having the non-vanishing
components [24]

ê00 = 1 , êij =
1√
V
δij , ê4i =

√
V Aem

i , ê44 =
√
V ,

e00 = 1 , eij =
√
V δij , e4i = −

√
V Aem

i , e44 =
1√
V
. (4)

In this context one can correctly define P4 = −i∂4 and the three-dimensio-
nal physical momentum ~P whose components (in the mentioned local frames)
are Pi = −i(∂i −Aem

i ∂4). Moreover, the angular momentum can be written in
covariant form as

~L = ~x× ~P − µ
~x

r
P4 . (5)

These operators obey [Pi, Pj ] = iεijkB
em
k P4, [Pi, P4] = 0 and [Li, Pj ] = iεijkPk

which indicate that ~P behaves as a vector under rotations. The scalar quantum
mechanics in GPS geometry [15] is based on the Schrödinger or Klein-Gordon
equations involving the static operator

∆ = V ~P
2
+

1

V
P4

2 , (6)

which is either proportional with the Hamiltonian operator of the Schrödinger
theory or represents the static part of the Klein-Gordon operator [18].
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The space part of the manifold with GPS monopole is the Euclidean Taub-
NUT space which is a hyper-Kähler manifold possessing a triplet of hypercom-
plex structures, f = {f (1), f (2), f (3)}, defined as

f (i) = f
(i)

α̂β̂
êα̂ ∧ êβ̂ = 2êi ∧ ê4 − εijk ê

j ∧ êk , (7)

where the 1-forms êα̂ = êα̂µdx
µ are defined by the gauge fields (4). In addition,

there exists a fourth K-Y tensor,

fY = fY
α̂β̂
êα̂ ∧ êβ̂ =

xi

r
f (i) +

2xi

µV
εijk ê

j ∧ êk , (8)

which is not covariantly constant. The presence of fY is related to the existence
of the hidden symmetries of the Euclidean Taub-NUT geometry, encapsulated in
three non-trivial S-K tensors, kµνi . These are interpreted as the components of
the so-called Runge-Lenz vector of the Euclidean Taub-NUT geodesics and can
be expressed as symmetrized products of K-Y tensors [8, 7]. The corresponding
conserved vector operator,

~K = −1

2
∇µ

~kµν∇ν =
1

2

(

~P × ~L− ~L× ~P
)

− µ
~x

r

(

1

2
∆− P 2

4

)

, (9)

play the same role as the Runge-Lenz vector operator in the usual quantum
mechanical Kepler problem [15].

This operator transforms as a vector under rotations such that one can write
the following complete system of commutation relations

[Li, Lj] = iεijk Lk ,

[Li, Kj] = iεijkKk , (10)

[Ki, Kj] = iεijk LkB
2 ,

where B2 = P4
2 − ∆. The operators Li and Ki commute with B since they

commute with ∆ and P4. Moreover, it is known [14] that the operators

C1 = ~L2B2 + ~K2 = µ2P 2
4B

2 +
µ2

4

(

B2 + P4
2
)2 −B2 (11)

C2 = ~L · ~K = −µ
2

2
P4(B

2 + P 2
4 ) , (12)

play the role of Casimir operators for the open algebra (10). With their help
we can define the new Casimir operators,

C± = C1 ± 2BC2 +B2 =
µ2

4
(P4 ∓B)4 = B2(N ± µP4)

2 . (13)

where N is the operator whose eigenvalues are just the values of the principal
quantum number of the discrete energy spectra [20].
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We note that the algebra (10) does not close to a finite Lie algebra because
of the factor B2 that affects the last commutation relation. Nevertheless, one
can obtain Lie algebras replacing the operators P4 and ∆ by their eigenvalues
q̂ and respectively E2. Then one can replace B2 by q̂2 − E2 and rescale the
generators Ki. In this manner one obtains three different dynamical algebras:
the o(4) algebra for the discrete energy spectrum in the domain E < |q̂|, the
o(3, 1) algebra for continuous spectrum in the domain E > |q̂| and the e(3)
algebra corresponding only to the ground energy of the continuous spectrum,
E = |q̂| [9, 10, 14, 15].

3 Conserved Dirac and Pauli operators

For building the Dirac theory we consider the Cartesian chart, the usual four-
dimensional space of the Dirac spinors, Ψ, and the Dirac matrices γα̂, that

satisfy {γα̂, γβ̂} = 2ηα̂β̂, in the following representation

γi = −i
(

0 σi
−σi 0

)

, γ4 =

(

0 12

12 0

)

, (14)

where σi are the Pauli matrices. In addition, we take γ0 = iγ1γ2γ3γ4 =
i diag(12,−12). With these notations the standard Dirac operator without ex-
plicit mass term reads D = γα∇α [6, 16] giving the corresponding massless

Hamiltonian operator [6, 17]

H = −iγ0D =

(

0 α
∗

α 0

)

=

(

0 V π∗ 1√
V√

V π 0

)

, (15)

where π = σP − iV −1P4 and π∗ = σP + iV −1P4 depending on σP = ~σ · ~P . These
operators obey

∆ = α
∗
α = V π∗π . (16)

We specify that here the star superscript is a mere notation that does not
coincide with the Hermitian conjugation of the Pauli operators. The operator
H is the central piece of the Dirac theory and has the remarkable property to
produce the same energy spectrum as those given by the static Klein-Gordon
equation, ∆φ = E2φ.

Here we focus on the conserved operators of the Dirac theory which commute

with H . We denote by D = {X | [X,H ] = 0} the algebra of the conserved Dirac
operators observing that they can be related to Pauli operators commuting
with ∆ which form the algebra P = {X̂ | [X̂,∆] = 0} where we include the
orbital operators having this property. All these operators are considered as
conserved operators in the sense of the Klein-Gordon theory. Notice that the
Pauli operators are interesting here since they are involved in different versions
of the dyon theory [25] (see also [21]) which may be compared to our approach.
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In Ref. [18] we have demonstrated that for any conserved Pauli operator
X̂ ∈ P we can construct the diagonal Dirac operator

D(X̂) =

(

X̂ 0

0 αX̂∆−1
α

∗

)

, (17)

which is also conserved. Particularly, for X̂ = 12 we obtain the projection
operator

I = D(12) =

(

12 0
0 α∆−1

α
∗

)

, (18)

on the space ΨD = IΨ in which the eigenspinors ψE of H form a (generalized)
basis. This projection operator splits the algebraD = D0⊕D1 in two subspaces
of the projections XI ∈ D0 and X(1 − I) ∈ D1 of all X ∈ D. One can
demonstrate that the subalgebra D1 is an ideal in D [18].

Another type of conserved Dirac operators are the Q-operators defined in
[6] as

Q(X̂) =

{

H ,

(

X̂ 0
0 0

)}

=

(

0 X̂α
∗

αX̂ 0

)

, (19)

where X̂ may be any Pauli operator. However, if X̂ ∈ P then Q(X̂) ∈ D0 since
[Q(X̂), H ] = 0 and Q(X̂)I = Q(X̂). If X̂ = 12 we obtain just the Hamiltonian
operatorH = Q(12) ∈ D0. Consequently, the inverse of H with respect to I can
be represented as H−1 = Q(∆−1). The mappings D : P → D0 and Q : P → D0

are linear and have the following algebraic properties

D(X̂)D(Ŷ ) = D(X̂Ŷ ) , (20)

Q(X̂)Q(Ŷ ) = D(X̂Ŷ∆) , (21)

D(X̂)Q(Ŷ ) = Q(X̂)D(Ŷ ) = Q(X̂Ŷ ) , (22)

for any X̂, Ŷ ∈ P. Moreover, the relations [γ0, D(X̂)] = 0 and {γ0, Q(X̂)}
= 0 show us that, according to the usual terminology [26], D and γ0D are even

Dirac operators while Q and γ0Q are odd ones. We note that there are many
other odd or even operators which do not have such forms.

Since I is the projection operator on the space of the Dirac spinors ΨD

we say that the projection IXI ∈ D0 of any Dirac operator X represents the
physical part of X . The physical part of any Dirac operator is conserved and
can be written in terms of D or Q-operators [17, 18]. The action of X reduces
thus to that of Pauli operators allowing us to rewrite the problems of the Dirac
theory in terms of Pauli operators [16, 17].

Notice that the off-diagonal operators can be transformed at any time in
diagonal ones using the multiplication with H or H−1. For example, H itself
which is off-diagonal is related to the diagonal operators H2 = D(∆) or I. Thus
each Dirac operator from D can be brought in a diagonal form associated with
an operator from P.
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4 The operators of the Dirac theory

Carter and McLenaghan showed that in the theory of Dirac fermions for any
isometry with K vector Rµ there is an appropriate operator [1]:

Xk = −i(Rµ∇̂µ − 1

4
γµγνRµ;ν) (23)

which commutes with the standard Dirac operator D. In this geometry among
the K vectors corresponding to the S(M) generators only one is time-like, i∂t,
generating time-translations. The other K vectors are time-independent, giving
rise to conserved operators.

In other respects, each K-Y tensor fµν produces a non-standard Dirac oper-
ator of the form

Df = −iγµ(f ν
µ ∇̂ν − 1

6
γνγρfµν;ρ) (24)

which anticommutes with the standard one, D. In the case of the Euclidean
Taub-NUT space Dirac-type operators are constructed from the K-Y tensors of
this metric.

The simplest operators of D which commute with H , D, and γ0 are the
generators of the spinor representation of S(M) carried by the space Ψ. The
expressions of these operators are strongly dependent on the gauge fixing. For
this reason one prefers the gauge (4) where the spinor fields transformmanifestly

covariant under isometries. In this gauge, the rotation generators of the spinor
representation of S(M) are just the standard components of the total angular
momentum

Ji = Li + Si , Si =
1
2εijkS

jk = 1
2diag(σi, σi) , (25)

with point-independent spin operators [6]. In the same way one can show that
the U(1)4 generator, P4, does not get a spin term. Hence it results that the
spinor representation of S(M) is reducible being a sum of two irreducible repre-
sentations carried by spaces of two-dimensional Pauli spinors where the compo-
nents of the total angular momentum are Ĵi = Li+

1
2σi. Moreover, the physical

part of the total angular momentum reads

Ji = JiI = D(Ĵi) = D(Li) +
1
2D(σi) , (26)

where both the orbital and the spin terms separately commute with H since Li

and σi commute with ∆.
The triplet f defined by Eq. (7) gives rise to the spin-like operators

Σ(i) =
i

4
f
(i)

α̂β̂
γα̂γβ̂ =

(

σi 0
0 0

)

, (27)

and produce the Dirac-type operators [6]

D(i) = −f (i)
µ,νγ

ν∇µ = i[D, Σ(i)] = −i
(

0 σiα
∗

ασi 0

)

= −iQ(σi) , (28)

7



which anticommute with D and γ0. The operators D and D(i), i = 1, 2, 3, form
the basis of the N = 4 superalgebra [17]. In current calculations, when one
is not interested to exploit the N = 4 superalgebra, it is indicated to use the
simpler operators

Qi = iH−1D(i) = H−1Q(σi) = D(σi) , (29)

instead of D(i). However, in this case the fourth partner of the operators Qi is
rather trivial since this is just I. Therefore, these operators form a representa-
tion of the quaternion units (or of the algebra of Pauli matrices) with values in
D0,

QiQj = δijI + iεijkQk , (30)

producing an evident N = 3 superalgebra.
The corresponding Dirac-type operator of the last K-Y tensor, fY was ob-

tained in [16]. This has the form

DY = −Q(σr) +
2i

µ
√
V

(

0 λ
−λ 0

)

, (31)

where the Pauli operators σr = ~σ · ~x/r and λ = σL + 12 + µσrP4 have suitable
properties that help one to find the equivalent forms reported in [16] and verify
that DY commutes with H and P4 and anticommutes with D and γ0. Moreover,
we observe that the physical part of DY can be put in the form

DY I = Q(σY ∆−1) , σY =
2

µ
[σK + (σL + 12)P4] , (32)

where σY is a new conserved Pauli operator associated to

QY = HDY = HDY I = D(σY ) ∈ D0. (33)

We note that the Pauli operators σL = ~σ · ~L and σK = ~σ · ~K are conserved and
satisfy {σK , σL + 12} = 2~L · ~K and {σr, σL + 12} = −2µP4.

As in the case of the Klein-Gordon theory, we can define the components of
the conserved Runge-Lenz operator of the Dirac theory [16, 17] giving directly
their physical parts,

Ki =
µ

4
{QY , Qi}+

1

2
(B − P4)Qi − JiP4 ∈ D0 , (34)

where B2 = P4
2I −H2 = D(B2). Consequently, we can express

Ki = D(K̂i) , K̂i = Ki +
σi
2
B ∈ P . (35)

The operators Ji and Ki are involved in the following system of commutation
relations

[Ji, Jj ] = iεijkJk ,

[Ji, Kj ] = iεijkKk , (36)

[Ki, Kj ] = iεijkJkB2 ,

8



and commute with the operators Qi as [18],

[Ji, Qj] = iεijkQk , [Ki, Qj ] = iεijkQkB . (37)

The algebra (36) does not close as a Lie algebra because of the factor B2. The
dynamical algebras of the Dirac theory have to be obtained as in the scalar
case by replacing this operator with its eigenvalue q̂2 − E2 and rescaling the
operators Ki. One obtains thus the same dynamical algebras as those governing
the scalar modes but in different representations [17].

The Casimir operators of the open algebra (36) are

C1 = ~J 2B2 + ~K2 , C2 = ~J · ~K . (38)

In addition, we can define a new Casimir-type operator

Q =
µ

2
QY + (B − P4)D(σL + 12) = D[σK + (σL + 12)B] , (39)

which is an operator from D0 related to QY . This satisfies the simple algebraic
relations,

[Q,Ji] = 0 , [Q,Ki] = 0 , {Q,Qi} = 2(Ki + JiB) , (40)

and the identity

Q2 =
µ2

4
(P4I − B)4 , (41)

resulting from Eqs. (11), (12) and (39). Moreover, using Eqs. (13) we find two
new operators that can be put in a closed form,

C+ = C1 + 2BC2 + B2 = (Q+ B)2 , (42)

C− = C1 − 2BC2 + B2 =
µ2

4
(P4I + B)4 . (43)

The operators Q and C+ are Casimir operators only for the algebra (36) but
Q2 and C− are general Casimir operators since they commute with any other
conserved Dirac operator.

Finally we observe that we can take over the operator N of the scalar theory
since the Dirac and the Klein-Gordon particles have the same energy spectrum.
This offers us the opportunity to introduce the new Casimir operator

M = (N + µP4)
2I ∈ D0 (44)

that allows us to write Q2 = B2M , as it results from Eqs. (13) and (41).

5 Infinite-dimensional superalgebra

Now we may ask how could be organized this very rich set of conserved Dirac
operators. There are many commutation and anticommutation relations that
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can not be ignored such that it seems that the suitable structure may be a
superalgebra. Thus we start with the open superalgebra S0 generated by the
operators {I,M,Ji,Ki, Q,Qi} ⊂ D0 which satisfy Eqs. (36), (37) and (40)
completed with the obvious anticommutation rule

{Q, Q} = 2B2M . (45)

We observe that, as in the non-relativistic quantum Kepler problem, there are
algebraic relations which remain open because of the factors B. Therefore,
we are forced to embed all the above ingredients in an infinite-dimensional

superalgebra constructed in the same manner as the infinite algebra of Ref.
[22]. The difference is that here we have a superalgebra with generators of
bosonic or fermionic type.

Let us define of the bosonic operators

In = IBn , Mn =MBn , J i
n = JiBn , Ki

n = KiBn , (46)

and the supercharges of the fermionic sector

Qn = QBn , Qi
n = QiBn , (47)

for any n = 0, 1, 2.... The operators In and Mn are Casimir-type operators
commuting between themselves and with all the operators of the bosonic or
fermionic sectors. Then, according to Eqs. (36) and (46), we obtain the following
non-trivial commutators of the bosonic sector

[

J i
n, J

j
m

]

= iεijkJ
k
n+m , (48)

[

J i
n,K

j
m

]

= iεijkK
k
n+m , (49)

[

Ki
n,K

j
m

]

= iεijkJ
k
n+m+2 , (50)

while from Eqs. (30),(40) and (45) we deduce the anticommutators of the
fermionic sector,

{Qi
n, Q

j
m} = 2δijIn+m , (51)

{Qn, Q
i
m} = 2(Ki

n+m + J i
n+m+1) , (52)

{Qn, Qm} = 2Mm+n+2 . (53)

The commutations relations between the bosonic and fermionic operators are

[

Qn, J
j
m

]

= 0 , [Qi
n, J

j
m] = iεijkQ

k
n+m , (54)

[

Qn,K
j
m

]

= 0 , [Qi
n,K

j
m] = iεijkQ

k
n+m+1 . (55)

Thus we constructed an infinite-dimensional superalgebra S generated by the
countable set of operators {In,Mn, J

i
n,K

i
n, Qn, Q

i
n}, n ≥ 0. We observe that

the typical algebraic structure related to the Kepler problem is the infinite-
dimensional algebra A generated by {J i

n,K
i
n} which is a subalgebra in S.
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6 Twisted loop superalgebras

Now we intend to show that the superalgebra S can be seen as a twisted Kac-
Moody superalgebra such that its subalgebra A should be a twisted loop algebra
of the usual so(4) algebra, in the sense of Ref. [22].

First we define the finite-dimensional superalgebra W0 generated by the
operators {E,F,Ai, Bi, G,Gi}. We assume that E and F commute with any
other generator and that the generators {Ai, Bi} satisfy the so(4) algebra,

[Ai, Aj ] = iεijkA
k , [Ai, Bj ] = iεijkB

k , [Bi, Bj ] = iεijkA
k . (56)

The operators G and Gi are fermionic supercharges obeying

{Gi, Gj} = 2δijE , {G,Gi} = 2 (Ai +Bi) , {G,G} = 2F (57)

and the commutation relations

[Ai, G] = 0 , [Ai, Gj ] = iεijkG
k ,

[Bi, G] = 0 , [Bi, Gj ] = iεijkG
k . (58)

This superalgebra has simple finite-dimensional representations as we briefly
present in Appendix.

Furthermore, we consider the corresponding Kac-Moody infinite loop super-
algebra W generated by the operators {En, Fn, A

i
n, B

i
n, Gn, G

i
n}, n ∈ Z, with

the following properties
[

Ai
n, A

j
m

]

= iεijkA
k
n+m ,

{

Gi
n, G

j
m

}

= 2δijEn+m ,
[

Ai
n, B

j
m

]

= iεijkB
k
n+m ,

{

Gn, G
j
m

}

= 2 (Ai
n+m +Bi

n+m) , (59)
[

Bi
n, B

j
m

]

= iεijkA
k
n+m , {Gn, Gm} = 2Fn+m ,

and

[Ai
n, Gm] = 0 , [Ai

n, G
j
m] = iεijkG

k
n+m ,

[Bi
n, Gm] = 0 , [Bi

n, G
j
m] = iεijkG

k
n+m , (60)

understanding that the generators En and Fn, n ∈ Z, commute with any other
generator of W .

The next step is to define the involution automorphism τ : W → Wτ select-
ing the countable subset of operators

{E2n, F2n, A
i
2n, B

i
2n+2, G2n+2, G

i
2n} , n ∈ Z , (61)

which generates the superalgebra Wτ ⊂ W . The algebraic properties of this
superalgebra are given by the commutation relations of the bosonic sector,

[

Ai
2n, A

j
2m

]

= iεijkA
k
2(n+m) ,

[

Ai
2n, B

j
2m+2

]

= iεijkB
k
2(n+m)+2 , (62)

[

Bi
2n+2, B

j
2m+2

]

= iεijkA
k
2(n+m+2) ,
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the anticommutation relations of the fermionic sector
{

Gi
2n, G

j
2m

}

= 2δijE2(n+m) ,
{

G2n+2, G
j
2m

}

= 2 (A2(n+m+1) +B2(n+m)+2) , (63)

{G2n+2, G2m+2} = 2F2(n+m+2) ,

and the commutation relations among both sectors,

[Ai
2n, G2m+2] = 0 , [Ai

2n, G
j
2m] = iεijkC

k
2(n+m) ,

[Bi
2n+2, G2m+2] = 0 , [Bi

2n+2, G
j
2m] = iεijkC

k
2(n+m+1) . (64)

In this way we have constructed the twisted loop superalgebra Wτ the positive
part of which (with n ≥ 0) will be denoted by Wτ

+.
Now we can show that the mapping φ : Wτ

+ → S defined by

In = φ(E2n) , Mn = φ(F2n) , J i
n = φ(Ai

2n) , Ki
n = φ(Bi

2n+2) , (65)

and
Qn = φ(G2n+2) , Qi

n = φ(Gi
2n) , n = 0, 1, 2, ... (66)

is an homomorphism. Indeed, if we consider, for example, the last of Eqs. (50)
we can write

[

φ(Bi
2n+2), φ(B

j
2m+2)

]

=
[

Ki
n,K

j
m

]

= iεijkJ
k
n+m+2 (67)

= iεijkφ(A
k
2(n+m+2)) = φ(

[

Bi
2n+2, B

j
2m+2

]

) .

In this manner one can demonstrate step by step that for any pair of generators,
X and Y , of Wτ

+ we have either [φ(X), φ(Y )] = φ([X,Y ]) or {φ(X), φ(Y )} =
φ({X,Y }). Reversely, if we start with Eqs. (65) and (66) supposing that φ is
an homomorphism, then we recover the superalgebra S. For example, the last
of Eqs. (55) results from

[

Qi
n,K

j
m

]

=
[

φ(Gi
2n), φ(B

j
2m+2)

]

= φ(
[

Gi
2n, B

j
2m+2

]

)

= iεijkφ(G
k
2(n+m+1)) = iεijkQ

k
n+m+1 . (68)

In this way, we bring arguments that our superalgebra S can be seen as a twisted
loop superalgebra.

It finally should be mentioned that the above construction of the twisted
loop superalgebras could be regarded differently. The connection between the
set of operators (46), (47) and (61) can be realized directly assigning grades to
each operator [27] as follows:

E2n := IBn , F2n :=MBn , Ai
2n := JiBn ,

Bi
2n+2 := KiBn , G2n+2 := QBn , Gi

2n := QiBn . (69)

Thus we achieve a graded loop superalgebra of the Kac-Moody type and the
sum of the grades is conserved under (anti)commutations.

12



7 Concluding remarks

Here we constructed the infinite-dimensional superalgebra S starting with the
finite-dimensional open superalgebra S0 formed only by conserved operators
commuting with I, H , P4 and the whole set of Casimir operators freely generated
by these three operators.

In S0 we explicitly used two Casimir operators, namely I and M . As men-
tioned, I is the projector on the physical spinor subspace playing the role of
identity operator. More interesting is the operator M since this depends on N
which is in some sense similar with the operator (−2HK)−1/2 of the so(4, 2) dy-
namical algebra of the quantum Kepler problem governed by the non-relativistic
Hamiltonian operator HK = − 1

2∆ − r−1 [28]. We remind the reader that the
so(4, 2) dynamical algebra of the Kepler problem contains not only conserved
operators but even operators that do not commute with HK . In this case, the
conserved operators, i. e. the angular momentum and the Runge-Lenz vec-
tor operator, are orthogonal and generate an open algebra that can be rescaled
obtaining thus the dynamical algebra o(4) ⊂ so(4, 2) of the discrete energy spec-
trum. The first Casimir operator of o(4), that reads C1

K = (−2HK)−1 − I, has
a similar form with our operator M . However, the second Casimir operator of
o(4) vanishes while our operator C2, given by Eq. (38), is different from zero

since the vector operators ~J and ~K are not orthogonal.
In these circumstances we can say that the subalgebra (36) of S0 corresponds

to the open algebra that gives the o(4) dynamical algebra of the Kepler prob-
lem. This explains why our twisted loop superalgebra was constructed in a
similar way as that of the Kepler case [22]. The main difference between these
two theories is that S0 is an open superalgebra containing the supercharges Q
and Qi that naturally arise from the very special geometry of the Euclidean
Taub-NUT space. For this reason we were forced to include, in addition, the
bosonic Casimir operator M for writing down Eq. (45). We specify that this
is more than a simple artifice since the resulting infinite superalgebra S is a
twisted loop superalgebra arising from a coherent algebraic structure, namely
the superalgebra W0 the representations of which are presented in Appendix.

In other respects, it is clear that the operators Q and Qi appear only in the
Dirac theory on M since they are in fact Dirac-type operators. Therefore, it is
interesting to compare our results with relativistic systems with spin half whose
non-relativistic limit is the quantum Kepler problem. Thus, in the case of the
Dirac electron in external Coulomb field there exists a hidden symmetry even if
one does not have a conserved Runge-Lenz operator. This symmetry is related
to another operator, called the Johnson-Lippmann operator [29], that is a scalar
conserved operator. In the non-relativistic limit this becomes the projection of
the usual Runge-Lenz vector operator of the Kepler problem on the electron
spin direction [30]. In our approach, we can say that the Johnson-Lippmann

operator is just the superchargeQ whose first term given by Eq. (39) is D(~σ · ~K).
Finally we note that our open superalgebra S0 could be enlarged adding non-

conserved operators that can be either leader operators or operators related to

13



the manifest supersymmetry [6] of our Hamiltonian H . However, this problem
will be considered elsewhere.
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Appendix

The superalgebra W0

Here we would like to show that a fundamental representation of the superalge-
bra W0 arises from a particular representation of the so(4) Lie algebra.

We start with a finite-dimensional representation, ρ, of this algebra generated
by the linear operators {Ai

ρ, B
i
ρ} defined on the spaceMρ and obeying Eqs. (56).

The identity operator of on Mρ is denoted by 1ρ. The su(2)× su(2) content of
the so(4) algebra can be pointed out in the new basis {J i

ρ+, J
i
ρ−} given by the

operators J i
ρ± = 1

2 (A
i
ρ ±Bi

ρ) that satisfy the su(2) commutation relations,

[J i
ρ+, J

j
ρ+] = iεijkJ

k
ρ+ , [J i

ρ−, J
j
ρ−] = iεijkJ

k
ρ− , [J i

ρ+, J
j
ρ−] = 0 . (A.1)

The representation ρ = (j+, j−) is completely determined by the su(2) weights

defined by the Casimir operators ~J2
ρ± = j±(j± + 1) 1ρ. However, here we

have to consider, in addition, the usual Casimir operators Cρ 1 = ~A2
ρ + ~B2

ρ and

Cρ 2 = ~Aρ · ~Bρ or the new ones

Cρ± = Cρ 1 ± 2Cρ 2 + 1ρ = 4 ~J2
ρ± + 1ρ = (2j± + 1)2 1ρ . (A.2)

We note that when j+ = j− then ~Aρ and ~Bρ are orthogonal, as in the case of
the dynamical algebra of the quantum Kepler problem.

Our purpose is to construct the superalgebra W0 in the carrier space M =
Mρ⊗M( 1

2
,0) of the reducible representation (j+, j−)⊗ (12 , 0) given by arbitrary

weights j± taking positive real values. The representation, (12 , 0), is generated

by the operators Âi = 1
2σi and B̂i = 1

2σi acting in the two-dimensional space
M( 1

2
,0) where the identity operator is 12. In these circumstances we define

first the identity operator on M, E = 1ρ ⊗ 12, and the Casimir-type operator
F = Cρ+ ⊗ 12. The so(4) generators of this representation are

Ai = Ai
ρ ⊗ 12 +

1
21ρ ⊗ σi , Bi = Bi

ρ ⊗ 12 +
1
21ρ ⊗ σi . (A.3)

Moreover, we introduce the supercharges

Gi = 1ρ ⊗ σi , G = ~Aρ ⊗ ~σ + ~Bρ ⊗ ~σ + E , (A.4)

14



so that G2 = F . Now it is a simple exercise to show that the operators
{E,F,Ai, Bi, G,Gi} satisfy Eqs. (56), (57) and (58).

The conclusion is that the superalgebra W0 can be realized in the carrier
space of any reducible representation ρ⊗ (12 , 0) of the so(4) algebra.
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