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Abstract

Following the strategy in [6], we prove a Tate duality for higher dimen-
sional local fields of mixed characteristic (0, p), p 6= 2. The main tool is
the theory of higher fields of norms as developed in [1] and [7]. Assuming
that p is not ramified in the basefield, we then use this construction to
define the higher Hilbert pairing. In particular, we show that the Hilbert
pairing is non-degenerate, and we re-discover the formulae of Brückner
and Vostokov.
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1 Introduction

1.1 Statement of the main result

Let p be an odd prime, and let K be a d-dimensional local field of mixed
characteristic (0, p) Denote by GK the absolute Galois group Gal(K̄/K). For
n ≥ 1, denote by µpn the group of pnth roots of unity.

This paper consists of two parts. In the first part, we prove a higher Tate
duality for the GK -module µpn :-

Theorem 1.1. Let K be a d-dimensional local field of mixed characteristic
(0, p), and denote by GK its absolute Galois group. Let F be the maximal al-
gebraic extension of Qp contained in K, and assume that OK/OF is formally
smooth. Then for i ∈ {0, . . . , d+ 1} and all n ∈ N we have a perfect pairing

Hi(GK , µ
⊗i
pn)×H

d+1−i(GK , µ
⊗d−i
pn )→ Qp/Zp.

Remark. The above pairing should certainly be the same as the cup product
pairings, but this is not that easy to show.

To prove Theorem 1.1, we follow the strategy of Herr in [6] and express the
Galois cohomology groups in terms of the (φ,G)-module of µpn . We will also
prove a higher dimensional Tate isomorphim:-

Theorem 1.2. Let K be a d-dimensional local field of mixed characteristic
(0, p). Let F be the maximal algebraic extension of Qp contained in K, and
assume that OK/OF is formally smooth. Then there is a canonical isomorphism

Hd+1(GK , µ
⊗d
p∞) ∼= Qp/Zp.

In the second part of the paper, we assume that p is prime in K, and we use
Theorem 1.1 to define a pairing

Kd(Kn)×K1(Kn)→ µpn .

Composing it with the natural multiplication map K1(Kn)
×d → Kd(Kn), we

obtain a pairing Vn : K1(Kn)
×(d+1) → µpn which factors through

Vn :
(
K1(Kn)/p

n
)×(d+1)

→ µpn .

In Section 4 we give a an explicit description of Vn:- For 1 ≤ i ≤ d + 1, let
αi ∈ O

×
K such that αi ∼= 1 mod π̄n, and let Fi(X) ∈ A+

K such that hn(Fi) = αi.

Let fi(X) = (1 − φ
p ) logF (X).

Theorem 1.3. The pairing Vn is non-degenerate. Moreover, we have

Vn(α1, . . . , αd+1) = µ
TrResπn,T1,...,Td

(Φ)
pn ,
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where Φ is given by the formula

Φ =
1

π

d+1∑

i=1

(−1)d+1−i

pd+1−i
fi(πn)d logF1(πn) ∧ · · · ∧ d logFi−1(πn)

∧ d logFφi+1(πn) ∧ · · · ∧ d logF
φ
d+1(πn).

Comparing these formulae with the explicit descriptions of the higher Hilber
pairing of Brückner and Vostokov (c.f. [3] and [8]), we get the following result:-

Corollary 1.4. The pairing Vn is the higher Hilbert pairing.

For proving Theorem 1.3, we follow the strategy of Benois in [2].

Remarks. (1) To keep the notation as simple as possible, we will prove the
above results for local fields of dimension 2. However, the proofs generalize
without problems to local fields of arbitrarily high dimension.
(2) Theorem 1.1 can certainly be generalized to an arbitrary Zp- of GK . We will
deal with this in a different paper.

1.2 Notation

∗ For a 2-dimensional local field K with ring of integers OK , let kK ∼= Fp((T ))
be the residue field.
∗ For a (φ,G)-module M , we sometimes denote the action of the Frobenius
operator on M by φM .
∗ For a 2-dimensional local field K, let GK = Gal(K̄/K).

1.3 Acknowledgements

I am very grateful to John Coates for his interest and encouragement. Also, I
would like to thank Otmar Venjakob, Kay Wingberg and Ivan Fesenko for some
helpful comments. Finally, I would like to very warmly thank Guido Kings for
his invitation to Regensburg in Spring 2007 when part of this paper was written.

2 Higher (φ,G)-modules

2.1 Setup

Let K be a 2-dimensional local field of mixed characteristic (0, p), and let F be
the maximal algebraic extension of Qp contained in K. Let kF be the residue
field of F and let ωF be a uniformizer of F . Assume that OK/OF is formally
smooth, i.e. ωF is a uniformizer of K. Let X be a unit in K whose reduction
X̄ is a p-basis for the residue field kK of K, so kK ∼= kb((X)) for some finite
extension kb of kF . Fix an algebraic closure K̄ of K. Let (ξi)i≥0 be compatible
system of primitive pith roots of unity, and let (Xi)i≥0 be a compatible system
of pith roots of X . Denote by µpi the group of pith roots of unity.

Let Ki = K(µpi , Xi) and K∞ =
⋃
Ki. Also, let Fi = F (µpi).
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Lemma 2.1. The extension K∞ is a 2-dimensional p-adic Lie extension of K.
More precisely, we have Gal(K∞/K) ∼= Γ1 ⋊ Γ2, where

Γ2 = Gal(K∞/K(µp∞)) ∼= Zp.

and Γ = Gal(K(µp∞)/K) is isomorphic (via the cyclotomic character χ) to an
open subgroup of Z×

p .

Let γ1 and γ2 be topological generators of Γ1 and Γ2, respectively. Let
a ∈ Zp such that

γ1γ2 = γa2γ1. (1)

Note. We have a = χ(γ1) ∈ Z×
p . It follows that in particular we have

γ1γ
1
a

2 = γ2γ1. (2)

Let EF be the field of norms of the tower (Fi)i≥0, and let kF be its residue
field. Let π̄F be a uniformizer of EF , so EF ∼= kF ((π̄F )). Let EK be the field of
norms of the tower (Ki). Let ǫ = (1, ξ1, ξ2, . . . ) and T = (Xi)i≥1 ∈ EK . Define
π̄ = ǫ− 1. Let k = kbkF .

Lemma 2.2. The field EK is given by

EK ∼= kF ((π̄F ))⊗̂kF kb((T))
∼= k((T))((π̄F )).

Proof. See the section on Kummer towers in [7].

2.2 Lift to characteristic 0

Let AF be a lift of EF to characteristic 0, so AF ∼= W (kF )[[πF ]][π
−1
F ]∨, where

πF is a lift of π̄F . Let φ be a lift to AF of the Frobenius operator commuting
with the action of Γ1. Let T = [T]. Define

AK =W (k)[[T ]][T−1]∨[[πF ]][π
−1
F ]∨.

Then AK is a lift of EK to characteristic 0. Let BK = AK [ 1p ] be its field of

fractions. Note that AF ⊂ AK . Define a lift of Frobenius to AK by φ(T ) = T p.
Note that φ commutes with the action of G on AK . Define N ∈ Zp by

γ2(πF ) = πF ,

γ2(T ) = (π + 1)NT.

One can show that N ∈ Z×
p since X is a p-basis of kK .

Note that AK is a free finitely generated module over φ(AK) of degree p2.
It follows that we can define a left inverse ψ of φ by the formula

φ(ψ(x)) =
1

p2
TrAK/φ(AK)(x).
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Proposition 2.3. Let E be an algebraic closure of EK . Then we have an
isomorphism of Galois groups

Gal(E/EK) ∼= Gal(K̄/K∞).

Proof. See [7].

Let A be a lift of E containing AK . Then the actions of φ and ψ can be
extended uniquely to A (c.f. [7]).

2.3 The ring Acris

Let CK be the p-adic completion of K̄, and let OCK
be its ring of integers.

Let Ẽ be the set of sequence x = (x(0), x(1), . . . ) of elements in OCK
satisfying

(x(i+1))p = x(i). Then Ẽ has a natural structure as a ring of charactristic p. For
n ≥ 1, let ǫn = (ζ(n), ζ(n+1), . . . ) be the pnthe root of ǫ in Ẽ. Let Ainf = W (Ẽ)
be the ring of Witt vectors of Ẽ, φ the Froenius of Ainf , and if x ∈ Ẽ, then
denote by [x] its Teichmüller representative in Ainf . Then the homomorphism

θ :Ainf → OCK∑
pn[xn]→

∑
pnx(0)n

is surjective and its kernel is a principal ideal with generator ω = [ǫ]−1
[ǫ1]−1 . Let

Binf = Ainf(p
−1). Note that θ extends to a homomorphism Binf → CK . De-

fine B∇+
dR = lim

←−
B+
inf/(ker θ)

n, and extend θ by continutiy to a homomorphism

B∇+
dR → Cp. This makes B∇+

dR into a discrete valuation ring with maximal ideal
ker(θ) and residue field CK . The action of GK on B+

inf extends by continuity to
a continuous action on B∇+dR.

Let Acris be the subring of (B∇
dR)

+ consisting of the elements of the form∑∞
n=0 an

ωn

p! , where an is a sequence of elements in Ainf tending to 0 as n→ +∞.

2.4 Differentials, residues and duality

Let Ω1
AK

be the module of continuous Zp-linear 1-differentials of AK . Note that
we have an isomorphism of AK-modules

Ω1
AK

∼= AKdπF ⊕ AKdT.

Let Ω1
AK

be the module of continuous Zp-linear 1-differentials of AK , and let

Ω2
AK

=

2∧
Ω1

AK
.

Lemma 2.4. We have an isomorphism of AK-modules

Ω2
AK

∼= AKdπF ∧ dT.
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Corollary 2.5. If K ′ is a finite separable extension of K, then the natural map

AK′ ⊗AK
Ω2

AK
→ Ω2

AK′

is an isomorphism.

Proof. Clear.

Corollary 2.6. If K ′ = K⊗F F
′ for some finite unramified extension F ′ of F ,

then the natural map

W (kF ′)⊗W (kF ) Ω
2
AK
→ Ω2

AK′

is a W (kF )-linear isomorphism.

It follows from Lemma 2.4 that if ω ∈ Ω2
AK

, then there exist ai,j ∈ Zp such

that ω = (
∑
ai,jT

iπjF )dπF ∧ dT .

Definition. Define the residue map

Res : Ω2
AK
→ Zp,

Res(ω) = a−1,−1.

Since φ is a lift of the Frobenius operator, we have φ(πF ) = uπpF for some
u ∈ A×

K satisfying u ∼= 1 mod p.

Lemma 2.7. For any λ ∈ AK , we have

Res(φ(λ)dφ(πF ) ∧ dφ(T )) = p2φ(Res(λdπF ∧ dT )).

Proof. It is sufficient to prove the formula for λ = 1
πFT

. Write u = 1 + pa for
some a ∈ AK . We have φ(T ) = T p, so

φ(λ)dφ(πF ) ∧ dφ(T ) =
p2

πFT
dπF ∧ dT +

p

uT
du ∧ dT.

But 1
uT du∧dT = T−1

∑
d( (−1)r+1pr

r ar)∧dT . It is easy to see that the coefficient

of π−1
F in

∑
d( (−1)r+1pr

r ar) is 0, which finishes the proof.

Definition. Let M be a torsion (φ,G)-module. Define

M̃ = HomAK
(M,BK/AK ⊗AK

Ω2
AK

).

Lemma 2.8. The residue map induces an isomorphism

TR : M̃ →M∨.
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Proof. We imitate the proof of Lemma 1.3 in [6]. By continuity, the residue
gives a homomorphism from M̃ to M∨. Now Ω2

AK
is a free AK-module of rank

1. The ring AK is principal and the AK-module BK/AK ⊗AK
Ω2

AK
is divisible

and hence injective, and the functor which associates M̃ to M is exact. Also,
the functor which to M associates M∨ is exact, so by the snake lemma we can
assume without loss of generality thatM is an AK-module of length 1 and hence
a 1-dimensional vector space over EK . By choosing a basis, we can therefore
assume that M = EK . Note that we can identify E∨

K with HomZp
(EK ,Fp) and

ẼK with HomEK
(EK ,Ω

2
AK
/pΩ2

AK
). We need to show that the natural map

ẼK = HomEK
(EK ,Ω

2
AK
/pΩ2

AK
)→ HomZp

(EK ,Fp)

induced by the residue is bijective. Now if f ∈ ẼK is non-zero, then since
the image of f is an EK-vector space of dimension 1 and the residue map is
surjective, it is clear that TR(f) is non-zero. Now let a ∈ HomZp

(EK ,Fp). For
all m,n ∈ Z, let αm,n = a(Tmπ̄nF ). Since a is continuous, there exists N ∈ N

such that αm,n = 0 for all n ≥ N and all m ∈ Z. Define

ω = (
∑

n≥−N

∑

m∈Z

α−m,−nT
m−1πn−1

F )dT ∧ dπ.

Then for all m,n ∈ Z, the class mod p of Res(Tmπnω) is αm,n. It follows that

if we define f ∈ ẼK by f(1) = ω mod p, then TR(f) = a.

2.5 The equivalence of categories

Denote by GK the absolute Galois group Gal(K̄/K).

Definition. A Zp-representation of GK is a Zp-module V of finite type equipped
with a continuous linear action of GK . If V is annihilated by a power of p, then
it is called a p-torsion module.

Theorem 2.9. The functor V → D(V ) = (V ⊗Zp
A)HK gives an equivalence of

categories

(Zp-representations of GK)→ (étale (φ,G)-modules over AK),

and an essential inverse is given by D → (A⊗AK
D)φ=1.

Proof. See [1] or [7].

2.6 The module Zp(2)

For an element a ∈ EK , denote by [a] its Teichmüller representative. Recall
that if K contains a primitive pth root of unity, then [ǫ] = π + 1 is an element
of AK . To simplify notation, let Ω(K) = Ω2

AK
.
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Lemma 2.10. Let K ′ = K(µp), and define an A-linear map

ρK′ : A⊗Zp
Zp(1)→ A⊗AK′

Ω(K ′),

λ⊗ ǫ2 → λ⊗ d log[ǫ] ∧ d logT.

Then ρK′ is an isomorphism of A-modules which does not depend on the choice
of the generator ǫ of Zp(1).

Proof. Imitate the proof of Lemma 3.6 in [6].

Note that we can give Ω(K) the structure of a (φ,G)-module by defining

φΩ(K)(xdy ∧ dz) =
1

p2
φ(x)dφ(y) ∧ φ(z),

g(xdy ∧ dz) = χ(g)g(x)dg(y) ∧ dg(z)

for g ∈ G.

Proposition 2.11. With this stucture as a (φ,G)-module, Ω(K) is isomorphic
to D(Zp(2)).

Proof. Let K ′ = K(µp). By Corollary 2.5 the natural map Ω2
AK
→ Ω2

AK′
is in-

jective. Composing it with the natural Gal(K̄/K)-equivariant injection Ω2
AK′
→

A⊗AK′
Ω2

AK′
gives an AK-linear GK-equivariant map Ω2

AK
→ (AK⊗AK′

Ω2
AK′

)HK .
Explicit calculation shows that this map is also surjective. Composing it with
the restriction of ρ−1

K′ to the points fixed by HK gives an isomorphism of AK-
modules between Ω2

AK
and DK(Zp(2)) which commutes with the action of GK .

It is easy to see that it also commutes with the action of φ, which finishes the
proof.

2.7 Calculation of the Galois cohomology

Let V be a Zp-representation of GK , and denote by D the corresponding (φ,G)-
module DK(V ). Define the following complex:-

Cφ,γ1,γ2(D) : 0 ✲ D
f1
✲ D⊕3 f2

✲ D⊕3 f3
✲ D ✲ 0, (3)

where the maps fi are defined as follows:-

f1 : x→[(φ− 1)x, (γ1 − 1)x, (γ2 − 1)x],

f2 : (x, y, z)→[(φ− 1)y − (γ1 − 1)x,

(φ− 1)z − (γ2 − 1)x,

(γ2 − 1)y − (γ1
γ

1
a

2 − 1

γ2 − 1
− 1)z],

f3 : (x, y, z)→(γ2 − 1)x− (γ1
γ

1
a

2 − 1

γ2 − 1
− 1)y − (φ − 1)z.

8



Similarly, define the complex

Cψ,γ1,γ2(D) : 0 ✲ D
g1
✲ D⊕3 g2

✲ D⊕3 g3
✲ D ✲ 0, (4)

where the maps gi are defined as follows:-

g1 : x→[(ψ − 1)x, (γ1 − 1)x, (γ2 − 1)x],

g2 : (x, y, z)→[(ψ − 1)y − (γ1 − 1)x,

(ψ − 1)z − (γ2 − 1)x,

(γ2 − 1)y − (γ1
γ

1
a

2 − 1

γ2 − 1
− 1)z],

g3 : (x, y, z)→(γ2 − 1)x− (γ1
γ

1
a

2 − 1

γ2 − 1
− 1)y − (ψ − 1)z.

Definition. Denote by Hi
φ,γ1,γ2

(D) (resp. Hi
ψ,γ1,γ2

(D)) the cohomology groups
of the complex Cφ,γ1,γ2(D) (resp. Cψ,γ1,γ2(D)).

Proposition 2.12. Let V = Zp(1) or µpn , and let D be its (φ,G)-module.
Then for all 0 ≤ i ≤ 3, we have isomorphisms

Hi(GK , V ) ∼= Hi
φ,γ1,γ2(D) ∼= Hi

ψ,γ1,γ2(D).

Remark. This result can certainly also be shown to be true for a general Zp-
representation V of GK . However, in the general case the argument is technically
much more complicated, and since our main interest is the construction of the
Hilbert pairing, we restrict ourselves to the case above. We will prove the general
case in [9].

Proof. Scholl [7] and Andreatta [1] have shown that we have isomorphisms
Hi(GK , V ) ∼= Hi

φ,γ1,γ2
(D). It is therefore sufficient to explicitely give isomor-

phisms ιi : H
i
ψ,γ1,γ2

(D) ∼= Hi
φ,γ1,γ2

(D).

i = 3:- Let x ∈ D. Since ψ is surjective, we can choose u ∈ D such that
ψ(u) = x. Define ι3(x) = u. This is well-defined:- If u′ also satisfies ψ(u′) = x,
then a = u − u′ ∈ Dψ=0. Write u =

∑
i∈Z fi(πF )T

i. Then in particular
ψ(f0(π)) = 0. In Proposition I.5.1 in [4], it is shown that γ1 − 1 is invertible

on DF (V )ψ=0. Let h0 = (γ1 − 1)−1(f0). For j 6= 0, let αj = (γ2−1)T j

T j ∈ A∗
F .

Let v =
∑

j 6=0 αjfj(π)T
j. Then u = (γ1 − 1)h0 + (γ2 − 1)v and hence is zero in

H3
φD,γ1,γ2

(D).

i = 2:- Let [x, y, z] ∈ D⊕3 satisfy (γ2 − 1)x− (γ1 − 1)y − (ψ − 1)z = 0. Denote
ι2([x, y, z]) by [u, v, w]. Write (φ − 1)w =

∑
i∈Z aifi(π)T

i. Note that f0(πF ) ∈

Df (Zp(1))
ψ=0, so by Proposition I.5.1 in [4], there exists h0 ∈ DF (Zp(1)) such

that (γ1 − 1)h0 = f0. Also, when i 6= 0, then αi =
(γ2−1)T i

T i is invertible in AF .

Define u = x+ h0(π), v = y +
∑
j 6=0 fj(π)α

−1
j T j and w = z.

9



i = 1:- Let y, z ∈ D satisfy

(γ2 − 1)y = (γ1
γ

1
a

2 − 1

γ2 − 1
− 1)z (5)

and (ψ − 1)y = (ψ − 1)z = 0. We need to show that there exists x ∈ D such
that (φ − 1)y = (γ1 − 1)x and (φ− 1)z = (γ2 − 1)x. How do we construct this
x? Write (φ− 1)z =

∑
i∈Z fi(πF )T

i. By Proposition I.5.1 in [4], (γ1− 1)−1f0 is

well-defined. When i 6= 0, then αi =
(γ2−1)T i

T i ∈ A×
F . Define

x = (γ1 − 1)−1f0(πF ) +
∑

i∈Z

α−1
i fi(πF )T

i.

Using (5) it is not difficult to see that x has the required properties.

i = 0:- ι0 = id. When x ∈ D satisfies ψx = x, γ1
γ

1
n
2 −1
γ2−1 x = x and γ2x = x, then

it is easy to see (using again the result from [4] mentioned above) that φx = x.

It is not difficult to see that the above maps are indeed isomorphisms.

Remark. If γ′1 and γ′2 is a different pair of topological generators of Γ1 and Γ2,
then the complexes Cφ,γ1,γ2 and Cφ,γ′

1,γ
′

2
are quasi-isomorphic. More generally,

we can replace γ1 and γ2 by ω1γ1 and ω2γ2 for any ω1, ω2 ∈ Λ(G)×.

2.8 Construction of the pairing

Definition. The Pontryagin dual M∨ of an étale (φ,G)-torsion module M is
defined as the continuous homomorphisms

M∨ = HomZp
(M,Qp/Zp).

As shown in Lemma 2.8, the map TR induces an isomorphism M̃ →M∨. We
can therefore give M∨ the structure of a (φ,G)-module. Denote the operation
of Frobenius on it by φM∨ . We quote the following result from [6]:-

Proposition 2.13. Let C = (M i, di : M i → M i+1) be a cochain comlex of
abelian groups which are compact and locally separated (with M i in degree i).
Suppose that the di are strict homomorphisms with closed images. Then C∨ =
(Ni := (M i)∨, di :=

t di−1 : Ni → Ni−1) is a chain complex of abelian groups
which are compact and locally separated (with Ni in degree i). The di are strict
homomorphisms with closed image, and for all i, we have natural isomorphisms

αi : Hi(C
∨) ∼= (Hi(C))∨.

In order to be able to apply Proposition 2.13 to the complex Cφ,γ1,γ2(M),
we need the following result:-

Lemma 2.14. If M is an étale (φ,G)-torsion module over AK , then the image
of φ−1 contains a compact neighbourhood of 0 on which φ−1 induces a bijection
and hence a homeomorphism by compactness.
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Proof. Reduce to the 1-dimensional case, using Proposition 2.4 in [5].

For the rest of this section, let M = D(µpn). Note that as a φ-module, we have
M ∼= AK mod pn. In particular, this implies that ψM is defined.

Proposition 2.15. The map ψ :M∨ →M∨ : f → f ◦ φM agrees with ψM∨ .

Proof. Imitate the argument in Section 5.5.1 in [6].

Let 0 ≤ i ≤ 3, and define an isomorphism

vi : (M
∨)⊕(

3
i) → (M⊕(3i))∨,

(gj)1≤j≤(3i)
→ ⊕1≤j≤(3i)

gj.

Lemma 2.16. For all 0 ≤ i ≤ 3, the vi induce isomorphisms (which we will
also denote by vi)

Hi(CψM∨ ,γ
−1
1 ,γ−1

2
(M∨))→ H3−i([CφM ,γ1,γ2(M)]∨).

Proof. We only have to show that the actions of ψM∨ and φM are compatible
with the maps vi. But this is shown in Proposition 2.15.

Combining the isomorphisms of Proposition 2.12 and Lemmas 2.13 and 2.16,
we therefore get for all 0 ≤ i ≤ 3 an isomorphism

ui(M) : Hi(CφM∨ ,γ1,γ2(M
∨))→ Hi(CψM∨ ,γ

−1
1 ,γ−1

2
(M∨))

→vi H3−i([CφM ,γ1,γ2(M)]∨)

→αi [H3−i(CφM ,γ1,γ2(M))]∨

Using these isomorphisms, we get the following proposition:-

Proposition 2.17. For all 0 ≤ i ≤ 3, we have a perfect pairing

Hi(CφM ,γ1,γ2(M))×H3−i(CφM∨ ,γ1,γ2(M
∨))→ Qp/Zp,

(x, y)→ [u3−i(M)(y)](x).

Making the above isomorphisms explicit (which is very messy, so we omit
the details), one can show that

H1
φM ,γ1,γ2(M)×H2

φM∨ ,γ1,γ2(M
∨)→Qp/Zp, (6)

(x, y, z)× (f, g, h)→h(γ2γ1x)− g(γ2φM (y)) (7)

+ f(γ1
γ

1
a

2 − 1

γ2 − 1
φM (z)) + g(ω̃φM (z)), (8)

H2
φM ,γ1,γ2(M)×H1

φM∨ ,γ1,γ2(M
∨)→Qp/Zp, (9)

(x, y, z)× (f, g, h)→− h(γ2x)− g(γ1
γ

1
a

2 − 1

γ2 − 1
y)− h(ω̃y) (10)

+ f(φM (z)), (11)
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where ω̃ ∈ Λ(G) is the element satisfying

ω̃(γ−1
2 − 1) = n

γ
1
a

2 − 1

γ2 − 1
− 1.

3 The Tate pairing

3.1 Proof of the Tate isomosphism

Definition. Define the map

TRK : Ω2
AK
→ Zp

to be the composition TrW (k)/Qp
◦ResK . Note that TRK is Zp-linear.

Proposition 3.1. For all ω ∈ Ω(K), we have

TRK((γ1
γ

1
n

2 − 1

γ2 − 1
− 1)ω) = 0, (12)

TRK((γ2 − 1)ω) = 0, (13)

TRK((φΩ(K) − 1)ω) = 0. (14)

Proof. Since γ2(T ) = (1 + π)NT from some N ∈ Z×
p , it is clear that (13) holds.

Write ω =
∑

i∈Z aiT
idT ∧ dπF , where ai ∈ AF for all i ∈ Z. As shown in [6],

we have TRK((φ − 1)a0dπF ) = 0, which (by the compatibilities of the actions

of φ) implies (14). It remains to show (12). Let x = γ2 − 1. Expanding
γ

1
a
2 −1
γ2−1

in terms of x gives

γ
1
a

2 − 1

γ2 − 1
=

1

a
+ higher order terms.

Since γ2 is trivial on AF , the operator γ1
γ

1
a
2 −1

γ2−1 − 1 acts as γ1 − 1 on a0. Equa-

tion (12) therefore follows from the 1-dimensional case as treated in [6].

For j ≥ 1, let Ωj(K) = Ω(K) mod pj, which is an étale (φ,G)-torsion
module over AK isomorphic to DK(µpj ). By reduction mod pj , Res induces a
canonical Z/pjZ-linear map

TRK,j : Ωj(K)→ Z/pjZ.

By Proposition 3.1, TRK,j factorizes through the quotient of Ωj(K) by (τ1(Ωj(K)+
τ2(Ωj(K)+(φ−1)(Ωi(K)), where τi = γi−1. We therefore get a homomorphism

TRK,j : H
3
φ,γ1,γ2(Ωi(K))→ Z/pjZ.

Passing to the direct limit gives a map

H3
φ,γ1,γ2(BK/AK ⊗AK

Ω(K))→ Qp/Zp.

12



Let vp be the p-adic valuation of Zp normalized by vp(p) = 1. Let np(γ1,n) =

vp(logχ(γ1)) and np(γ2,n) = vp(η(γ2,n)). Let c =
pnp(γ1,n)

logχ(γ1,n)
pnp(γ2,n)

η(γ2,n)
.

Proposition 3.2. The map −cTR gives a canonical isomorphism between the
groups H3

φ,γ1,γ2
(BK/AK ⊗AK

Ω(K)) and Qp/Zp.

Remark. The factor c may seem bizarre, but we will see its use in Section 4.

Proof. It is sufficient to show that TRK,j gives an isomorphism for all j. Since
we can expand any element in Ωj(K) as a power series in T with coefficients in
AF mod pj , it is sufficient to show that for all k 6= 0, γ2 − 1 is surjective on
T kAF . The proposition follows from Herr’s proof of the Tate isomorphism in the
1-dimensional case (c.f. Theorem 5.2 in [6]). Expanding the power series shows
that (γ2 − 1)(T k) = T kfk(π), where fk(π) ∈ A×

F , which finishes the proof.

Combining this result with Proposition 2.11 and the main result of Sec-
tion 2.7 proves Theorem 1.2.

3.2 Relation to Pontryagin duality

Let V be a torsion Zp-representation of GK , and let M = D(V ). Recall that

Ṽ = HomZp
(V, µp∞).

Lemma 3.3. The (φ,G)-module DK(Ṽ ) is isomorphic to HomAK
(M,BK/AK⊗AK

Ω(K)).

Proof. It follows from the equivalence of categories (Theorem 2.9) that DK(Ṽ )
is isomorphic to HomAK

(M,D(µ⊗n
p∞)). It is now sufficient to observe that

DK(µ⊗n
p∞) = lim

−→
DK(µ⊗n

pj ) ∼= lim
−→

Ω(K)

pjΩ(K)
∼= BK/AK ⊗AK

Ω(K).

Theorem 1.1 is therefore a consequence of Lemma 2.8 and Theorem 2.17.

4 The higher Hilbert pairing

4.1 Construction of the pairing

Let F be the maximal algebraic extension of Qp contained in K. Throughout
this section, we assume that the extension of F over Qp is unramified. As in
the previous sections, let ǫ = (1, ξp, ξp2 , . . . ) ∈ EK and π = [ǫ] − 1, where [ǫ] is

the Teichmüller representative of ǫ. Also, let T = (X,X
1
p , X

1
p2 , . . . ) ∈ EK , and

let T = [T] ∈ AK be its Teichmüller representative.

Fix n ≥ 1. Let πn = φ−n(π) = [(ξpn , ξpn+1 . . . )] − 1 and Tn = φ−n(T ) =

[(X
1

pn , X
1

pn+1 , . . . )].
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Proposition 4.1. Let n ≥ 1. Then for all i ≥ 0, taking cup product with ξpn

gives an isomorphism of Gal(Kn/K)-modules

∪ξpn : Hi(GKn
,Z/pnZ)→ Hi(GKn

, µpn).

Proof. Let D = D(Z/pnZ) ∼= AKn
mod pn. Let Γ

(n)
1 = Gal(K(µp∞ , X

1
pn )/

Kn) and Γ
(n)
2 = Gal(K∞/K(µp∞ , X

1
pn )). Let γ1,n and γ2,n be topological

generators of Γ
(n)
1 and Γ

(n)
2 , respectively. Recall that the GKn

-cohomology of
Z/pnZ is given by the complex

Cφ,γ1,n,γ2,n(D) : 0 ✲ D
f1
✲ D⊕3 f2

✲ D⊕3 f3
✲ D ✲ 0,

where

f1 : x→[(φ− 1)x, (γ1,n − 1)x, (γ2,n − 1)x],

f2 : (x, y, z)→[(φ− 1)y − (γ1,n − 1)x,

(φ− 1)z − (γ2,n − 1)x,

(γ2,n − 1)y − (γ1,n
γ

1
a

2,n − 1

γ2,n − 1
− 1)z],

f3 : (x, y, z)→(γ2,n − 1)x− (γ1,n
γ

1
a

2,n − 1

γ2,n − 1
− 1)y − (φ− 1)z.

Since µpn =< ξpn >, it is easy to see from this description of the cohomology
groups that cup product (which is the same as multiplication) with ξpn gives a
Gal(Kn/K)-equivariant isomorphims Hi(GKn

,Z/pnZ) → Hi(GKn
, ξpn) for all

0 ≤ i ≤ 3.

By Theorem 1.1, we have a perfect pairing

H2(GKn
, µ⊗2
pn )×H

1(GKn
,Z/pnZ)→ Qp/Zp.

Taking cup product with ξpn and using Proposition 4.1 gives a perfect pairing

H2(GKn
, µ⊗2
pn )×H

1(GKn
, µpn)→ µpn . (15)

Definition. The Hilbert pairing

K2(Kn)×K1(Kn)→ µpn .

is the composition of (15) with the Galois symbol map

δ2 × δ : K2(Kn)×K1(Kn)→ H2(GKn
, µ⊗2
pn )×H

1(GKn
, µpn)

Note that we have a natural (surjective) multiplication map K1(Kn) ×
K1(Kn)→ K2(Kn). We therefore interprete the Hilbert pairing as a pairing

Vn : K1(Kn)×K1(Kn)×K1(Kn)→ µpn . (16)
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From the definition of the Galois symbol it is clear that Vn factors through

Vn :
(
K1(Kn)/p

n
)×3
→ µpn . (17)

Since the pairing (15) is perfect, the pairing Vn in (17) is non-degenerate.

Lemma 4.2. We have a commutative diagram

K1(Kn)×K1(Kn)
δ × δ

✲ H1(Kn, µpn)×H
1(Kn, µpn)

K2(Kn)
❄ δ2

✲ H2(Kn, µpn)

∪

❄

4.2 The Kummer map

Let F by the maximal extension ofQp contained inK, and letR = OF [[Tn]][T
−1
n ].

Note that we can identifiy A+
Kn

with the abstract power series ring R[[Y ]] (where
Y = πn, but we forget this for the time being). Let m = (p, Y ) be the maximal
ideal of A+

Kn
, and let A = 1 +m. For F (Y ) ∈ A, define

l(F (Y )) = (1−
φ

p
) logF (Y ).

To shorten notation, let f(Y ) = l(F (Y )). Define the differential operators
D1 = (Y + 1) d

dY and D2 = Tn
d
dTn

. Fix n ≥ 1, and let Sn = R[[πn]].

Note. (1) The action of γ2 on A+
Kn

is trivial mod π.
(2) The element ǫ is a generator of Zp(1), so ǫ mod pn is a generator of µpn

and can be identified with ξpn .

Let ǫ(n) = ǫ mod pn and τ = 1
π −

1
2 .

Proposition 4.3. Let F (Y ) ∈ A. Then there exist unique aγ1,n(πn), bγ2,n(πn) ∈
Sn such that

(φ− 1)(aγ1,n(πn)⊗ ǫ
(n)) = (γ1,n − 1)(f(πn)τ ⊗ ǫ

(n)),

(φ − 1)(bγ2,n(πn)⊗ ǫ
(n)) = (γ2,n − 1)(f(πn)τ ⊗ ǫ

(n)).

Moreover, we have

aγ1,n(πn) =
1− χ(γ1,n)

pn
D1 logF (πn) mod π,

bγ2,n(πn) = ηn(γ2,n)D2 logF (πn) mod π.

Proof. Arguing as in the proof of Lemma 2.1.3 in [2] we have

(γ1,n − 1)(f(πn)τ ⊗ ǫ
(n)) = −

1− χ(γ1,n)

pn
D1 log f(πn)⊗ ǫ

(n) mod π.
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Using the identity D1φ = pφD1, we can write

(γ1,n − 1)(f(πn)τ ⊗ ǫ
(n)) = (φ− 1)(

1− χ(γ1,n)

pn
D1 logF (πn)⊗ ǫ

(n)) mod π.

Let ãγ1,n(πn) =
1−χ(γ1,n)

pn D1 logF (πn), so

(φ− 1)(ãγ1,n(πn)⊗ ǫ
(n)) = (γ1,n − 1)(f(πn)τ ⊗ ǫ

(n)).

Since φ−1 is invertible on πSn, we deduce that there exists a unique aγ1,n(πn) ∈

Sn such that aγ1,n(πn) = ãγ1,n(πn) mod π and (φ − 1)(aγ1,n(πn) ⊗ ǫ(n)) =

(γ1,n − 1)(f(πn)τ ⊗ ǫ
(n)).

The existence of bγ2,n(πn) follows from similar arguments:- Let ηn(γ2,n) =
η(γ2,n)
pn . Note that

γ2,n(Tn) = (1 + π)ηn(γ2,n)Tn, (18)

so
γ2,n(Tn) = Tn + ηn(γ2,n)Tnπ mod π2,

and hence

γ2,nf(πn) = f(πn) + ηn(γ2,n)D2f(πn)π mod π2,

(γ2,n − 1)(f(πn)τ ⊗ ǫ
(n)) = ηn(γ2,n)D2f(πn)⊗ ǫ

(n) mod π.

By assumption we have

f(πn) = (1−
φ

p
) logF (πn).

Since D2φ = pφD2, it follows that

(γ2,n − 1)f(πn)τ ⊗ ǫ
(n) = (1− φ)ηn(γ2,n)D2 logF (πn)⊗ ǫ

(n) mod π.

Let b̃γ2,n(πn) = ηn(γ2,n)D2 logF (πn) ⊗ ǫ
(n). It follows that (1 − φ)b̃γ2,n(πn) =

(γ2,n − 1)f(πn)τ ⊗ ǫ
(n). Since φ − 1 is invertible on πSn, there exists a unique

bγ2,n(πn) ∈ Sn such that bγ2,n = b̃γ2,n mod π and

(φ− 1)bγ2,n(πn)⊗ ǫ
(n) = (γ2,n − 1)(f(πn)τ ⊗ ǫ

(n)).

Definition. Let ιn : A → H1
φ,γ1,n,γ2,n

(Cn) be the homomorphism

F (X)→ [f(πn)τ ⊗ ǫ
(n), aγ1,n(πn)⊗ ǫ

(n), bγ2,n ⊗ ǫ
(n)]. (19)

Lemma 4.4. The map ιn is well-defined.
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Proof. Explicit calculation shows that

(γ2,n − 1)(aγ1,n(πn)⊗ ǫ
(n)) = (γ1,n

γ
1
N

2 − 1

γ2,n − 1
− 1)(bγ2,n(πn)⊗ ǫ

(n)). (20)

It follows that ιn is really a map into H1
γ1,n,γ2,n,φ

.

Proposition 4.5. Let δn : K×
n → H1(GKn

,Zp(1)) be the Kummer map. We
have a commutative diagram

A
ιn
✲ H1

φ,γ1,n,γ2,n(Cn)

K×
n

hn

❄
δn
✲ H1(GKn

,Zp(1))

∼=

❄

To prove the proposition, we follow the strategy of Benois in the proof of
Proposition 2.1.5 in [2]. We split the proof of the proposition into a sequence of
lemmas.

Note that the action of GK on AK factors through GK = Gal(K∞/K).
Recall that GK ∼= Γ1 ⋊Γ2, where Γ1 is congruent (via the cyclotomic character
χK) to an open subgroup of Z×

p and Γ2 is congruent (via a character ηK) to Zp.

Lemma 4.6. Let [x, y, z] ∈ H1
γ1,n,γ2,n,φ

(Cn), and let u ∈ A be a solution of

(φ − 1)u = x. Then h1([x, y, z]) is given by the cocycle σ → c(σ) which is
defined as follows:- Let σ̃ be the image of σ in GK under the projection map.
Let k = χ(σ̃) and l = η(σ̃), so σ̃ = γk1,nγ

l
2,n. Then

c(σ) = (σ − 1)u−
γk1,n − 1

γ1,n − 1
y − γk1,n

γl2,n − 1

γ2,n − 1
z.

Proof. Let Nx,y,z = D(µpn) ⊕ AKn
e, where the action of φ, γ1,n and γ2,n on e

is given by φ(e) = e + x, γ1,n(e) = e + y, γ2,n(e) = e + z. Then the long exact
sequence associated to the short exact sequence of GKn

-modules

0→ D(µpn)→ Nx,y,z → AKn
→ 0 (21)

gives the connecting homomorhism δ : H0(AKn
) → H1

γ1,n,γ2,n,φ
(Cn), and an

easy diagram search shows that δ(1) = [x, y, z]. Applying (φ − 1) to (21) gives
a short exact sequence

0→ µpn → Tx,y,z → Zp → 0

and a connecting homomorphism δGal : Zp → H1(GK , µpn). We have u + e ∈
Nx,y,z ⊗AKn

A and (φ − 1)(u + e) = 0, so u + e ∈ Tx,y,z. So δGal(1) can be
represented by the cocycle

σ →σ(u+ e)− (u− e)

=(σ − 1)u+ (σ − 1)e.
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Now GK acts on AKn
via the quotient GKn

. Since e ∈ AKn
, we have

(σ̃ − 1)e = (γk1,nγ
l
2,n − 1)e

= γk1,n(γ
l
2,n − 1)e+ (γk1,n − 1)e

= γk1,n
γl2,n − 1

γ2,n − 1
z +

γk1,n − 1

γ1,n − 1
y

The lemma now follows from the commutativity of the diagram

H0(AKn
)

δ
✲ H1

γ1,n,γ2,n,φ(Cn)

Zp

h0

❄ δGal
✲ H1(GKn

, µpn)

h1

❄

In particular, h1(ιn(F )) is given by

σ →(σ − 1)u−
γ
χ(σ)
1,n − 1

γ1,n − 1
aγ1,n(πn)⊗ ǫ

(n)

− γ
χ(σ)
1,n

γ
η(σ)
2,n − 1

γ2,n − 1
bγ2,n(πn)⊗ ǫ

(n),

where (1 − φ)u = f(πn)τ . Since γ1,n(πn) = πn mod π and γ2,n(Tn) = Tn
mod π, we have

γ
χ(σ)
1,n − 1

γ1,n − 1
aγ1,n(πn)⊗ ǫ

(n) ∼= χ(σ)
1 − χ(σ)

pn
D1 logF (πn)⊗ ǫ

(n) mod π,

γ
χ(σ)
1,n

γ
η(σ)
2,n − 1

γ2,n − 1
bγ2,n(πn)⊗ ǫ

(n) ∼= η(σ)ηn(γ2,n)D2 logF (πn) mod π.

These congruences imply that

c(σ) ∼= (χ(σ)σ−1)u+
1− χ(σ)

pn
D1 logF (πn)+

η(σ)

χ(σ)
ηn(γ2,n)D2 logF (πn) mod π.

We now interprete c(σ) in terms of Acris. Denote by I the ideal of Acris generated

by π2 and πp−1

p .

Lemma 4.7. There exists a unique x ∈ Fil1 Acris such that x = u(π − π2

2 )
mod I and

(1 −
φ

p
)x = f(πn).
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Proof. Imitate the proof of Lemma 2.1.6.2 in [2].

Define the element

µ(σ) = (σ − 1)x− log(
σ(F (πn))

F (πn)
),

which belongs to 1 + Fil1 Acris for all σ ∈ GKn
, and it is easy to check that the

map µ : GKn
→ Fil1 Acris is a cocycle.

Lemma 4.8. We have µ(σ) = c(σ).

Proof. We have (1− φ
p )µ(σ) = 0, so µ(σ) has the form a(σ)t for some a(σ) ∈ Qp.

On the other hand, from the congruences

σ̃F (πn) =F (πn) + χ(σ)
1 − χ(σ)

pn
D1 logF (πn)π

+ η(σ)ηn(γ2,n)D2 logF (πn)π mod π2

and (σ − 1)x = (χ(σ)σ − 1)uπ mod I it follows that

µ(σ) =(χ(σ)σ − 1)uπ +
1− χ(σ)

pn
D1 logF (πn)π

+
η(σ)

χ(σ)
ηn(γ2,n)D2 logF (πn)π mod I

=c(σ)T mod I,

which implies that µ(σ) = tc(σ).

Corollary 4.9. One has

[ǫ]c(σ) = exp(µ(σ)) =
σ exp(x)

exp(x)

F (πn)

σF (πn)
.

Proof of Proposition 4.5. Let y = exp(x). Then the equation (1− φ
p )x = f(πn)

can be written of the form

yp

φ(y)
= exp(pf(πn)).

Consider the short exact sequence

1→ [ǫ]Zp → 1 +W 1(R)→ν 1 + pW (R)→ 1,

where ν(a) = ap

φ(a) . It shows that the inclusion W (R) ⊂ Acris gives a 1 − 1

correspondence between solutions Y of Y p

φ(Y ) = exp(pf(πn)) and solutions X =

log Y of (1 − φ
p )X = f(πn). Hence y ∈ 1 +W 1(R), and it is easy to see by

induction that
yp

n

φn(y)
=

F (πn)
pn

φn(F (πn))
.
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Let z = φ−n(yF (πn)
−1). Applying the map θ : W (R) → OCp

to both sides of
this equation, we obtain that

θ(z)p
n

= hn(F )
−1.

Hence the connecting map δn sends hn(F ) to the class of the cocycle σ →
θ(z/σ(z)). On the other hand, one has

θ(
z

σ(z)
) = θφ−n(

yσF (πn)

σ(y)F (πn)
) = θφ−n([ǫ]−c(σ)) = ξ

−c(σ)
pn ,

which finishes the proof.

4.3 Vostokov’s formulae

In this section we reprove Vostokov’s formulae for (16). More precisely, we prove
the following result:- For 1 ≤ i ≤ 3, let αi ∈ O

×
K such that αi ∼= 1 mod π̄n, and

let Fi(X) ∈ A+
K such that hn(Fi) = αi. Let fi(X) = (1 − φ

p ) logF (X).

Theorem 4.10. We have

Vn(α1, α2, α3) = µ
TrResπn,T (Φ)
pn , (22)

where Φ is given by the formula

Φ =−
1

π
(
1

p2
f1(πn)d logF

φ
2 (πn) ∧ d logF

φ
3 (πn)

−
1

p
f2(πn)d logF1(πn) ∧ d logF

φ
3 (πn)

+ f3(πn)d logF1(πn) ∧ d logF2(πn)).

We will prove the theorem in the rest of this section.

Lemma 4.11. Let [x, y, z], [x′, y′, z′] ∈ H1
φ,γ1,n,γ2,n

(Cn). If [x, y, z] represents

the cohomology class of [x, y, z] ∪ [x′, y′, z′], then

x = y ⊗ γ1,nx
′ − x⊗ φy′,

y = z ⊗ γ2,nx
′ − x⊗ φz′.

Moreover, if z, z′ ∈ Sn, then

z = x⊗ γ2,ny
′ − y ⊗ γ1,nx

′ mod π.

Proof. Since Γ
(n)
1 (resp. Γ

(n)
2 ) is isomorphic to an open subgroup of Z×

p (resp.
Zp), the formulae for x and y follow from [6], using that the cup product is
compatible with restriction. The formula for z follows from the observation that
γ1 and γ2 commute on Sn mod π.

For 1 ≤ i ≤ 3, let ιn(Fi(X)) = [fi(πn)τ ⊗ ǫ, a
(i)
γ1,n(πn)⊗ ǫ, b

(i)
γ2,n ⊗ ǫ].
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Corollary 4.12. If [x, y, z] = ιn(F1(X)) ∪ ιn(F2(X)), then

x =
1− χ(γ1,n)

pn
(D1 logF1(πn)⊗ f2(πn)

− p−1f1(πn)⊗D1 logF
φ
2 (πn))⊗ τ ⊗ ǫ

2 mod Sn,

y =ηn(γ2,n)(D2 logF1(πn)⊗ f2(πn)

− p−1f1(πn)⊗D2 logF
φ
2 (πn))⊗ τ ⊗ ǫ

2 mod Sn,

z =
1− χ(γ1,n)

pn
ηn(γ2,n)(D1 logF2(πn)D2 logF1(πn)

−D2 logF1(πn)D1 logF2(πn)) ⊗ ǫ
2 mod π

Proof. Observe that

γ1,n(fi(πn)τ) = χ−1(γ1,n)fi(πn)τ mod Sn,

γ2,n(fi(πn)τ) = fi(πn)τ mod Sn.

The lemma now follows from the previous lemma and Proposition 4.3.

Proof of Theorem 1.3. We prove the Theorem using the formulae (6). Let

Hα1,α2,α3 = ιn(F3(X)) ∪ [x, y, z],

where (to simplify the notation) we write

[x, y, z] = [f3(πn)τ, a
(3)
γ1,n(πn), b

(3)
γ2,n ].

Recall that γ1,n and γ2,n commute on Sn mod π. It follows that the formu-
lae (6) simplify to

ιn(F3(X)) ∪ [x, y, z] = z⊗ γ2γ1(x) − y⊗ γ2φM (y) + x⊗ γ1φM (z) mod Sn.

Using the formulae in Corollary 4.12 it follows that

Hα1,α2,α3 = γ1φM (b(3)γ2,n(πn))(
1 − χ(γ1,n)

pn
(D1 logF1(πn)⊗ f2(πn)

− p−1f1(πn)⊗D1 logF
φ
2 (πn))⊗ τ ⊗ (ǫ(n))2)

−γ2φM (a(3)γ1,n(πn))(ηn(γ2,n)(D2 logF1(πn)⊗ f2(πn)

− p−1f1(πn)⊗D2 logF
φ
2 (πn))⊗ τ ⊗ (ǫ(n))2)

+γ2γ1(f3(πn)τ)(
1 − χ(γ1,n)

pn
ηn(γ2,n)(D1 logF2(πn)D2 logF1(πn)

−D2 logF1(πn)D1 logF2(πn))⊗ (ǫ(n))2) mod Sn

As before, we have

γ1,n(fi(πn)τ) = χ−1(γ1,n)fi(πn)τ mod Sn,

γ2,n(fi(πn)τ) = fi(πn)τ mod Sn,
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so (rearranging the terms) the above formula simplifies to

Hα1,α2,α3 =
1− χ(γ1,n)

pn
ηn(γ2,n)π

−1×

−p−2f1(πn)(D1 logF
φ
2 (πn)D2 logF

φ
3 (πn)

+D2 logF
φ
2 (πn)D1 logF

φ
3 (πn)))

+p−1f2(πn)(D1 logF1(πn)D2 logF
φ
3 (πn)

+D2 logF1(πn)D1 logF
φ
3 (πn))

−f3(πn)(D1 logF2(πn)D2 logF1(πn)

+D2 logF1(πn)D1 logF2(πn)) ⊗ (ǫ(n))2 mod Sn.

Recall that D1 = (πn + 1) d
dπn

and D2 = Tn
d
dTn

. It follows that the image in
Ω(K) of the above expression (which we also denote by Hα1,α2α3) with respect
to the map in Lemma 2.10 is

1− χ(γ1,n)

pn
ηn(γ2,n)π

−1×(−p−2f1(πn)d logF
φ
2 (πn) ∧ d logF

φ
3 (πn)

+ p−1f2(πn)d logF1(πn) ∧ d logF
φ
3 (πn)

− f3(πn)d logF2(πn) ∧ d logF1(πn)) mod Sn.

Taking into account that p−n logχ(γ1,n) = p−n(χ(γ1,n)−1) mod pn, we obtain
that

−cTR(Hα1,α2,α3) =− TrF/Qp
Resπn,T π

−1(p−2f1(πn)d logF
φ
2 (πn) ∧ d logF

φ
3 (πn)

− p−1f2(πn)d logF1(πn) ∧ d logF
φ
3 (πn)

+ f3(πn)d logF2(πn) ∧ d logF1(πn)),

which finishes the proof.
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