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Abstract

Following the strategy in [6], we prove a Tate duality for higher dimen-
sional local fields of mixed characteristic (0,p), p # 2. The main tool is
the theory of higher fields of norms as developed in [I] and [7]. Assuming
that p is not ramified in the basefield, we then use this construction to
define the higher Hilbert pairing. In particular, we show that the Hilbert
pairing is non-degenerate, and we re-discover the formulae of Briickner
and Vostokov.
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1 Introduction

1.1 Statement of the main result

Let p be an odd prime, and let K be a d-dimensional local field of mixed
characteristic (0,p) Denote by Gx the absolute Galois group Gal(K/K). For
n > 1, denote by p,» the group of p"th roots of unity.

This paper consists of two parts. In the first part, we prove a higher Tate
duality for the Gx-module fi,n:-

Theorem 1.1. Let K be a d-dimensional local field of mixed characteristic
(0,p), and denote by G its absolute Galois group. Let F be the maximal al-
gebraic extension of Q, contained in K, and assume that Ok /OF is formally
smooth. Then for i € {0,...,d+ 1} and all n € N we have a perfect pairing

H'(Gxk, u?j) x H™ (G, N?ﬂdii) = Qp/Zyp.

Remark. The above pairing should certainly be the same as the cup product
pairings, but this is not that easy to show.

To prove Theorem [Tl we follow the strategy of Herr in [6] and express the
Galois cohomology groups in terms of the (¢, G)-module of p,n. We will also
prove a higher dimensional Tate isomorphim:-

Theorem 1.2. Let K be a d-dimensional local field of mixed characteristic
(0,p). Let F be the mazimal algebraic extension of Q, contained in K, and
assume that Ok /Op is formally smooth. Then there is a canonical isomorphism

H (G, pu$d) = Q).

In the second part of the paper, we assume that p is prime in K, and we use
Theorem [I.1] to define a pairing

Ka(Kn) % K1(Kn) — piyn.

Composing it with the natural multiplication map K;(K,)*? — K4(K,), we
obtain a pairing Vj, : K (K,)* ¢+ — ppn which factors through

W, o (K1 (Kn)/p") < 5 .

In Section [] we give a an explicit description of U, :- For 1 < i < d + 1, let
a; € Of such that a; 2 1 mod 7, and let F;(X) € Al such that h,(F}) = a.
Let fi(X) = (1 - £)log F(X).

Theorem 1.3. The pairing B, is non-degenerate. Moreover, we have

TrResn,, .7y ,..., 7, (®)
‘Bn(al,...,adJrl) = Hpn m ! ’



where ® is given by the formula

®— 1 d+1 (_1)d+1—i
- T opdrl—i
g i=1 p ’

fi(ﬂn)dlogFl(Fn) VANREIRWAN legFi_l(Wn)

Adlog Ff, (mn) A -+ Adlog Fy, ().

Comparing these formulae with the explicit descriptions of the higher Hilber
pairing of Briickner and Vostokov (c.f. [3] and [§]), we get the following result:-

Corollary 1.4. The pairing U, is the higher Hilbert pairing.
For proving Theorem [[.3] we follow the strategy of Benois in [2].

Remarks. (1) To keep the notation as simple as possible, we will prove the
above results for local fields of dimension 2. However, the proofs generalize
without problems to local fields of arbitrarily high dimension.

(2) Theorem [Tl can certainly be generalized to an arbitrary Z,- of Gx. We will
deal with this in a different paper.

1.2 Notation

% For a 2-dimensional local field K with ring of integers Ok, let kx = F,((T))
be the residue field.

x For a (¢, G)-module M, we sometimes denote the action of the Frobenius
operator on M by ¢pr.

* For a 2-dimensional local field K, let Gx = Gal(K /K).
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2 Higher (¢, G)-modules

2.1 Setup

Let K be a 2-dimensional local field of mixed characteristic (0, p), and let F be
the maximal algebraic extension of @@, contained in K. Let kr be the residue
field of F' and let wr be a uniformizer of F. Assume that Ok /O is formally
smooth, i.e. wp is a uniformizer of K. Let X be a unit in K whose reduction
X is a p-basis for the residue field kx of K, so kx = ky((X)) for some finite
extension k;, of k. Fix an algebraic closure K of K. Let (&;);>0 be compatible
system of primitive p‘th roots of unity, and let (X;);>0 be a compatible system
of pith roots of X. Denote by My the group of pth roots of unity.

Let K; = K(ppi, X;) and Koo = |J K. Also, let F; = F ().



Lemma 2.1. The extension K, is a 2-dimensional p-adic Lie extension of K.
More precisely, we have Gal(K/K) =Ty x 'y, where

Iy = Gal(Koo /K (pp)) = Zy.
and T' = Gal(K (tp~)/K) is isomorphic (via the cyclotomic character x) to an
open subgroup of Z,; .

Let 1 and 2 be topological generators of I'y and I'e, respectively. Let
a € Zy such that

Y1Y2 = 1271 (1)
Note. We have a = x(v1) € Z,’. It follows that in particular we have

1
Y17Y2 = Y271- (2)

Let Er be the field of norms of the tower (F});>0, and let kx be its residue
field. Let 7 be a uniformizer of Ep, so Er = kx((7r)). Let Ex be the field of
norms of the tower (K;). Let € = (1,&1,&2,...) and T = (X;);>1 € Ek. Define
T=¢c— 1. Let k = kykr.

Lemma 2.2. The field Ex is given by
Ex 2 kr((7r)) @k ks((T))
=E(9)((7F))-

Proof. See the section on Kummer towers in [7]. O

2.2 Lift to characteristic 0

Let Ar be a lift of Er to characteristic 0, so Ap = W (kz)[[rr]][r;']", where
7w is a lift of T7p. Let ¢ be a lift to Ap of the Frobenius operator commuting
with the action of I'y. Let T' = [%]. Define

Ag = WE(TNT Y [[wr]]rz]".
Then A is a lift of Ex to characteristic 0. Let Bx = AK[%] be its field of
fractions. Note that Ap C Ag. Define a lift of Frobenius to Ax by ¢(T) = TP.
Note that ¢ commutes with the action of G on Ag. Define N € Z, by
Y2(TF) = 7F,
Yo(T) = (7 + DHNT.
One can show that N € Z) since X is a p-basis of kx.

Note that A is a free finitely generated module over ¢(Ax) of degree p?.
It follows that we can define a left inverse ¥ of ¢ by the formula

d((x)) = ]%m,( ot ().



Proposition 2.3. Let E be an algebraic closure of Ex. Then we have an
isomorphism of Galois groups

Gal(E/Ex) = Gal(K/K).
Proof. See [7]. O

Let A be a lift of E containing Ax. Then the actions of ¢ and ¢ can be
extended uniquely to A (c.f. [7]).

2.3 The ring A

Let Cx be the p-adic completion of K, and let Oc, be its ring of integers.
Let E be the set of sequence z = (2(9,2(),...) of elements in O¢,, satisfying
(24P = () Then E has a natural structure as a ring of charactristic p. For
n>1,let e, = (¢, ¢t ... be the p™the root of € in E. Let Ajye = W (E)
be the ring of Witt vectors of fE, ¢ the Froenius of Ay, and if = € I~E, then
denote by [z] its Teichmiiller representative in Aj,¢. Then the homomorphism

0 :Ainf — O(CK
an[xn] N anxslo)

is surjective and its kernel is a principal ideal with generator w = [[:1]]_711' Let
Bins = Ains(p~t). Note that 6 extends to a homomorphism Bi,s — Cg. De-

fine BXQ = @B;;f /(ker 8)™, and extend 6 by continutiy to a homomorphism

deg — C,. This makes deg into a discrete valuation ring with maximal ideal
ker(¢) and residue field Cx. The action of Gk on B, extends by continuity to
a continuous action on BY +4g.

Let A be the subring of (IB%(YR)Jr consisting of the elements of the form
EZOZO an‘;’)—!, where a,, is a sequence of elements in A;,¢ tending to 0 as n — +o0.

2.4 Differentials, residues and duality

Let Q}&K be the module of continuous Z,-linear 1-differentials of Ax. Note that
we have an isomorphism of A g-modules

Q}&K > Ardrpr @ A dT.

Let Qj _ be the module of continuous Zy-linear 1-differentials of Ag, and let
2
0F =N\,
Lemma 2.4. We have an isomorphism of A x-modules

QiK = Agdrp NdT.



Corollary 2.5. If K’ is a finite separable extension of K, then the natural map
Ay Qax QiK — QXK,
is an isomorphism.

Proof. Clear. O

Corollary 2.6. If K' = KQp F' for some finite unramified extension F' of F,
then the natural map

W(kF/) ®W(kp) QiK — QXK/
is a W (kp)-linear isomorphism.

It follows from Lemma 2.4 that if w € QF , then there exist a; ; € Z,, such
that w = (3 a; ; T'm})drp A dT.
Definition. Define the residue map
Res: QF, — Z,,
Res(w) =a0-1,—-1-

Since ¢ is a lift of the Frobenius operator, we have ¢(mp) = urh for some
u € A satisfying « = 1 mod p.

Lemma 2.7. For any A € Ak, we have

Res(¢(A\)do(mr) A dd(T)) = p*d(Res(Adrp A dT)).

Proof. Tt is sufficient to prove the formula for A\ = —t=. Write u = 1 + pa for

TrT "
some a € Ag. We have ¢(T') = TP, so "

2
_p P
O(Ndo(mr) A d§(T) = ——dmp NT + —du N dT.

But —=dundT =Ty d(ﬂcﬂ)/\dT. It is easy to see that the coefficient
of Tt in 3 d(ﬂar) is 0, which finishes the proof. O
Definition. Let M be a torsion (¢, G)-module. Define

M = Homy, (M, Bg/Ax ®a, Q).
Lemma 2.8. The residue map induces an isomorphism

TR: M — MV,



Proof. We imitate the proof of Lemma 1.3 in [6]. By continuity, the residue
gives a homomorphism from M to M. Now QXK is a free A g-module of rank
1. The ring Ak is principal and the Ax-module Bx /Ax ®a, QXK is divisible
and hence injective, and the functor which associates M to M is exact. Also,
the functor which to M associates MV is exact, so by the snake lemma we can
assume without loss of generality that M is an A g-module of length 1 and hence
a 1-dimensional vector space over Ei. By choosing a basis, we can therefore
assume that M = Eg. Note that we can identify Ey, with Homgz, (Ex,F,) and

Ex with Homg, (Ex, QF . /p ). We need to show that the natural map
Ex = Homg, (Ex, 02, /pQ2 ) — Homg, (Ex,F,)

induced by the residue is bijective. Now if f € IE;( is non-zero, then since
the image of f is an Egx-vector space of dimension 1 and the residue map is
surjective, it is clear that TR(f) is non-zero. Now let a € Homgz, (Ex,F,). For
all m,n € Z, let ayp, = a(T™7%). Since a is continuous, there exists N € N
such that oy, , = 0 for all n > N and all m € Z. Define

w=(Y_ Y o p T )dT Adr
n>—N meZ

Then for all m,n € Z, the class mod p of Res(T™7"w) iS - It follows that
if we define f € Ex by f(1) =w mod p, then TR(f) = a. O

2.5 The equivalence of categories

Denote by Gr the absolute Galois group Gal(K/K).

Definition. A Z,-representation of G is a Zy-module V of finite type equipped
with a continuous linear action of G . If V is annihilated by a power of p, then
it is called a p-torsion module.

Theorem 2.9. The functor V. — D(V) = (V @z, A)"% gives an equivalence of
categories

(Z,-representations of Gi) — (étale (¢, G)-modules over Ak ),

and an essential inverse is given by D — (A @4, D)?=1.

Proof. See [1] or [7]. O

2.6 The module Z,(2)

For an element a € Eg, denote by [a] its Teichmiiller representative. Recall
that if K contains a primitive pth root of unity, then [¢] = 7 + 1 is an element
of Ag. To simplify notation, let Q(K) = QF .



Lemma 2.10. Let K' = K(up), and define an A-linear map

PK’ : A®ZP Zp(l) — A@AK, Q(K’),
A®e? = A@dlogle] AdlogT.

Then pr+ is an isomorphism of A-modules which does not depend on the choice
of the generator € of Zy(1).

Proof. Imitate the proof of Lemma 3.6 in [G]. O

Note that we can give Q(K) the structure of a (¢, G)-module by defining

boae (ady 1 d=) = 5 9(a)dd() N 9(2)
g(xdy A dz) = x(g)g(x)dg(y) A dg(z)
for g € G.

Proposition 2.11. With this stucture as a (¢, G)-module, Q(K) is isomorphic
to D(Z,(2)).

Proof. Let K’ = K (up). By Corollary 5] the natural map QF = — QXK/ is in-
jective. Composing it with the natural Gal(K /K )-equivariant injection QXK, —
A®y ., Qf\\w gives an A g-linear G -equivariant map QXK — (Ag QA QXK/ )HK.
Explicit calculation shows that this map is also surjective. Composing it with
the restriction of p;(} to the points fixed by Hy gives an isomorphism of A -
modules between QF and Dg(Zy(2)) which commutes with the action of Gg.
It is easy to see that it also commutes with the action of ¢, which finishes the
proof. O

2.7 Calculation of the Galois cohomology

Let V be a Z,-representation of Gr, and denote by D the corresponding (¢, G)-
module Dg (V). Define the following complex:-
f2

f1 f3

Copyrnn(D) : 0 D D®3 D®3 D — 0, (3)
where the maps f; are defined as follows:-
fiiz =[(¢— 1Dz, (1 — Dz, (42 — 1)z],

foi(@,y,2) =0 =y — (n — 1)z,
P
2

(2 =Dy —(n o— 1)z],
fu: 9.9) 202 = Do = n E—f ~ 1y - (0~ 1)



Similarly, define the complex

Cppa(D): 0 —= D Lo D3 £, p¥3 X, p___, (4)

where the maps g; are defined as follows:-

g1 & —=[(¢ = D, (y1 — D)z, (v2 — 1)a],
92 (7,y,2) =[(¥ = 1)y — (1 — D,
(Y =1z~ (92 — D,
7~ 1
(v2=1y—(n o 1)z],
g3+ (5,9,2) =3 — Do — (n Z=L 1)y — (p - 1)

Y2 —1

Definition. Denote by H,, . . (D) (resp. H, . . (D)) the cohomology groups
of the complex C¢ 4, .+, (D) (resp. Cy vy 70 (D)).

Proposition 2.12. Let V = Z,(1) or upn, and let D be its (¢, G)-module.
Then for all 0 < i < 3, we have isomorphisms
a (gK’ V) = H}i’ﬂlﬁz (D) = lel’ﬂlﬁz (D)

Remark. This result can certainly also be shown to be true for a general Z,-
representation V' of Gi. However, in the general case the argument is technically
much more complicated, and since our main interest is the construction of the
Hilbert pairing, we restrict ourselves to the case above. We will prove the general
case in [9].

Proof. Scholl [7] and Andreatta [I] have shown that we have isomorphisms
H'(Gr,V) = Hj_, (D). Tt is therefore sufficient to explicitely give isomor-
phisms ¢; : Hy, (D)= Hj_ (D).

1 = 3:- Let x € D. Since 9 is surjective, we can choose u € D such that
¥(u) = x. Define t3(x) = u. This is well-defined:- If u’ also satisfies ¢ (u') = z,
then a = u — v € D¥=°. Write u = Y, fi(mr)T". Then in particular
Y(fo(m)) = 0. In Proposition 1.5.1 in [4], it is shown that 71 — 1 is invertible
on Dp(V)¥=0. Let hg = (y1 — 1) (fo). For j # 0, let aj = (72;# € A}
Let v=7>, a; fj(m)T9. Then u = (v1 — 1)ho + (72 — 1)v and hence is zero in
3 (D).

$D V1,72
i = 2:- Let [z,y, 2] € D satisfy (72 — 1)z — (y1 — 1)y — (¥ — 1)z = 0. Denote
v2([@,y, 2]) by [u,v,w]. Write (¢ — 1)w =, a;fi(m)T". Note that fo(nr) €
D(Z,(1))¥=%, so by Proposition 1.5.1 in [4], there exists hg € Dr(Z,(1)) such
that (y1 — 1)ho = fo. Also, when ¢ # 0, then «; = % is invertible in Ap.
Define u =z + ho(7), v=y+ >, fj(TF)Oz;lTj and w = z.



i = 1:- Let y,z € D satisfy

1
75— 1
(2 =Dy =m2— — 1)z (5)

Y2 —
and (¢ — 1)y = (¢ — 1)z = 0. We need to show that there exists z € D such
that (¢ — 1)y = (y1 — 1)z and (¢ — 1)z = (72 — 1)x. How do we construct this
x? Write (¢ — 1)z = Y, fi(mp)T". By Proposition L5.1 in [4], (y1 — 1)~ fo is
well-defined. When i # 0, then a; = 2220T0 € A% Define

r=(n— 1" folrr) + > a; filrr)T".

i€Z

Using (@) it is not difficult to see that x has the required properties.

1

i = 0:- 1o = id. When z € D satisfies Y& =z, 1 ’Zf::llx =z and vz = x, then

it is easy to see (using again the result from [4] mentioned above) that ¢z = x.

It is not difficult to see that the above maps are indeed isomorphisms. [

Remark. If v/ and 4 is a different pair of topological generators of I'; and 'y,
then the complexes Cy 4,4, and Cy 41 4, are quasi-isomorphic. More generally,
we can replace 71 and 2 by w1y1 and waye for any wi,ws € A(G)*.

2.8 Construction of the pairing

Definition. The Pontryagin dual MV of an étale (¢, G)-torsion module M is
defined as the continuous homomorphisms

M = Homy, (M,Q,/Zy).

As shown in Lemma 28] the map TR induces an isomorphism M — M. We
can therefore give MV the structure of a (¢, G)-module. Denote the operation
of Frobenius on it by ¢psv. We quote the following result from [6]:-

Proposition 2.13. Let C = (M*,d' : M* — M**') be a cochain comlex of
abelian groups which are compact and locally separated (with M* in degree i).
Suppose that the d' are strict homomorphisms with closed images. Then CV =
(N; == (MY)V,d; :=t d'~' : N; — N;_1) is a chain complex of abelian groups
which are compact and locally separated (with N; in degree i). The d; are strict
homomorphisms with closed image, and for all i, we have natural isomorphisms

a; + Hy(CV) = (HI(C)).

In order to be able to apply Proposition 213 to the complex Cg -, , (M),
we need the following result:-

Lemma 2.14. If M is an étale (¢, G)-torsion module over Ak, then the image
of —1 contains a compact neighbourhood of 0 on which ¢—1 induces a bijection
and hence a homeomorphism by compactness.

10



Proof. Reduce to the 1-dimensional case, using Proposition 2.4 in [5]. O

For the rest of this section, let M = D(pu,n ). Note that as a ¢-module, we have
M = A mod p”. In particular, this implies that 1y, is defined.

Proposition 2.15. The map ¢ : MV — MV : f — fo ¢ agrees with v .
Proof. Imitate the argument in Section 5.5.1 in [6]. O

Let 0 < i < 3, and define an isomorphism
vi s (MY)®C) o ey,
(@) 1<j<(3) = Prsis ()9
Lemma 2.16. For all 0 < ¢ < 3, the v; induce isomorphisms (which we will
also denote by v;)

H'(C 1(MY)) = Hz—i([Cors s (M)]Y).

1 -
wMV Y1 V2

Proof. We only have to show that the actions of ¥a;v and ¢ps are compatible
with the maps v;. But this is shown in Proposition 2.15] O

Combining the isomorphisms of Proposition2Z.12]and Lemmas2.13 and 2.16]
we therefore get for all 0 < ¢ < 3 an isomorphism

WMt H (Coppomoa (M) = HI(C, o (M)
=" Hai([Conr a0 (M)]Y)
= [H T (Coar s e (M))]
Using these isomorphisms, we get the following proposition:-
Proposition 2.17. For all 0 < i < 3, we have a perfect pairing
H' (Cong s (M) X H ' (Cos s (M) = @y,
(z,y) = [us—i(M)(y)](z).

Making the above isomorphisms explicit (which is very messy, so we omit
the details), one can show that

H;MWLW (M) x H<125MV1’717’)’2 (Mv) %QP/ZZW (6)
(z,y,2) x (f,9,h) =h(v2m1z) — g(v2Pm (v)) (7)

2 ~ o) + (@6 (=), ()

H s (M) X H o (MY) Q) /2, (9)
(0. % (£.9:h) = = hoaa) = 9n E=F) < @y) (10)

+ flom(2)), (11)

11



where @ € A(G) is the element satisfying

1
g —1

3 The Tate pairing

3.1 Proof of the Tate isomosphism
Definition. Define the map
TRx : 0}, — Zp
to be the composition Tryy () g, © Resk. Note that TR is Zp-linear.
Proposition 3.1. For all w € Q(K), we have

7 =1 _
TRK((%F - lw) =0, (12)
TRk ((72 — w) =0, (13)
TRk ((ax) — Dw) = 0. (14)

Proof. Since v2(T) = (1+m)NT from some N € ZX, it is clear that (I3) holds.

Write w = 3",., a;T%dT A drp, where a; € Ap for all i € Z. As shown in [6],

we have TRk ((¢ — 1)agdnr) = 0, which (by the compatibilities of the actions
1

. - . o . v |
.of @) implies (EIZI) It remains to show ([{2). Let z = 72 — 1. Expanding 2
in terms of x gives

1
7 =1 = 1 + higher order terms.
Y2 — 1 a
1
Since 75 is trivial on Ap, the operator v, 12::11 — 1 acts as ;3 — 1 on ag. Equa-
tion (I2)) therefore follows from the 1-dimensional case as treated in [6]. O

For j > 1, let Q;(K) = Q(K) mod p’, which is an étale (¢, G)-torsion
module over A isomorphic to Dk (p,). By reduction mod p?, Res induces a
canonical Z/p’ Z-linear map

TRk : Q(K) — Z/pZ.

By PropositionB.Il TR ; factorizes through the quotient of Q,(K) by (71 (£ (K)+
T2(Q; (K)+ (¢p—1)(24(K)), where 7; = v; —1. We therefore get a homomorphism

TRk : H} ., ., (Q(K)) = Z/pZ.
Passing to the direct limit gives a map

Hgﬂlﬁz (Bx /Ak @ax QK)) = Qp/Zp-

12



Let v, be the p-adic valuation of Z, normalized by v,(p) = 1. Let np(y1.n) =
np(Y1,n) p"p(’vz,n)

vp(log x(71)) and np(v2,n) = vp(n(72,n)). Let ¢ = Tog xCrin) 1(v2m) "

Proposition 3.2. The map —c TR gives a canonical isomorphism between the
groups H3 . (Bic/Ax @ UK)) and Qp/7,.

Remark. The factor ¢ may seem bizarre, but we will see its use in Section [

Proof. 1t is sufficient to show that TRk ; gives an isomorphism for all j. Since
we can expand any element in Q;(K) as a power series in T with coefficients in
Ar mod p?, it is sufficient to show that for all k # 0, 7o — 1 is surjective on
Tk Ap. The proposition follows from Herr’s proof of the Tate isomorphism in the
1-dimensional case (c.f. Theorem 5.2 in [6]). Expanding the power series shows
that (vo — 1)(T*) = T* f4 (), where fix(m) € A), which finishes the proof. O

Combining this result with Proposition 211l and the main result of Sec-
tion 2.7 proves Theorem

3.2 Relation to Pontryagin duality
Let V be a torsion Z,-representation of G, and let M = D(V'). Recall that

V = Homg, (V, fip=).

Lemma 3.3. The (¢, G)-module Dk (V') is isomorphic to Homp ., (M, Br /A ®a
Q(K)).
Proof. Tt follows from the equivalence of categories (Theorem 23) that Dg (V)

is isomorphic to Homa . (M, D(p22)). It is now sufficient to observe that

D) =l Dic (5" = lim SC00 = B e s QUK.

O

Theorem [[.1] is therefore a consequence of Lemma 2.8 and Theorem [Z.17]

4 The higher Hilbert pairing

4.1 Construction of the pairing

Let F' be the maximal algebraic extension of Q, contained in K. Throughout
this section, we assume that the extension of F' over @, is unramified. As in
the previous sections, let € = (1,&,,&,2,...) € Ex and m = [¢] — 1, where [¢] is

the Teichmiiller representative of €. Also, let T = (X, X , XP%, ...) € Eg, and
let T'= [%] € Ak be its Teichmiiller representative.

Fix n > 1. Let m, = ¢~ "(7) = [({pn,&pr+r...)] =L and T, = ¢ (T) =
(X7, X7,

13



Proposition 4.1. Let n > 1. Then for all i > 0, taking cup product with &pn
gives an isomorphism of Gal(K, /K )-modules

Uépn « H(G g, , Z/p"Z) — H (G, , ptpn)-

Proof. Let D = D(Z/p"Z) = Ak, mod p". Let T'\™ = Gal(K (jip~, X77)/
K,) and T{" = Gal(Kuo/K (jipe, X7)). Let 1., and 42, be topological
generators of an) and I‘g"), respectively. Recall that the Gk, -cohomology of
Z/p"Z is given by the complex

C¢171,n172,n (D) : 0 D L D%3 L2 D%3 I3 D 0,
where
fl Y —>[(¢ - 1)175 (71,77, - 1)$7 ('72,71 - 1)17]7
f2 : (I,’y,Z) —>[(¢ - 1)y - (Fylyn - 1):175
(¢ - 1)2 - (’72,71 - 1)«%'7
1
FYZQH -1
n 1 - n > — 1 Z1,
(2,0 — Dy — (, Fo— )7
1
Yom —
f3: (@, 2) = (V2 — Do — (71,0 2 -1y —(¢p—1)z.

72,77, - 1

Since ppn =< &n >, it is easy to see from this description of the cohomology
groups that cup product (which is the same as multiplication) with &,» gives a
Gal(K,/K)-equivariant isomorphims H(Gk, ,Z/p"Z) — H Gk, ,&n) for all
0<<3. O

By Theorem [[L1] we have a perfect pairing

H?*(Grk,,15%) x H' (G, Z/p"Z) = Qp/ZLy.
Taking cup product with &,» and using Proposition [£.1] gives a perfect pairing
H*(Gk, i) < HN (G, s fipn) = pipn- (15)
Definition. The Hilbert pairing
Ko (K,) x K1(Ky) = pipn.
is the composition of (1) with the Galois symbol map

62 x 8 Ka(K,) x Ki(K,) — H*(Gk,, , uS?) x HY(Gk,, , ptpn)

p

Note that we have a natural (surjective) multiplication map K;(K,) X
K,(K,) = K2(K,). We therefore interprete the Hilbert pairing as a pairing

Vi K1 (Kp) X K1 (Kp) x Ky (Kp) = pipn. (16)

14



From the definition of the Galois symbol it is clear that V,, factors through
ny X3
Bt (K1(Kn)/p") ™" = papn. (17)
Since the pairing (3] is perfect, the pairing 9, in (7)) is non-degenerate.

Lemma 4.2. We have a commutative diagram

)
Ki(K,) x Ki(K,) —— H (K, pipn) x H(Ky,, pipn)

U

Ko (Ky,) H2(Km,up")

4.2 The Kummer map
Let F' by the maximal extension of Q, contained in K, and let R = O [[T,,]][T}, ).

n

Note that we can identifiy A}n with the abstract power series ring R[[Y]] (where
Y = m,, but we forget this for the time being). Let m = (p,Y’) be the maximal
ideal of A, , and let A=1+m. For F(Y) € A, define

() = (1= S)log F(Y)

To shorten notation, let f(Y) = I(F(Y)). Define the differential operators

Dy = (Y +1)-% and Dy = T,,-%. Fix n > 1, and let S,, = R[[r,]].

d_ _d_
dy dTy

Note. (1) The action of 2 on A};n is trivial mod 7.

2) The element € is a generator of Z,(1), so ¢ mod p" is a generator of pyn
g D g Hp
and can be identified with &pn.

_ _ 1 _1
Let €™ =€ mod p" and 7= — 3.

Proposition 4.3. Let F(Y') € A. Then there exist unique a-, , (75), by, , (7n) €
S, such that

(¢ = D)@, (m0) @ ™) = (31,0 = D(f (ma)7 @ ™),
(& = D) (ba, (1) @ €™) = (2,0 = D(f ()7 @ ™).
Moreover, we have

1- n
a/'Yl,n (ﬂ—n) = ;75;717)1)1 IOgF(ﬂ—n) mod ™,

by, (Tn) = Nn(Y2,n) D2 log F(m,) mod 7.
Proof. Arguing as in the proof of Lemma 2.1.3 in [2] we have

1- n
(i = D(f ()T ® ™) = —%Dl log f(ma) ® ™ mod 7.
p
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Using the identity D1¢ = p¢ D1, we can write
1- n
(V1m — D (f(mn)7 ® 6(n)) = (¢ — 1)(%D1 log F(m,) ® e(")) mod 7.

Let a, ,(mn) = WDl log F(m,,), so

(& = (@, (ma) @ ™)) = (y1,0 = D(f ()7 @ ™).

Since ¢—1 is invertible on 7.5, we deduce that there exists a unique a., , (7,) €
S, such that a,,, (m) = @, (m) mod 7 and (¢ — 1)(a, ,(m) ® ™) =
(0 = D(f ()7 @ ™).

The existence of b, ,(m,) follows from similar arguments:- Let 7,(v2,n) =
%. Note that
Yo (Tn) = (14 m)™ 02T, (18)

SO
FYZ,n(Tn) == Tn + nn(FYQ,n)Tnﬂ- mod 7T27

and hence

Yon f(n) = f(7n) + Mn(Y2,n) D2 f (mp)m  mod 72,
(Yo,n — )(f(mn)7 @ €™) = 1 (y2,0) D2 f (1) @ €™ mod .

By assumption we have

flmn)=(01- %)logF(wn).
Since Da¢p = ppDs, it follows that
(va,n — 1) f(mn)T ® e = (1 = )0 (v2,n) D2 log F () ® ™ mod 7.

Let by, (7)) = 1 (Y2,0) D2 log F(m,) @ €. Tt follows that (1 — ¢)bs,, (1n) =
(Yo — 1) f(mn)T @ (™. Since ¢ — 1 is invertible on 73, there exists a unique
by, (mn) € Sp such that b,, , = b,, , mod 7 and

(6 — Dby (1) @ €™ = (42, — 1)(f(mn) T @ ™).

Definition. Let ¢, : A — Hém,m,mn (Cp) be the homomorphism

F(X) = [f(m)T @ ™, ay, (1) @ €™, by, @ €M), (19)

Lemma 4.4. The map i, is well-defined.
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Proof. Explicit calculation shows that

1
vy — 1

=1 Dlpa(m)® My, (20)

(2 = D(ay,, (1) ® €)= (11,0

It follows that ¢, is really a map into H O

1,n,Y2,n,¢"

Proposition 4.5. Let 6, : K — H'(Gk,,Zy(1)) be the Kummer map. We
have a commutative diagram

1
A H¢1'Yl,n7’)’2,n (Cn)

b, =

0
K’;,( —’n; Hl(GKn7Zp(1))
To prove the proposition, we follow the strategy of Benois in the proof of
Proposition 2.1.5 in [2]. We split the proof of the proposition into a sequence of
lemmas.

Note that the action of G on Ag factors through Gx = Gal(K./K).
Recall that Gg =2 T'y x 'y, where T'; is congruent (via the cyclotomic character
Xk ) to an open subgroup of Z, and I'y is congruent (via a character NK) t0 Zy.

Lemma 4.6. Let [z,y,2]| € H;l’mw,wb(C'n), and let w € A be a solution of

(¢ — V)u = x. Then h'([z,y,z2]) is given by the cocycle o — c(o) which is
defined as follows:- Let 6 be the image of o in Gx under the projection map.
Let k= x(6) and 1 =n(5), so & =¥ ,~4 .. Then

’Y{cn -1 k Vé,n -1

clo)=(c—1)u———y—7n z.
() = (o= Du= T =3y = 9as "7

Proof. Let Ny . = D(ppn) ® Ak, e, where the action of ¢,v1,, and 72, on e
is given by ¢(e) = e+ z, y1.n(€) = e+ y, y2n(€e) = € + z. Then the long exact
sequence associated to the short exact sequence of Gk, -modules

0— D(ppn) = Nppy,» = Ag, =0 (21)
gives the connecting homomorhism § : H(Ag,) — H) _ ~ .(C,), and an
easy diagram search shows that §(1) = [x,y, z]. Applying (¢ — 1) to 1)) gives
a short exact sequence

0 — /,Lpn — Tm7y7z — Zp — 0

and a connecting homomorphism dga : Z, — Hl(GK, tpn ). We have u +e €
Ny, @np, Aand (¢ —1)(u+e) =0,s0u+e € Ty y .. So dga(l) can be
represented by the cocycle

oc—o(ute)—(u—e)
=(c—1Du+ (0 — 1e.
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Now Gk acts on Ak, via the quotient Gk,,. Since e € Ak, , we have

(5’ - 1)6 = (Vf,n’}é,n - 1)6
k l k
= 71,n(72,n - 1)6 + (Vl,n - 1)6
k ’Yé,n - 1Z+ W{C,n - 1y
17"72,77, -1 Yin — 1

The lemma now follows from the commutativity of the diagram

)
HO (AKn) - H’%l,nﬁYZ,nvqﬁ(Cn)
hO h!
5Gal

Ly ——— H'(GK, . pr)

In particular, h'(c,(F)) is given by

,.YX(‘T) —1
o—(c—1u— 1’nia.y1 () @ €™
Yin — 1 ’
n(o)
o) V2.n -1 n
- f%)mb'ﬁ,n (ﬂ-’ﬂ) ® 6( )7

where (1 — ¢)u = f(my)7. Since y1,(my) = 7, mod m and ¥z ,(T) = T
mod 7, we have

Ny -1 1 - x(o)
’71%1 (1) @ €™ 2 y(0)—2"L Dy log F(m,) @ €™ mod ,
'-Yl,n - ' pn
Ve = 1
fg)#bvln (m) ® el = (o) (v2,n) D2 log F(m,)  mod .

These congruences imply that

D; log F(wn)—l—mnn (v2,n)D2log F(m,) mod .

x(o)

We now interprete ¢(o) in terms of As. Denote by I the ideal of A.,is generated
by 72 and ”:1.

(0) = (x(o)o—1yut LX)

Lemma 4.7. There exists a unique x € Fil' Aqyis such that © = u(m — ”—22)
mod I and
¢

(1 - 5)$ = f(ﬂn)
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Proof. Imitate the proof of Lemma 2.1.6.2 in [2]. O

Define the element
(o) = (0 — 1) — log(
which belongs to 1 + Fil' Aoy for all o € Ok, , and it is easy to check that the
map i : Gk, — Fil' Ags is a cocycle.
Lemma 4.8. We have p(c) = ¢(o).

Proof. We have (1—2)u(a) = 0, so (o) has the form a(o)t for some a(o) € Q,.
On the other hand, fllgrom the congruences

5F (m) =F(mn) + x(0) =2

D1 log F(my)m
+ 0(0) 1 (Y2,n) D2 log F(m,)7  mod 7

and (o0 — 1)z = (x(0)o — 1)ur mod T it follows that

(o) =(x(e)e = um + 22Ty tog ()
+ mnn(”Yz,n)Dz log F(m,)m mod I
x(0)
=c(0)T mod I,
which implies that (o) = te(o). O

Corollary 4.9. One has

(07 = exp(u(o)) = 2] L)

exp(z) oF(m)

Proof of Proposition [{-3 Let y = exp(z). Then the equation (1 — %)x = f(mn)
can be written of the form
P

%y) = exp(pf(ma))-

Consider the short exact sequence
1—[d% =1+ WYR) =" 1+ pW(R) — 1,

where v(a) = #Z) It shows that the inclusion W(R) C Aqis gives a 1 — 1
correspondence between solutions Y of % = exp(pf(m,)) and solutions X =

logY of (1 — %)X = f(m,). Hence y € 1 + W(R), and it is easy to see by
induction that

n

y? F(mn)P

¢"(y) " (F(m))

n
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Let 2 = ¢~ "(yF(m,)~!). Applying the map 6 : W(R) — Oc, to both sides of
this equation, we obtain that

Hence the connecting map ¢, sends h,(F) to the class of the cocycle o —
0(z/o(z)). On the other hand, one has

s yoF(m)
)= 0 ) F )

)= 007" () =677,
which finishes the proof.

4.3 Vostokov’s formulae

In this section we reprove Vostokov’s formulae for (I8]). More precisely, we prove
the following result:- For 1 < i < 3, let oy; € O such that o; =1 mod 7,, and

let F;(X) € Aj such that h,(F;) = a;. Let fi(X) = (1 - £)log F(X).
Theorem 4.10. We have

Tr Resx P
Vn(alu a2, 063) = /'Lp" n,T( )7 (22)

where ® is given by the formula

1.1
b= — ;(Ffl(wn)dlogFf(wn) A dlog F¥ ()

1
- I;fQ(wn)dmg Fy(mn) A dlog FY (m,)
+ f3(mn)dlog Fi(m,) A dlog Fa(mmy,)).
We will prove the theorem in the rest of this section.

Lemma 4.11. Let [z,y, 2], [2',y, 2] € H(1157’Yl,n172,n

the cohomology class of [x,y, 2] U [z, v, 2], then

(Cn). If [x,9,3] represents

I=y @t —zQ ¢y,
n= z®721n3:’ —z® 7.

Moreover, if z,2' € S, then

3=2@%2ny —y@y1,2 mod T
Proof. Since an) (resp. l"g")) is isomorphic to an open subgroup of Z; (resp.
Zy), the formulae for ¢ and y follow from [0], using that the cup product is

compatible with restriction. The formula for 3 follows from the observation that
71 and ¥, commute on S, mod . O

For 1 <i <3, let 1, (Fy(X)) = [fi(mn)T @ €,al), (m0) @ ,bY) . @ €].
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Corollary 4.12. If [£,9,3] = tn(F1(X)) U 1, (F2(X)), then

_ 1- X(’ylﬂl)(
p"l
- pilfl(ﬂ'n) ® D1 log Ff(wn)) @T®Re mod Sy,
) =10 (v2,n) (D2 log F1 (my,) @ fa(my)
—p fi(mn) ® Do 10gF2¢(7Tn)) @T®e mod Sy,
1- X n
5= 5171, )
p
— Dy log Fy (m,) D1 log Fa(my,)) ® 2 modm

Dy 10g I (ﬂ'n) 02y fQ(Trn)

N (Y2,n) (D1 log Fa(m,) D2 log Fy (my)

Proof. Observe that
Vi (fi(mn)7) = X' (1,0) fi(mn)T  mod Sy,
Yo (fi(mn)T) = fi(mn)T mod S,,.
The lemma now follows from the previous lemma and Proposition O

Proof of Theorem [[.3. We prove the Theorem using the formulae ([@]). Let

Hal,ag,a3 = Ln(F3(X)) U [?7 075]7

where (to simplify the notation) we write

[:Eu Y, Z] = [f3 (ﬂ—n)Tv afﬁ?n (ﬂ—n)u bgyi?n]
Recall that 1, and 72, commute on S, mod m. It follows that the formu-
lae (6)) simplify to
wm(F3(X)) U 50,3 =3 @727 (z) —9@720M(y) + 1 ®71¢m(2) mod Sp.
Using the formulae in Corollary it follows that
1- XY \n
Ho s = 1 082, ) (2282 D, 10g B ) © o)
—p ' fi(m) @ Dilog FY () @ 7 ® (€7)?)
—Yen (a(f{),n (7)) (M (y2,n) (D2 log Fi () @ fa(mn)
— 7 fi(mn) ® Dalog Ff (m)) @ 7 @ (e™)?)
1 —x(11,n)
.
)7)( p
— Dylog Fy () D1 log Fa(7y,)) @ (¢7)2)  mod S,

+y271 (f3(mn N (Y2,n) (D1 log Fa(m,) D2 log Fi(my)

As before, we have

Y (fi(mn)T) = X71(71,n>fi(7n)7 mod S,
Yo (fi(mp)T) = fi(mp)T mod Sy,
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so (rearranging the terms) the above formula simplifies to

H 11— X(Vl,n)
Qag,a2,03 _T

—p 2 fi(mn) (D1 log Fy (m,) D2 log Fy ()
+ Dy log Ff (m,) D1 log Fy (1))
+p L fo(mn ) (D1 log Fy (m,) D2 log F¥ ()
+ Dylog Fy (m,) Dy log FY (7,))
— f3(mn ) (D1 log Fa (7, ) D2 log Fy ()
+ Dy log Fy (m,) D1 log Fo(m,)) @ (€7)? mod S,,.

Mn ('72,71)77_1 X

Recall that Dy = (m, + 1)% and Dy = Tnﬁ. It follows that the image in

Q(K) of the above expression (which we also denote by Ha,,asas) With respect
to the map in Lemma 2.10] is

1 —x(71,n)

' in ('72,71)771 X(=p 2 fi(mp)dlog F2¢(7Tn) A dlog F?fb ()

+ p ! fo(mn)dlog Fy () A dlog F¥ ()
- f3(7rn)d10g F2(7Tn) A legFl (Fn)) mod Sn

Taking into account that p~"log x(V1,n) = p~"(x(71,n) —1) mod p", we obtain
that

~¢TR(Hay a5,.05) = — Trpyq, Rese, rn  (p~2 f1(mn)dlog Fy () A dlog Fy ()
— p Y fa(mp)dlog Fy () A dlog FY ()
+ fS(ﬂ—n)dlog F2(7Tn) A leg Fl (T‘—n))u

which finishes the proof.
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