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Abstract

We show that the cyclic lamplighter groupC2 ≀Cn embeds into Hilbert space with distortion O
(√

logn
)
.

This matches the lower bound proved by Lee, Naor and Peres in [14], answering a question posed in that
paper. Thus the Euclidean distortion ofC2 ≀Cn is Θ

(√
logn

)
. Our embedding is constructed explicitly

in terms of the irreducible representations of the group. Since the optimal Euclidean embedding of a
finite group can always be chosen to be equivariant, as shown by Aharoni, Maurey and Mityagin [1] and
by Gromov (see [9]), such representation-theoretic considerations suggest a general tool for obtaining
upper and lower bounds on Euclidean embeddings of finite groups.

1 Introduction

Given a bi-Lipschitz mapf : X ֒→ Y from one metric space (X, ρX) into another (Y, ρY), thedistortion of f
is defined to be the product of the greatest expansion underf and that under its inverse:

dist(f ) ≔ sup
x,z∈X
x,z

ρY( f (x), f (z))
ρX(x, z)

· sup
x,z∈X
x,z

ρX(x, z)
ρY( f (x), f (z))

.

We now define the overalldistortion of X into Y to be the infimal distortion over all bi-Lipschitzf : X ֒→ Y
(and take this to be+∞ if no such maps exist), and write itcY(X). There are various contexts in which either
a particular domain space or a particular target space is of interest; for example, the distortions of many
different spaces into the Banach spacesY = Lp have been studied extensively (see [16] for a partial survey
of this area). In this case we writecp(X) in place ofcLp(X). In this paper we will be concerned with the
casep = 2, and will refer to the distortionc2(X) as theEuclidean distortion of X. We will usually denote
Hilbert space byH , and will assume throughout that it is complex.

We will study the Euclidean distortion of a particular parameterized family of groups: the cyclic lamplighter
groups. These are defined to be the wreath products of the order-two cyclic groupC2 = {0, 1} by the cyclic
groupsCn = {0, 1, . . . , n−1}. In general, thewreath product L ≀H of some groupL by some other groupH
is the semidirect productLH

⋊ H, whereH acts onLH by left multiplication of the coordinates. Concretely,
L ≀ H is the setLH × H equipped with the multiplication

(
(xh)h∈H , g

) · ((yh)h∈H, k
)
≔

(
(xh · ygh)h∈H , gk

)
.

∗This work was conducted while T. Austin was visiting the Courant Institute of Mathematical Sciences, New York University.
†Research supported by NSF grants CCF-0635078 and DMS-0528387.
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Thus, our object of study will beG ≔ C2 ≀ Cn. Notice that in this case the discrete cubeCCn
2 appearing in

the definition ofG can be interpreted as the familyPCn of subsets ofCn by identifying x = (xk)k∈Cn with
{ j ∈ Cn : x j = 1}, so that the group operation within this cube is now the symmetric difference. Henceforth
we will abuse notation and treat a pointx ∈ CCn

2 as a subset. ThisG is a finite solvable group, and can be
generated by the two elements ({0}, 0) and (∅, 1); these then give rise to a left-invariant word metricρ on the
group.

In [14] it was shown by the method of Markov convexity that (with this metric understood)c2(G) &
√

logn.
As noted in [14], an alternative proof of this lower bound follows from exhibiting a constant distortion
embedding of a complete binary tree of depthΘ(n) into G (see [15]), and then applying Bourgain’s lower
bound for the Euclidean distortion of trees [7]. Somewhat surprisingly, this embedded tree is an asymp-
totically worst-case obstruction to embedding the entire lamplighter groupG into Hilbert space. Our main
result is that the above lower bound is tight up to universal constants, answering a question posed in [14]:

Theorem 1.1. For each n there is a bi-Lipschitz map f: G ֒→ H for which

ρ
(
(x, j), (y, k)

)
. ‖ f (x, j) − f (y, k)‖ .

√
logn · ρ((x, j), (y, k)

)

for all (x, j), (y, k) ∈ G.

We will construct an embedding ofG of essentially least possible distortion of a very special type: we will
first specify anactionβ of G on a Hilbert spaceH by unitary operators (i.e. a unitary representation), and
then obtain the embedding intoH itself by carefully choosing a suitable pointv ∈ H and then mapping
(x, j) ∈ G to the image ofv underβ(x, j). Hilbert space embeddings of groups constructed in this way are
referred to asequivariant.

Note that ifG is locally compact and Abelian, then any mapf : G ֒→ H can be analyzed via its vector-
space valued Fourier transform. The Euclidean embeddings of various Abelian groups and some associated
discrete spaces have been successfully studied in this way:consider, for example, the analyses of flat Rie-
mannian tori and of quotients of the Hamming cube under groupactions in [11]. However, upon moving to
non-Abelian groups a general framework for either proving good lower bounds on their Euclidean distortion
or for isolating their low-distortion Euclidean embeddings is yet to emerge; in addition to our use of an
analysis of irreducible representations to find such an embedding for the group of interest here, we discuss
in Section 3 a result, due to Aharoni, Maurey and Mityagin [1]in the case of Abelian groups and to Gromov
(see [9]) in the case of general amenable groups, according to which equivariant embeddings must always
appear among those with minimal distortion. We finish with some applications of this basic fact and some
open problems.

Remark on notation In addition to the Landau notation (o, O,Ω andΘ), in this paper we will use≈
and., & to denote, respectively, equality or the corresponding inequality up to some universal positive
multiplicative constant. We will also writeE[ f (x)|x ∈ X] for the average of some functionf : X → C over
a finite setX. ⊳

2 The embedding

We will specify our embedding through an indexed family of irreducible representations of the lamplighter
group, together with a vector in each of them. The direct sum of these representations gives a single (fairly
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high-dimensional) representation of the lamplighter group, together with the desired low-distortion equiv-
ariant embedding into Hilbert space through the image of thedirect sum of these vectors.

2.1 The lamplighter group and its representations

It seems helpful to recall the following heuristic description of the lamplighter group with the aforemen-
tioned generators, if only for the exposition of some of our later proofs. Consider a collection ofn lamps
indexed byCn (that is, say, positioned equidistantly around a circular street), together with a lighter, who
walks along the street and either lights or douses lamps or leaves them unchanged.

We now interpret a pair (x, j) in G as an operation on the whole system of lamps and lighter: the lamps at
those positions indexed by the setx ⊆ Cn will be changed (lighted if dark or vice-versa), and the lighter will
move to a positionj steps further round the circleCn. (Note that alternatively we could think of (x, j) as
describing the state of the system with the lamps at positions in x illuminated and the lighter at positionj,
but this intuition is a little less appropriate for understanding the group law; of course, this ‘state’ description
of (x, j) simply arises by applying the ‘operation’ (x, j) to the state with all lamps doused and the lighter
initially at 0.)

Given this description, we can think of the generator ({0}, 0) as the act of changing the lampat the current
location of the lamplighter, and similarly (∅, 1) as the act of the lamplighter moving one position to the next
lamp around the circle. Let us writedCn for the obvious nearest-neighbour-graph metric on the cyclic group
Cn.

We shall use the following simple approximation for the wordmetricρ onG.

Lemma 2.1. The metricρ satisfies

ρ
(
(x, j), (y, ℓ)

) ≈ dCn( j, k) + max
k∈x△y

(dCn(0, k) + 1)

(where we interpret the maximum as0 if x = y).

Proof Sinceρ is an invariant metric it suffices to show that for all (x, j) ∈ G

ρ
(
(x, j), (∅, 0)

) ≈ dCn(0, j) +max
k∈x

(dCn(0, k) + 1).

Theρ-distance of (x, j) from (∅, 0) is the length of the shortest word in ({0}, 0) and (∅, 1) and their inverses
that evaluates to (x, j). Certainly, such a word must contain at leastdCn(0, j) copies of either (∅, 1) or its
inverse. Similarly, for anyk ∈ x, any word evaluating to (x, j) must contain at leastdCn(0, k) copies of the
same generator, (∅, 1), or its inverse, since the lamplighter has to travel to position k ∈ Cn in order to change
the lamp at positionk. In the latter case the word must also contain at least one copy of ({0}, 0) for the act of
changing that lamp. This proves that

ρ
(
(x, j), (∅, 0)

) ≥ dCn(0, j) +max
k∈x

(dCn(0, k) + 1).

On the other hand, this reasoning shows at once thatρ
(
(x, j), (x, 0)

)
actually equalsdCn(0, j) for anyx ∈ CCn

2

(since no lamps need be lit or doused for this journey of the lamplighter). In addition, for anyx ∈ CCn
2 , the
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lamplighter can change all the lamps ofx by first traveling to the furthest point ofx from 0 on one side of
Cn, lighting the necessary lamps along the way, and then returning to the origin and repeating this exercise
on the other side. This clearly takes at most 6 maxk∈x (dCn(0, k) + 1) steps, and therefore

ρ
(
(x, j), (∅, 0)

) ≤ ρ((x, j), (x, 0)
)
+ ρ

(
(x, 0), (∅, 0)

)
. dCn(0, j) +max

k∈x
(dCn(0, k) + 1),

as required. �

Next we recall some of the unitary representations ofG. Our list consists of all theirreducible representa-
tions whenn is prime (these are found by the standard method of inducing representations; see [10]). For
compositen some of these representations break up further. However, wewill only use members of this list
whole, and so will not trouble ourselves with the more complicated decompositions for compositen. The
representations of interest fall naturally into two families:

• Some factor through the natural quotient mappingC2 ≀ Cn ։ Cn with kernel the normal subgroup
CCn

2 × {0}, and these are then given just by the (one-dimensional) irreducible representations ofCn:
for eachu ∈ {0, 1, . . . , n− 1} we obtain the character

χu(x, j) ≔ e2πiu j/nIdC,

where of courseχ0 is just the trivial representationπtriv .

• The remainder of our list corresponds to direct sums of non-trivial one-dimensional irreducible rep-
resentations of the cube tied together by a permutation action of the lamplighter-motion groupCn.
Let α : Cn → Cn denote the cyclic left shiftα( j) ≔ j − 1, and define for eachA ⊆ Cn the Walsh
function WA : CCn

2 → {−1, 1} by WA(x) = (−1)|A∩x|. For A < {∅,Cn} we define the representation
πA : C2 ≀Cny C

Cn by

(
πA(∅, 1)v

)
k ≔ vk+1,

(
πA(x, 0)v

)
k ≔ WA(αk(x))vk = (−1)|A∩α

k(x)|vk.

For A = Cn this is replaced by its more degenerate relative, the one-dimensional representation

πCn(x, j) ≔ (−1)|x|IdC =WCn(α
j(x))IdC.

Note that there is a natural extension of the definition ofπA to the caseA = ∅:
(
π∅(∅, 1)v

)
k ≔ vk+1 and π∅(x, 0)≔ IdCCn ; (1)

this is given simply by composing the quotientC2 ≀ Cn ։ Cn with the regular representationCn y C
Cn,

and as such it is isomorphic to the direct sum of all the one-dimensional representationsχu in the first part
of our list.

Before introducing our specific embedding, let us motivate the construction by considering some generalities
of the task of constructing a low distortion equivariant embedding from these ingredients. Suppose we have
constructed an equivariant embeddingf of G, expressed as

f (x, j) = β(x, j)v

4



for some unitary representationβ : Gy H that decomposes as

β(x, j) =
(⊕

u∈Cn

au⊕

r=1

χu(x, j)
)
⊕

( ⊕

∅,A⊆Cn

bA⊕

s=1

πA(x, j)
)
,

whereau, bA ∈ N ∪ {0} are multiplicities, and some vector

v =
(⊕

u∈Cn

au⊕

r=1

vu,r
)
⊕

( ⊕

∅,A⊆Cn

bA⊕

s=1

vA,s
)
∈ H

with vu,r (respectivelyvA,s) lying in ther th (respectivelysth) subspace corresponding to a subrepresentation
χu (respectivelyπA).

We can calculate a counterpart to Lemma 2.1 for use in our subsequent analysis:

‖ f (x, j) − f (∅, 0)‖2 =
∑

u∈Cn

au∑

r=1

∣∣∣e2πi ju/n − 1
∣∣∣2

∣∣∣vu,r
∣∣∣2 +

∑

A⊆Cn
A,∅

bA∑

s=1

∑

k∈Cn

∣∣∣∣WA(αk(x)) · vA,s
k+ j − vA,s

k

∣∣∣∣
2
. (2)

Suppose now that we know forf the bounds

ρ
(
(x, j), (y, k)

) ≤ ‖ f (x, j) − f (y, k)‖ ≤ Dρ
(
(x, j), (y, k)

)

(that is, dist(f ) ≤ D and f has been multiplied by a scalar if necessary so that it is non-contractive). Then
one natural approach to proving lower bounds forD is to consider the averages of the squared distances
ρ((x, j), (y, k))2 and‖ f (x, j) − f (y, k)‖2 for (x, j), (y, k) in some subsets ofG for which the forms of the latter
averages simplify in terms of our orthogonal decompositionfor f . A lower bound forD can be obtained
by comparing different such averages, as can some information on which equivariant embeddings might be
close to attaining distortionD. Given the invariant nature of our functions of interest, wecan simplify our
task further by setting (y, k) = (∅, 0) and averaging only over (x, j).

For the sake of simplicity, we will consider this heuristic for f in which the one-dimensional representations
χu appear only through the direct sumπ∅ =

⊕
u∈Cn
χu, as described in (1), and in which all the multiplicities

bA are 1 (noting that if the vectorvA is 0 then the representationπA effectively does not appear).

Suppose, then, thatH is some subset ofG. Then

E

[
ρ
(
(x, j), (∅, 0)

)2
∣∣∣ (x, j) ∈ H

]
≤ E

[
‖ f (x, j) − f (∅, 0)‖2

∣∣∣ (x, j) ∈ H
]

=

∑

A⊆Cn

E

[∥∥∥πA(x, j)vA − vA
∥∥∥2 ∣∣∣ (x, j) ∈ H

]

= 2
∑

A⊆Cn

∥∥∥vA
∥∥∥2 − 2

∑

A⊆Cn

〈
E

[
πA(x, j)

∣∣∣ (x, j) ∈ H
]
vA, vA

〉
. (3)

This will be most helpful to us if we can arrange that for eachA ⊆ Cn the expectationE
[
πA(x, j)

∣∣∣ (x, j) ∈ H
]

takes a simple form on the copy ofCCn corresponding toπA. This happens, for example, ifH is a subcube of
the canonical subgroupCCn

2 × {0} of G. (In fact, this can be fitted into a more general discussion ofaverages
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over subgroups, but we postpone this to Subsection 3.1.) IfH = {(x, 0) : x ⊆ B} for someB ⊆ Cn then a
straightforward calculation reduces (3) to

E

[
ρ
(
(x, 0), (∅, 0)

)2
∣∣∣ x ⊆ B

]
≤ 2

∑

A⊆Cn

∑

k∈Cn

B∩α−k(A),∅

∣∣∣vA
k

∣∣∣2 .

On the other hand, we can apply the upper bound on‖ f (x, j) − f (∅, 0)‖2 with (x, j) one of the generators to
see that

D2
= D2ρ

(
({0}, 0), (∅, 0)

)2 ≥ ‖ f ({0}, 0)− f (∅, 0)‖2 = 2
∑

A⊆Cn
0∈A

∥∥∥vA
∥∥∥2

and

D2
= D2ρ

(
(∅, 1), (∅, 0)

)2 ≥ ‖ f (∅, 1)− f (∅, 0)‖2 = 2
∑

A⊆Cn

∑

k∈Cn

∣∣∣vA
k+1 − vA

k

∣∣∣2 .

Finally, by actually estimating the expectationE
[
ρ
(
(x, 0), (∅, 0)

)2
∣∣∣ x ⊆ B

]
using Lemma 2.1, we can now use

the above two inequalities to give a lower bound forD by comparing
∑

A⊆Cn

∑

k∈Cn

B∩α−k(A),∅

∣∣∣vA
k

∣∣∣2 (4)

against
∑

A⊆Cn
0∈A

∥∥∥vA
∥∥∥2

and
∑

A⊆Cn

∑

k∈Cn

∣∣∣vA
k+1 − vA

k

∣∣∣2 (5)

for different possible choices ofvA.

Such a comparison might rely on the Poincaré inequality forthe discrete circleCn, applied to the functions
vA
• . However, a careful examination now shows that playing withdifferent choices ofB ⊆ Cn does not

give a non-trivial (that is to say, growing inn) lower bound forD, even though we know from the Markov
convexity calculation thatD &

√
logn.

This very failure does, however, suggest that relatively low-distortion embeddings might be found by looking
for thosevA that are close to saturating the Poincaré inequality forCn. For eachA ⊆ Cn this inequality
bounds the overall average squared difference

1

n2

∑

j,k∈Cn

∣∣∣vA
j − vA

k

∣∣∣2 ,

by a multiple of the local average
1
n

∑

k∈Cn

∣∣∣vA
k+1 − vA

k

∣∣∣2 .

In general, the latter must be multiplied byn2 to bound the former, but this inequality is close to tight only
if the functionvA

• varies relatively slowly around the circle (that is, if its Fourier transform is concentrated
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at low frequencies). One finds that this near-saturation is necessary in order to obtain a small distortion
estimate from (4) and (5) whenB = Cn. On the other hand, for more generalB the resulting estimate can

be kept small only if we know that a positive proportion of themass
∑

A⊆Cn

∥∥∥vA
∥∥∥2

is contributed by sets
that intersectB; and this, in turn, requires that the distribution of the squared norms‖vA‖2 be approximately
invariant under rotations of the setsA and be spread roughly uniformly over setsA of a broad range of
different sizes.

We have suppressed the calculations behind this discussion, as we are presently trying only to be motiva-
tional. One is led naturally to consider setsA ⊆ Cn that can be quite large, but are not evenly distributed
aroundCn, so that there is some large arc ofCn away fromA into which we can concentrate most of the
ℓ2(Cn)-norm of a slowly-varying functionvA

• . In the next subsection we will construct an embedding from
this intuition, using all subsetsA that lie within some arcI of the circleCn of length⌊n/3⌋. Of course, we
must concede a distortion of leastΩ(

√
logn) somewhere, and it turns that this is manifested for the best

possible choice ofvA in a slight shortfall from saturation of the Poincaré inequality.

2.2 The embedding itself

The irreducible representations and corresponding vectors that we will use will be indexed by pairs (I ,A)
for I an arc (i.e. a connected subset) ofCn of length ⌊n/3⌋ and A ⊆ I . Let us writeI for the family of
such arcs, of which there aren, andPI for the collection of subsets of a given arcI . For each pair (I ,A),
the corresponding irreducible representation will simplybe that indexed byA in the list of the previous
subsection, retaining the convention that forA = ∅ we identifyπ∅ with the regular-quotient representation
C2 ≀Cn։ Cny C

Cn, which is isomorphic to the direct sum
⊕

u∈Cn
χu.

We still need to specify the associated vectorvA,I . We will take this to depend only onI , defining (vI
k)k∈Cn

by

vI
k ≔

{
η k ∈ I
δ
√

dCn(k, I ) k < I .

This definition depends on the choice of the two parametersδ, η. The analysis that follows below can be
performed by first allowing these to be free and then optimizing them; we obtain

η ≔
1

n2n/6
and δ ≔

1
√

n2n/6
.

Another optimization is also implicit in our definition ofvI
k: a priori, we could have takenvI

k to be of the
form δ · dCn(k, I )

α for k < I and then optimized also overα > 0. This optimization does naturally lead to the
exponentα = 1

2: it turns out that all other values ofα give distortion following a positive power law inn.

Note that this functionvI
• has the qualitative properties suggested by our heuristic argument of the previous

subsection: it witnesses the small constant 1/n2 to within a factor of logn for the Poincaré inequality on
the circleCn, and has only a very small part of itsℓ2(Cn)-norm inside the arcI ⊇ A. We have restricted
ourselves to those setsA that can be contained in some arcI of the circle precisely so that in each summand
with representationπA the associated vectorvA,I can be chosen to take small values onA but still be close to
optimal for the Poincaré inequality.
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Assembling the above, our overall embedding ofC2 ≀Cn is given by

f (x, j) =
⊕

I∈I

⊕

A∈PI

πA(x, j)vI
=

⊕

I∈I

⊕

A∈PI

(
WA(αk(x)) · vI

k+ j
)
k∈Cn
.

We can now specialize the identity (2) to this data (adjusting to our convention forπ∅) and so compute:

‖ f (x, j) − f (∅, 0)‖2 =
∑

I∈I

∑

A∈PI

∑

k∈Cn

∣∣∣∣WA(αk(x))vI
k+ j − vI

k

∣∣∣∣
2

≈
∑

I∈I

∑

A∈PI

( ∑

k∈Cn

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣
2
+

∑

k∈Cn

1{WA(αk(x))=−1}
∣∣∣vI

k

∣∣∣2
)
, (6)

where in the second step we have used the additional fact thatour vectors (vI
k)k∈Cn have non-negative real

entries, so that
∣∣∣∣WA(αk(x))vI

k+ j − vI
k

∣∣∣∣
2
=

∣∣∣∣WA(αk(x))(vI
k+ j − vI

k) + (WA(αk(x)) − 1)vI
k

∣∣∣∣
2
≈

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣
2
+ 1{WA(αk(x))=−1}

∣∣∣vI
k

∣∣∣2 .

Proof of Theorem 1.1 We prove the upper and lower bounds on‖ f (x, j) − f (y, k)‖2 separately. Note that
since both this embedded distance and the original metricρ areG-invariant it suffices to consider the case
(y, k) = (∅, 0).

Step 1: upper bound We wish to show that

‖ f (x, j) − f (∅, 0)‖ .
√

logn · ρ((x, j), (∅, 0)
)

for all (x, j) ∈ G. Sinceρ is a word metric it suffices to check this for (x, j) equal to each of the two
generators.

Suppose first that (x, j) = ({0}, 0). Then our formula (6) gives

‖ f ({0}, 0)− f (∅, 0)‖2 ≈
∑

I∈I

∑

A∈PI

∑

k∈Cn

1{WA(αk({0}))=−1}
∣∣∣vI

k

∣∣∣2 =
∑

I∈I

∑

A∈PI

∑

k∈A

∣∣∣vI
k

∣∣∣2 = η2n
∑

A∈PI

|A| ≈ η2n22n/3
= 1,

owing to our choice ofη.

Similarly, setting (x, j) = (∅, 1), we obtain

‖ f (∅, 1)− f (∅, 0)‖2 ≈
∑

I∈I

∑

A∈PI

( ∑

k∈Cn

∣∣∣vI
k+1 − vI

k

∣∣∣2 +
∑

k∈Cn

1{WA(∅)=−1}
∣∣∣vI

k

∣∣∣2
)
=

∑

I∈I

∑

A∈PI

∑

k∈Cn

∣∣∣vI
k+1 − vI

k

∣∣∣2 .

From our choice ofvI we deduce that

∣∣∣vI
k+1 − vI

k

∣∣∣ ≈



0 if k, k+ 1 ∈ I
|δ − η| ≈ |δ| if |I ∩ {k, k+ 1}| = 1
δ 1√

dCn (k,I)
if k, k+ 1 ∈ Cn \ I ,

and so the above sum can be bounded by

‖ f (∅, 1)− f (∅, 0)‖2 . 2δ2
∑

I∈I

∑

A∈PI

⌊n/3⌋∑

k=1

(
1
√

k

)2

= 2δ2
∑

I∈I

∑

A∈PI

⌊n/3⌋∑

k=1

1
k
≈ 2δ2n2n/3 logn ≈ logn,
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owing to our choice ofδ.

Taking square roots and comparing these two estimates with the approximation given by Lemma 2.1 com-
pletes the check of both generators, and so also the proof of the upper bound; note that these two checks
already dictate our choice ofη andδ up to O(

√
logn) andΩ(1/

√
logn) respectively.

Step 2: lower bound We will obtain the lower bound

‖ f (x, j) − f (∅, 0)‖ & ρ((x, j), (∅, 0)
)

by breaking the sum ∑

I∈I

∑

A∈PI

( ∑

k∈Cn

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣
2
+

∑

k∈Cn

1{WA(αk(x))=−1}
∣∣∣vI

k

∣∣∣2
)

into the two obvious subsums and estimating these separately.

Step 2.1: first sum We will use a rather crude estimate obtained by considering various ranges of possible
values ofdCn(0, j) and for each of them summing over only a certain range ofk; this will be enough to obtain
the lower bound we seek.

Observe from the definition ofvI
k that if dCn(0, j) ≤ dCn(k, I ) ≤ n/3− dCn(0, j) then

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣ & δ
dCn(0, j)√
dCn(k, I )

.

Suppose first thatdCn(0, j) ≤ n/100; then taking only thosek in the above range gives the lower bound

∑

I∈I

∑

A∈PI

∑

k∈Cn

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣
2
& δ2

∑

I∈I

∑

A∈PI


∑

k: dCn(0, j)≤dCn (k,I)≤n/3−dCn (0, j)


dCn(0, j)√
dCn(k, I )


2


≥ δ2dCn(0, j)
2
(
n2⌊n/3⌋−1

) ⌊n/3−n/100⌋∑

k=⌈n/100⌉

1
k
≈

(
δ2n2n/3

)
dCn(0, j)

2 ≈ dCn(0, j)
2,

recalling our choice ofδ.

On the other hand, ifdCn(0, j) > n/100, then for those two arcsJ1 and J2 of points k ∈ Cn satisfying
0 < dCn(k, I ) < n/1000, at least one of them, sayJ1, is such thatdCn(k + j, I ) ≥ 10dCn(k, I ) for all k ∈ J1.
Thesek ∈ J1 therefore satisfy also ∣∣∣∣vI

k+ j − vI
k

∣∣∣∣ &
√

n/1000.

Therefore, taking instead the sum overJ1 in the above estimate, we have

∑

I∈I

∑

A∈PI

∑

k∈Cn

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣
2
& δ2

∑

I∈I

∑

A∈PI

∑

k∈J1

(√
n/1000

)2
&

(
δ2n2n/3

)
(n/1000)2 & dCn(0, j)

2.

In either case, we obtain ∑

I∈I

∑

A∈PI

∑

k∈Cn

∣∣∣∣vI
k+ j − vI

k

∣∣∣∣
2
& dCn(0, j)

2.

9



Step 2.2: second sumWe now require a lower bound on
∑

I∈I

∑

A∈PI

∑

k∈Cn

1{|A∩αk(x)| odd}
∣∣∣vI

k

∣∣∣2 =
∑

I∈I

∑

k∈Cn

∣∣∣vI
k

∣∣∣2
( ∑

A∈PI

1{|A∩αk(x)| odd}
)
.

Note that for any non-empty subsetB of Cn and for eachI ∈ I, if we choose a subsetA of I uniformly at
random then the probability that the intersection size|A∩ B| is odd is 1/2 if I ∩ B , ∅ and 0 if I ∩ B = ∅.
Indeed, choosing a subsetA of I uniformly at random and then consideringA∩ B simply generates a subset
of I ∩ B uniformly at random; but precisely half of these are odd unlessI ∩ B = ∅, in which case they are all
even. Applying this reasoning withB = αk(x), we conclude that

∑

A∈PI

1{|A∩αk(x)| odd} =
1
2
|PI |1{I∩αk(x),∅} = 2⌊n/3⌋−11{I∩αk(x),∅},

and so our sum of interest simplifies to

2⌊n/3⌋−1
∑

I∈I

∑

k∈Cn

1{I∩αk(x),∅}
∣∣∣vI

k

∣∣∣2 .

Suppose thatℓ ∈ x is a point ofxat a maximal distance from 0 inCn. Then, in particular,I∩αk(x) ⊇ I∩{ℓ+k}
is nonempty for allk ∈ α−ℓ(I ), and so

2⌊n/3⌋−1
∑

I∈I

∑

k∈Cn

1{I∩αk(x),∅}
∣∣∣vI

k

∣∣∣2 ≥ 2⌊n/3⌋−1
∑

I∈I

∑

k∈α−ℓ(I)

∣∣∣vI
k

∣∣∣2 .

Therefore it will suffice to give a suitably strong lower bound for
∑

k∈α−ℓ(I)
∣∣∣vI

k

∣∣∣2. Moreover we see from the
rotational symmetry in our definition ofvI that this quantity is the same for allI ∈ I. We may therefore
assume that in the natural labeling ofCn as{1, 2, . . . , n} the arcI appears as an initial segment, and appealing
to symmetry further, we may replaceℓ by −ℓ and assume thatℓ ∈ {1, 2, . . . , ⌊n/2⌋}. Given this, the terms
appearing in the desired sum are:

• terms equal toη corresponding tok ∈ I ∩ αℓ(I ), and hence tok ∈ {ℓ + 1, . . . , ⌊n/3⌋};

• the remaining termsδ, δ
√

2, δ
√

3, . . . , δ
√
ℓ.

Squaring these and summing them therefore yields

(⌊n/3⌋ − ℓ)η2 + δ2
ℓ∑

t=1

t ≈ (n/3− ℓ)η2 + δ2ℓ2,

and so overall ∑

I∈I

∑

A∈PI

∑

k∈Cn

1{|A∩αk(x)| odd}
∣∣∣vI

k

∣∣∣2 & n2n/3((n/3− ℓ)η2 + δ2ℓ2) & 1+ ℓ2,

recalling again our choices ofδ andη.

Completion of step 2 Given the above estimates for the first and second sum of our expression we deduce
the lower bound

‖ f (x, j) − f (∅, 0)‖2 & dCn(0, j)
2
+ 1+ ℓ2.

Recalling the choice ofℓ, taking square roots and comparing this with the expressionof Lemma 2.1 com-
pletes the proof. �
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3 Discussion and further questions

This section is composed of two parts.

In Subsection 3.1 we present the known result that equivariant Euclidean embeddings of finite groups with
invariant metrics always appear among the embeddings of minimal distortion. This justifies a reduction to
the consideration of equivariant embeddings of which we then give two applications.

In Subsection 3.2 we discuss some further questions.

3.1 Equivariant embeddings suffice

Unlike the special embedding of the lamplighter group constructed in Subsection 2.2, a generic Hilbert
space embedding is certainly not equivariant. However, it turns out that searching in this smaller class
was, in a sense, guaranteed to work: for an invariant metric on a finite group the restricted family of
equivariant embeddings must contain embeddings of distortion at least as low as any other. This is the
conclusion of Lemma 3.1 below. For the same reason it suffices to consider equivariant embeddings when
proving Euclidean distortion lower bounds for invariant metrics on finite groups. The formulation we give
of Lemma 3.1 below is a simplified version for the case of finitegroups which we will use to investigate
quantitative distortion bounds. In the case of infinite Abelian groups this lemma was used by Aharoni, Mau-
rey and Mityagin [1] in their work on uniform embeddings of Banach spaces into Hilbert space (see also
chapter 8 in the book [6]). The lemma was discovered independently by Gromov (unpublished) in the case
of arbitrary amenable groups, and was used by de Cornulier, Tessera and Valette [9] (in terms of Hilbert
space valued cocycles) to prove qualitative non-embeddability results for certain such groups. Note that an
analogous lemma holds for uniform embeddings into Hilbert space, but for the sake of simplicity we present
only the bi-Lipschitz case.

Lemma 3.1. If a finite group G with a left-invariant metricρ has a Euclidean embedding f such that

1
B
‖ f (x) − f (y)‖ ≤ ρ(x, y) ≤ A‖ f (x) − f (y)‖ (7)

for all x, y ∈ G, then there is an equivariant embedding g into a Hilbert spaceH , say g= β(·)v for v ∈ H
andβ : Gy H , which satisfies the same inequalities as in(7).

Proof Define a positive semidefinite scalar product onCG by K(δx, δy) ≔ 1
|G|

∑
z∈G〈 f (zx), f (zy)〉. The

required embeddingg : G→ CG is simply given byg(x) ≔ δx. Let β denote the left-regular representation
of G onCG. Theng(x) = β(x)δe, wheree is the identity element ofG. Now we compute that

‖g(x) − g(y)‖2K
ρ(x, y)2

=
1
|G|

∑

z∈G

(
‖ f (zx)‖2 + ‖ f (zy)‖2 − 2〈 f (zx), f (zy)〉

ρ(x, y)2

)
=

1
|G|

∑

z∈G

‖ f (zx) − f (zy)‖2
ρ(zx, zy)2

. (8)

By (7) each of the summands in (8) lies between 1/B2 andA2, and hence so does the whole expression, as
required. It remains to note that‖g(x)‖ is independent ofx ∈ G, so thatβ is a unitary representation with
respect to the scalar productK. �

Given this, we can now prove for arbitrary finite groups a formalized version of the heuristic lower-bound
analysis that was presented in Subsection 2.1 to motivate the construction of our embedding:
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Lemma 3.2. Let G be a finite group generated by S⊆ G and letρ be the corresponding word metric.
Let γ1 y H1, . . . , γt y Ht be the nontrivial irreducible representations of G. Then there exist integers
a1, . . . , at ≥ 0 satisfying

∑t
j=1 a j dim(H j) ≤ |G| and sets of vectors{v j,r }aj

r=1 ⊆ H j for which

c2(G) ≥

√√√√√∑
x∈G ρ(x, e)2

2|G| ·
∑

s∈S
∑t

j=1
∑aj

r=1

∥∥∥γ j(s)v j,r − v j,r
∥∥∥2

|S|∑t
j=1

∑aj

r=1

∥∥∥v j,r
∥∥∥2

.

Proof Assume that there exists a Euclidean embeddingf satisfying (7), and letg be the equivariant
embedding from Lemma 3.1. Note that its dimension is at most|G|. We can writeβ =

⊕t
j=1 γ

⊕aj

j ,
wherea j ∈ N ∪ {0} are multiplicities. Correspondingly we decompose the vector v from Lemma 3.1 as
v =

⊕t
j=1

⊕aj

r=1 v j,r . Then

∑

x∈G
ρ(x, e)2 ≤ A2

∑

x∈G
‖g(x) − g(e)‖2

= A2
∑

x∈G

t∑

j=1

aj∑

r=1

∥∥∥γ j(x)v j,r − v j,r
∥∥∥2

= A2
∑

x∈G

t∑

j=1

aj∑

r=1

(
2
∥∥∥v j,r

∥∥∥2 − 2
〈
γ j(x)v j,r , v j,r

〉)

= 2A2|G|
t∑

j=1

aj∑

r=1

∥∥∥v j,r
∥∥∥2 − 2A2

t∑

j=1

aj∑

r=1

〈(∑

x∈G
γ j(x)

)
v j,r , v j,r

〉

= 2A2|G|
t∑

j=1

aj∑

r=1

∥∥∥v j,r
∥∥∥2
, (9)

since
∑

x∈G γ j(x) = 0, by the irreducibility ofγ j (see [10]). On the other hand

|S| =
∑

s∈S
ρ(s, e)2 ≥ 1

B2

∑

s∈S
‖g(s) − g(e)‖2 ≥ 1

B2

∑

s∈S

t∑

j=1

aj∑

r=1

∥∥∥γ j(s)v
j,r − v j,r

∥∥∥2
.

It follows that

AB≥

√√√√√∑
x∈G ρ(x, e)2

2|G| ·
∑

s∈S
∑t

j=1
∑aj

r=1

∥∥∥γ j(s)v j,r − v j,r
∥∥∥2

|S|∑t
j=1

∑aj

r=1

∥∥∥v j,r
∥∥∥2

.

Infimizing overAByields the required result. �

Remark We can obtain a larger family of lower bounds forc2(G) by modifying the first part of the proof
of Lemma 3.2 to the case of a sum over a subgroupH of G. However, this can lead to a more complicated
expression owing to the decomposition of the representations γ j into smaller irreducible representations of
H. Letπ1y K1, . . . , πmy Km be the irreducible representations ofH, whereπ1 is the trivial representation
IdK1. Upon writing γ j as

⊕m
ℓ=1 π

⊕bj,ℓ

ℓ
and correspondinglyv j,r as

⊕m
ℓ=1

⊕bj,ℓ

u=1 v j,r
ℓ,u, the sum

∑
x∈H γ j(x)

equals
(
|H|Id⊕bj,1

K1

)
⊕ 0. This leads to a modification of (9), and thence to another lower bound on the

Euclidean distortion via the same argument.
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In the case of the lamplighter group, this further decomposition remains manageable, and it was by trying
to approach equality in the resulting lower bounds that we were led to the embedding of Subsection 2.2.⊳

Remark As indicated in Subsection 2.1, the lamplighter groupG = C2 ≀ Cn has the curious property that
it does not embed into Hilbert space with distortion boundedindependent ofn, but this nonembeddabability
is not detectable (in the sense of Lemma 3.2 and the remark that follows it) by comparing the averages of
the squared group distancesρ(x, y)2 and of the squared embedded distances‖ f (x)− f (y)‖2 across subgroups
of G (the natural averages to take) against the averages across local movements using the two generators.
We find instead that for any given subgroup ofG, G itself has embeddings into Hilbert space that look good
on average across that subgroup, and ‘push’ the bad distortion (which we know must be at leastΩ(

√
logn)

somewhere) into some set of pairs of point in the group that this average does not see. We should stress
that different subgroups may require slightly different embeddings: theΩ(

√
logn) distortion of our actual

construction of Subsection 2.2, for example, can be detected by looking at averages across suitably-chosen
subgroups ofG, while other embeddings, poorer overall, cannot be detected by those subgroups. The point
is that no small collection of different subgroups reliably finds the distortion. This conclusion follows from
considering a number of variants of the embedding of Subsection 2.2; however, the necessary calculations
seem more lengthy than revealing and we will not discuss themin detail here. Furthermore, one can also
compute easily given the methods of [17] thatG, like Hilbert space, does have Markov type 2 (another
averaging-based invariant for metric spaces introduced byBall in [5]) with constant independent ofn, so
that this also does not give an observable obstruction to Hilbert space embeddings.

It results that both the minimal Euclidean distortion ofG and also embeddings witnessing that distortion are
hard to find using standard averaging-based machinery. Somequite delicate averaging-based obstruction,
such as the Markov convexity actually used to study this group in [14], is really necessary. Furthermore,
while that application of Markov convexity in [14] does amount to the identification of a large embedded
tree inG, it is not at all clear a priori that the minimal-distortion embeddings of this embedded tree already
tell us just how bad the Euclidean distortion of the whole group must be, or how to attain that distortion. It
is somewhat surprising that this invariant happens to give the correct growth rate of the Euclidean distortion,
and it might be interesting to ask whether Markov convexity —based, in this case, on the presence of
large embedded trees insideG — can be replaced by some averaging argument using a different kind of
substructure ofG to give the same lower bound. ⊳

We will finish our discussion of the consequences of Lemma 3.1with a more concrete application. Recall
that a metric space (X, ρ) is of negative typeif the spaceX with the square root metric

√
ρ embeds isomet-

rically into Hilbert space. The Goemans-Linial conjectureasserted that any such metric also embeds with
bounded distortion intoL1. This is now known to be false in general: see Khot and Vishnoi[12]. Their
construction did not give an invariant group metric; however, more recently Lee and Naor [13] have shown
that a particular invariant metric on the Heisenberg group is also a counterexample to the Goemans-Linial
conjecture, using a result of Cheeger and Kleiner [8]. On theother hand, the following proposition shows
that such counterexamples cannot arise from Abelian groupssubject to a restriction on the exponent of the
group (and we suspect that this restriction can be removed).

Proposition 3.3. Let (G, ρ) be a finite Abelian group equipped with an invariant metric. Suppose that
2 ≤ m ∈ N satisfies mx= 0 for all x ∈ G. Let D= c2

(
G,
√
ρ
)
. Then

c1(G, ρ) . D4 logm
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and for all 1 < p < 2

cp

(
G, ρ1/p

)
.

D4/p

p− 1
.

Proof Let Γ = Ĝ denote the dual ofG. By Lemma 3.1
(
G,
√
ρ
)

admits a distortion-D embedding into
Hilbert space which is equivariant, and so which breaks intoa direct sum of characters and associated
vectors. By rescaling it follows that there are{aχ}χ∈Γ ⊆ R+ such that for allx ∈ G,

∑

χ∈Γ
aχ |1− χ(x)|2 ≤ ρ(x, 0) ≤ D2

∑

χ∈Γ
aχ |1− χ(x)|2 . (10)

For everyx ∈ G andk ≥ 0 denote

Ak(x) ≔
{
χ ∈ Γ : 2−k < |χ(x) − 1| ≤ 2−k+1

}
.

We also defineA∞(x) ≔ {χ ∈ Γ : χ(x) = 0}. ThenΓ = A∞(x) ∪ ⋃∞
k=0 Ak(x) and this union is disjoint.

Moreover, 1= χ(0) = χ(mx) = χ(x)m, so thatχ(x) is anmth root of unity. Therefore ifχ(x) , 0 then
|χ(x) − 1| ≥

∣∣∣e2πi/m − 1
∣∣∣ ≥ 1

m. It follows that for finitek > log2 m+ 1 the setAk(x) is empty.

It follows routinely from the definition ofAk(x) that, firstly,
∑

χ∈Ak(x)

aχ |1− χ(x)|2 ≥ 2−k
∑

χ∈Ak(x)

aχ |1− χ(x)| , (11)

and, secondly, that for everyχ ∈ Ak(x)
∣∣∣∣1− χ(x)2k−1

∣∣∣∣ & 2k|1− χ(x)|. (12)

Moreover, by the invariance ofρ and the triangle inequality, we know that for everyk ≥ 1,

2k−1ρ(x, 0) ≥ ρ
(
2k−1x, 0

)
. (13)

Therefore, for everyk ≥ 1 we have

2k−1
∑

χ∈Γ
aχ|1− χ(x)|2

(10)
≥ 2k−1

D2
ρ(x, 0)

(13)
≥ 1

D2
ρ
(
2k−1x, 0

) (10)
≥ 1

D2

∑

χ∈Γ
aχ

∣∣∣1− χ(2k−1x)
∣∣∣2

≥ 1

D2

∑

χ∈Ak(x)

aχ
∣∣∣∣1− χ(x)2k−1

∣∣∣∣
2 (12)
&

22k

D2

∑

χ∈Ak(x)

aχ |1− χ(x)|2
(11)
&

2k

D2

∑

χ∈Ak(x)

aχ |1− χ(x)| . (14)

Thus (fork ≥ 1 by (14), and trivially fork = 0)
∑

χ∈Ak(x)

aχ |1− χ(x)| . D2
∑

χ∈Γ
aχ|1− χ(x)|2, (15)

and so, combining the above,

ρ(x, 0)

D2

(10)
≤

∑

χ∈Γ
aχ|1− χ(x)|2 ≤ 2

∑

χ∈Γ
aχ|1− χ(x)| = 2

∑

k≤log2(2m)

∑

χ∈Ak(x)

aχ|1− χ(x)|

(15)
. D2 logm

∑

χ∈Γ
aχ|1− χ(x)|2

(10)
≤ D2 logm · ρ(x, 0). (16)
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Let µ be the measure onΓ given byµ({χ}) = aχ and consider the embeddingf : G → L1(Γ, µ) defined by
f (x)(χ) ≔ χ(x). Inequality (16) says precisely that dist(f ) . D4 logm. This completes the proof of the first
assertion of the proposition.

The proof of the second assertion is similar. Analogously to(11),
∑

χ∈Ak(x)

aχ |1− χ(x)|2 ≥ 2−k(2−p)
∑

χ∈Ak(x)

aχ |1− χ(x)|p .

Arguing as for (14) ∑

χ∈Ak(x)

aχ |1− χ(x)|p . D22−(p−1)k
∑

χ∈Γ
aχ|1− χ(x)|2.

Hence

ρ(x, 0)

D2
≤

∑

χ∈Γ
aχ|1− χ(x)|2 ≤ 22−p

∑

χ∈Γ
aχ|1− χ(x)|p = 22−p

∞∑

k=0

∑

χ∈Ak(x)

aχ|1− χ(x)|p

. D2
∞∑

k=0

2−(p−1)k
∑

χ∈Γ
aχ|1− χ(x)|2 ≤ D2

1− 2−(p−1)
· ρ(x, 0) .

D2

p− 1
· ρ(x, 0), (17)

and we may now take the samef as above to give the required embedding intoLp(Γ, µ). �

Remark Proposition 3.3 implies, in particular, thatany invariant metricρ on the discrete cube{0, 1}d for
which c2

(
{0, 1}d, √ρ

)
= D has alsoc1

(
{0, 1}d, ρ

)
. D4. It seems likely that the fourth power is far from

optimal. More interestingly, for general finite Abelian groups we see no compelling reason to believe that
the factor of logm in Proposition 3.3 is necessary. If it can be removed, this would imply that no invariant
metric on a finite Abelian group can serve as a counterexampleto the Goemans-Linial conjecture. (Note
that whenG is the cyclic groupCm the factor logm can already be improved to

√
logm · log logm by the

general result of [4].) ⊳

3.2 Further questions

We speculate that the methods suggested by Lemma 3.1 can be used to give a fuller analysis of minimal
distortion Euclidean embeddings for various groups and homogeneous spaces. For example, our experience
with the lamplighter group suggests that the methods of thispaper may bear on other wreath products
L ≀ H; however, we should observe at once that the behaviour of these can depend radically on the choice of
generators, even among those obtained by choosing generators for the acting groupH and then including a
suitable additional member ofLH:

Proposition 3.4. Let S be a uniformly random subset of Cn of cardinality |S| ≥ 100 logn, conditioned on
the event that it generates Cn (which occurs asymptotically almost surely). Consider thewreath product
C2 ≀Cn equipped with the word metricρ corresponding to the generating set

({∅} × S
) ∪ {({0}, 0)}. Then

c2 (C2 ≀Cn, ρ) &
√

n

asymptotically almost surely.
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Proof Let G be the Cayley graph ofCn with the generating setS. Then by [2] the metricρ onC2 ≀Cn is the
shortest path metric on the zig-zag product of the Hamming cubeCCn

2 (with the standard graph structure)
and the graphG, which we denote byH (we refer to [2, 18] for the definition and properties of the zig-zag
product). Letλ1 be the normalized second eigenvalue ofCCn

2 and letλ2 be the normalized second eigenvalue
of G. Then it is well known thatλ1 = 1− 2

n, and the Alon-Roichman theorem [3] states thatλ2 is bounded
away from 1 asymptotically almost surely. By Theorem 4.3 in [18], the normalized second eigenvalue ofH,
which we denote byλ, is at most

1
2

(
1− λ2

2

)
λ1 +

1
2

√(
1− λ2

2

)2
λ2

1 + 4λ2
2 ≤ 1− Ω(1)

n
,

where the last estimate holds asymptotically almost surely. It follows from a standard argument that for
every f : C2 ≀Cn→ H ,

1
|C2 ≀Cn|2

∑

x,y∈C2≀Cn

‖ f (x) − f (y)‖2 ≤ 2
1− λ ·

1
|E(H)|

∑

xy∈E(H)

‖ f (x) − f (y)‖2.

Hence, if f satisfiesρ(x, y) ≤ ‖ f (x) − f (y)‖ ≤ Dρ(x, y) for everyx, y ∈ C2 ≀Cn, then also

1
|C2 ≀Cn|2

∑

x,y∈C2≀Cn

ρ(x, y)2
.

nD2

|E(H)|
∑

xy∈E(H)

ρ(x, y)2 ≤ nD2.

Now observe that two randomly chosen points of the lamplighter group differ in their first coordinate in a
set of sizeΩ(n) with probability bounded away from 0. Therefore a positiveproportion of the terms in the
left-hand side above are at leastΩ(n2), since if two statesx andy of the lamplighter group differ so much,
the lamplighter must changeΩ(n) lamps to pass between them, irrespective of the choice of generators in
the “movement group”Cn. It follows thatD &

√
n, as required. �

It seems natural that the lower bound ofΩ(
√

n) obtained above is tight, but we have not investigated this.

In spite of the possibility of a purely spectral argument as in Proposition 3.4, we hope that a consideration
of equivariant embeddings and their decompositions into irreducible representations may shed some light
on other families of wreath products, or other semidirect products.

Finally, we should note that our construction of Subsection2.2 clearly rests crucially on special properties
of Hilbert space embeddings, and so the following question remains essentially untouched:

Question 3.5. Does the infimal distortion c1(C2 ≀ Cn) of the lamplighter group with the metricρ into the
Banach space L1 tend to infinity with n?
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[16] J. Matoušek.Lectures on discrete geometry, volume 212 ofGraduate Texts in Mathematics. Springer-
Verlag, New York, 2002.

[17] A. Naor, Y. Peres, O. Schramm, and S. Sheffield. Markov chains in smooth Banach spaces and
Gromov-hyperbolic metric spaces.Duke Math. J., 134(1):165–197, 2006.

[18] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new
constant-degree expanders.Ann. of Math. (2), 155(1):157–187, 2002.

17


	Introduction
	The embedding
	The lamplighter group and its representations
	The embedding itself

	Discussion and further questions
	Equivariant embeddings suffice
	Further questions


