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Abstract

We show that the cyclic lamplighter gro@p : C, embeds into Hilbert space with distortior(QIog n).
This matches the lower bound proved by Lee, Naor and Perddjngnswering a question posed in that
paper. Thus the Euclidean distortion@f : C,, is ©® ( +v/log n). Our embedding is constructed explicitly
in terms of the irreducible representations of the groumc&ithe optimal Euclidean embedding of a
finite group can always be chosen to be equivariant, as shgwharoni, Maurey and Mityagiri|1] and
by Gromov (seel[9]), such representation-theoretic camaitbns suggest a general tool for obtaining
upper and lower bounds on Euclidean embeddings of finitepg.ou

1 Introduction

Given a bi-Lipschitz mag : X < Y from one metric spaceX(px) into another Y, py), thedistortion of f
is defined to be the product of the greatest expansion uhdad that under its inverse:

dist(f) = sup2fX-F@) ) px(x2)

xzex  Px(%2) xzex Py (f(X), f(2)
X#Z X#Z

We now define the overatlistortion of X into Y to be the infimal distortion over all bi-Lipschitz: X <— Y
(and take this to beco if no such maps exist), and writea¢(X). There are various contexts in which either
a particular domain space or a particular target space istefast; for example, the distortions of many
different spaces into the Banach spates L, have been studied extensively (se€ [16] for a partial survey
of this area). In this case we writg(X) in place ofc,,(X). In this paper we will be concerned with the
casep = 2, and will refer to the distortion,(X) as theEuclidean distortion of X. We will usually denote
Hilbert space byH, and will assume throughout that it is complex.

We will study the Euclidean distortion of a particular parterized family of groups: the cyclic lamplighter
groups. These are defined to be the wreath products of thetwdeyclic groupC, = {0, 1} by the cyclic
groupsCy = {0, 1,...,n-1}. In general, thevreath product L : H of some groupL. by some other groupl

is the semidirect produdt™ < H, whereH acts onL" by left multiplication of the coordinates. Concretely,
L H is the set." x H equipped with the multiplication

((Xh)heH’ g) : ((yh)heH, k) = ((Xh : ygh)heHa gk)-
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Thus, our object of study will b& := C, ¢ C,,. Notice that in this case the discrete CL@)S? appearing in
the definition ofG can be interpreted as the famiBBC,, of subsets oCj, by identifying x = (Xk)kec, With

{] € Cqh: Xj = 1}, so that the group operation within this cube is now the symmmedifference. Henceforth
we will abuse notation and treat a poxe Cg” as a subset. Thi§ is a finite solvable group, and can be
generated by the two element8)( 0) and {, 1); these then give rise to a left-invariant word metrion the

group.

In [14] it was shown by the method of Markov convexity thattfwthis metric understoody(G) > +/logn.

As noted in [[14], an alternative proof of this lower boundldals from exhibiting a constant distortion
embedding of a complete binary tree of de@tfm) into G (see [15]), and then applying Bourgain’s lower
bound for the Euclidean distortion of treés [7]. Somewhapssingly, this embedded tree is an asymp-
totically worst-case obstruction to embedding the entairaglighter grougs into Hilbert space. Our main
result is that the above lower bound is tight up to universalstants, answering a question posed_in [14]:

Theorem 1.1. For each n there is a bi-Lipschitz map: {5 — H for which

p((% 1), (v, K) < IF (%, ) = F(y,. Kl < vlogn - p((X j), (¥ K))
for all (x, j), (y,k) € G.

We will construct an embedding & of essentially least possible distortion of a very spegipét we will

first specify amactiong of G on a Hilbert spacé{ by unitary operators (i.e. a unitary representation), and
then obtain the embedding intH itself by carefully choosing a suitable poimte H and then mapping
(%, J) € G to the image oW underB(x, j). Hilbert space embeddings of groups constructed in thisavea
referred to agquivariant.

Note that ifG is locally compact and Abelian, then any map G — H can be analyzed via its vector-
space valued Fourier transform. The Euclidean embeddifwgious Abelian groups and some associated
discrete spaces have been successfully studied in this eeangider, for example, the analyses of flat Rie-
mannian tori and of quotients of the Hamming cube under gemtions in[[11]. However, upon moving to
non-Abelian groups a general framework for either provingdajlower bounds on their Euclidean distortion
or for isolating their low-distortion Euclidean embeddnig yet to emerge; in addition to our use of an
analysis of irreducible representations to find such an eiibg for the group of interest here, we discuss
in Sectiori B a result, due to Aharoni, Maurey and Mityaginifilthe case of Abelian groups and to Gromov
(see[9]) in the case of general amenable groups, accordindpith equivariant embeddings must always
appear among those with minimal distortion. We finish witmsaapplications of this basic fact and some
open problems.

Remark on notation In addition to the Landau notation (0, @, and ®), in this paper we will use-
and <, > to denote, respectively, equality or the correspondingjuiaéity up to some universal positive
multiplicative constant. We will also writg[ f (x)|x € X] for the average of some functioh: X — C over
a finite setX. <

2 The embedding

We will specify our embedding through an indexed family oédtucible representations of the lamplighter
group, together with a vector in each of them. The direct stithese representations gives a single (fairly
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high-dimensional) representation of the lamplighter grdogether with the desired low-distortion equiv-
ariant embedding into Hilbert space through the image ofltrext sum of these vectors.

2.1 The lamplighter group and its representations

It seems helpful to recall the following heuristic desddptof the lamplighter group with the aforemen-
tioned generators, if only for the exposition of some of @iel proofs. Consider a collection nflamps
indexed byC,, (that is, say, positioned equidistantly around a circutexed), together with a lighter, who
walks along the street and either lights or douses lampsageethem unchanged.

We now interpret a paing j) in G as an operation on the whole system of lamps and lighter:atingd$ at
those positions indexed by the set C,, will be changed (lighted if dark or vice-versa), and the tegtwill
move to a position steps further round the circlgé,. (Note that alternatively we could think ox,(j) as
describing the state of the system with the lamps at positiox illuminated and the lighter at positioj

but this intuition is a little less appropriate for undergting the group law; of course, this ‘state’ description
of (x, j) simply arises by applying the ‘operationx,(j) to the state with all lamps doused and the lighter
initially at 0.)

Given this description, we can think of the generat6§,) as the act of changing the lamapthe current
location of the lamplighterand similarly (, 1) as the act of the lamplighter moving one position to thd nex
lamp around the circle. Let us writk, for the obvious nearest-neighbour-graph metric on theé@gecbup
Ch.

We shall use the following simple approximation for the wordtricp on G.

Lemma 2.1. The metrico satisfies
p((% 1), (%, 0) ~ de, (1. K) + max(de, (0. k) + 1)
EXAY
(where we interpret the maximum @# x =y).

Proof Sincep is an invariant metric it dices to show that for alix j) € G
p((x. ).(0.0)) ~ dc, (0. ]) + max(de, (0.K) + 1)

Thep-distance of X, j) from (@, 0) is the length of the shortest word 0}, 0) and (, 1) and their inverses
that evaluates tox( j). Certainly, such a word must contain at ledgf(0, j) copies of either@, 1) or its
inverse. Similarly, for ank € x, any word evaluating tox( j) must contain at leasic, (0, k) copies of the
same generator)(1), or its inverse, since the lamplighter has to travel tatosk € C,, in order to change
the lamp at positiok. In the latter case the word must also contain at least ong a0}, 0) for the act of
changing that lamp. This proves that

p((x 1), (0.0)) > e, 0, ) + max(de, (0.K) + 1)

On the other hand, this reasoning shows at oncepi{fat j), (x, 0)) actually equalslc, (0, j) for anyx € an

. . .. . . Cn
(since no lamps need be lit or doused for this journey of theplaghter). In addition, for anyx € C;", the
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lamplighter can change all the lamps>oby first traveling to the furthest point offrom 0 on one side of
Ch, lighting the necessary lamps along the way, and then rietito the origin and repeating this exercise
on the other side. This clearly takes at most 6 gaafdc, (0, k) + 1) steps, and therefore

p((% 1) (0,0)) < p((x. ). (%, 0)) + p((x, 0). (0, 0)) < dc, (0, ) + max(de, (0, k) + 1),

as required. m|

Next we recall some of the unitary representation&ofur list consists of all thereducible representa-
tions whenn is prime (these are found by the standard method of indu@pgesentations; see [10]). For
compositen some of these representations break up further. Howevesilvenly use members of this list
whole, and so will not trouble ourselves with the more coogikd decompositions for composiie The
representations of interest fall naturally into two faeli

e Some factor through the natural quotient mappByr C, - C, with kernel the normal subgroup
an x {0}, and these are then given just by the (one-dimensionaljuaible representations @f:
for eachu € {0,1,...,n - 1} we obtain the character

xu(x, ) = €M/Mde,
where of coursgy is just the trivial representatiofy, .

e The remainder of our list corresponds to direct sums of meiat one-dimensional irreducible rep-
resentations of the cube tied together by a permutatiooract the lamplighter-motion grou@,.
Leta : C, — C, denote the cyclic left shiftr(j) := j — 1, and define for eachA c C, the Walsh
function Wa : CS" — {-1,1} by Wa(x) = (-1)A™. ForA ¢ {0,Cn} we define the representation
A - Czlcnf\«C%” by

(@A, 1)V) = Vi1,
(ma(X, O)v), Wa(@(X))Vk = (_1)|Aﬂak(X)|Vk'

For A = C, this is replaced by its more degenerate relative, the omexasional representation

e, (% J) = (~1)XIdc = We, (@) (¥)Idc.

Note that there is a natural extension of the definition0fo the caseA = 0:
(700, 1)) :=Vks1  and  mp(x,0) := Idcen; ()

this is given simply by composing the quotie®s ¢ C,, -» C, with the regular representatia®, ~ C©,
and as such it is isomorphic to the direct sum of all the omeedisional representatiogs in the first part
of our list.

Before introducing our specific embedding, let us motivatedonstruction by considering some generalities
of the task of constructing a low distortion equivariant eabing from these ingredients. Suppose we have
constructed an equivariant embeddihgf G, expressed as

f(x, 1) = B(x v
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for some unitary representatigt G ~ H that decomposes as

ay ba
B ) = (B Prux)e( P Prax i),

ueC, r=1 0+ACC, s=1

wherea,, ba € N U {0} are multiplicities, and some vector

= (DD B Dven

ueC, r=1 0+AcCC, s=1

with VW' (respectivelyw™9) lying in ther™ (respectivelys") subspace corresponding to a subrepresentation
xu (respectivelyra).

We can calculate a counterpart to Lenimd 2.1 for use in ouesuient analysis:

ay ba
1706 ) = T, 007 = 3 > [ — 1 WP 37 %" 3" \Waak() - VS - vl @)

ueCp, r=1 ACC, s=1 keC,
A+0

Suppose now that we know fdrthe bounds

p((% ]), (. K) < 11T (x J) = £y, K)IIl < Dp((% ]). (¥: K))

(that is, distf) < D andf has been multiplied by a scalar if necessary so that it isauorractive). Then
one natural approach to proving lower bounds fois to consider the averages of the squared distances
o((% j), (v, K)Z and||f(x, j) — f(y, K2 for (x, j), (y, k) in some subsets @ for which the forms of the latter
averages simplify in terms of our orthogonal decomposifamf. A lower bound forD can be obtained

by comparing dferent such averages, as can some information on which egquivambeddings might be
close to attaining distortiol. Given the invariant nature of our functions of interest,caa simplify our
task further by settingy(k) = (0, 0) and averaging only ovex(j).

For the sake of simplicity, we will consider this heuristiz f in which the one-dimensional representations
xu appear only through the direct summ = @uechu- as described i {1), and in which all the multiplicities

ba are 1 (noting that if the vectar” is 0 then the representatiamn effectively does not appear).

Suppose, then, that is some subset @&. Then

o 1) 0.00°| < ) € H]

IA

E|lIf(x J) - f(0,0)%| (x j) € H]
D E[HnA(X, VA=A [(x ) € H]

AcCp
= 23 V-2 (Elrax D] D e HAVY). @)
AcCy, ACCy,

This will be most helpful to us if we can arrange that for eAch C,, the expectatiof® [nA(x, i) | (% ]) € H]

takes a simple form on the copy 6f» corresponding taa. This happens, for example,Hf is a subcube of
the canonical subgroubg“ x {0} of G. (In fact, this can be fitted into a more general discussicavefages



over subgroups, but we postpone this to Subse€fidn 3.H) #f{(x,0) : x € B} for someB c C, then a
straightforward calculation reducés (3) to

Ep((x0).(0.0)°|xcB]<2 > > |

AcCCp keCp
BnaK(A)%0

On the other hand, we can apply the upper boungifgr, j) — (@, 0)||> with (x, j) one of the generators to
see that )
D? = D?(({0}, 0), (0,0))” > I ({0}, 0) - f(0,0)” =2 > V]

AcC,
OeA

and

D? = D%p((0.2).0.0)° > (0.1~ f@.01P =2 > My, -vi[".

ACC,, keCp

Finally, by actually estimating the expectatiEriip((x, 0), (0, 0))2 | XC B] using LemmaZ2]1, we can now use
the above two inequalities to give a lower bound foby comparing

> M )

AcCC, keChn
BnaK(A)#0

against

SUME and > T, - (5)

AcC, ACC, keCp,
OeA

for different possible choices of.

Such a comparison might rely on the Poincaré inequalitytferdiscrete circl€,, applied to the functions
V2. However, a careful examination now shows that playing wlitferent choices oB ¢ C, does not
give a non-trivial (that is to say, growing im) lower bound forD, even though we know from the Markov
convexity calculation thad > +/logn.

This very failure does, however, suggest that relatively-thstortion embeddings might be found by looking
for thoseVv” that are close to saturating the Poincaré inequalityCigr For eachA C C, this inequality
bounds the overall average squarefiiesience

1 2
= >, M-wl
j,keCp
by a multiple of the local average
Z |V¢+1 Vﬂz
keChp

In general, the latter must be multiplied b§to bound the former, but this inequality is close to tightyonl
if the functionv? varies relatively slowly around the circle (that is, if itedfier transform is concentrated

6



at low frequencies). One finds that this near-saturatioretessary in order to obtain a small distortion
estimate from[{(4) and{5) wheld = C,. On the other hand, for more geneBathe resulting estimate can

be kept small only if we know that a positive proportion of thessyac, ||VA||2 is contributed by sets
that intersecB; and this, in turn, requires that the distribution of theaga normgivA||> be approximately
invariant under rotations of the sefsand be spread roughly uniformly over sé&<of a broad range of
different sizes.

We have suppressed the calculations behind this discysssowe are presently trying only to be motiva-
tional. One is led naturally to consider sé&tsC C,, that can be quite large, but are not evenly distributed
aroundC,, so that there is some large arc@f away fromA into which we can concentrate most of the
£?(Cy)-norm of a slowly-varying functiow?\. In the next subsection we will construct an embedding from
this intuition, using all subset& that lie within some aré of the circleC, of length|n/3]. Of course, we
must concede a distortion of lea@( /logn) somewhere, and it turns that this is manifested for the best
possible choice 0 in a slight shortfall from saturation of the Poincaré inaliy.

2.2 The embedding itself

The irreducible representations and corresponding v&that we will use will be indexed by pairs, @)
for | an arc (i.e. a connected subset)Gy of length|n/3] andA C |. Let us writes for the family of
such arcs, of which there arg and®I for the collection of subsets of a given drcFor each pairl( A),
the corresponding irreducible representation will simipéy/that indexed b in the list of the previous
subsection, retaining the convention that foe 0 we identify 7y with the regular-quotient representation
C,1Cp » C, ~ C®, which is isomorphic to the direct su@uecn)(u.

We still need to specify the associated veatdt. We will take this to depend only o defining (/L)kgcn

by
| kel

_Jn
Yk "{ So.(k) kel

This definition depends on the choice of the two parameiens The analysis that follows below can be
performed by first allowing these to be free and then optingizhem; we obtain

=1 and ¢ := 1
= /e T yn2ve
Another optimization is also implicit in our definition of: a priori, we could have takev] to be of the

form ¢ - dc,(k, 1)* for k ¢ | and then optimized also over> 0. This optimization does naturally lead to the
exponenty = %: it turns out that all other values afgive distortion following a positive power law im

Note that this functiov, has the qualitative properties suggested by our heurisgimaent of the previous
subsection: it witnesses the small constafr?lto within a factor of logn for the Poincaré inequality on
the circleC,, and has only a very small part of i€8(C,)-norm inside the ar¢ > A. We have restricted
ourselves to those sefsthat can be contained in some &raf the circle precisely so that in each summand
with representation 5 the associated vecteft' can be chosen to take small valuesfobut still be close to
optimal for the Poincaré inequality.



Assembling the above, our overall embeddinget C,, is given by

f(x ) = B P matx V' = D D Wa@*(9) - Vi ke

lel AePIl lel AePI

We can now specialize the identifyl (2) to this data (adjgst;mour convention fory) and so compute:

1) - 0P =SS Wala (v, - vl'(|2

lel AePl keCp
~ Z Z (Z Viee) ~ Y | Z Lowaak()=-1) |Vk| ) (

lel AcPl keCp keCn

where in the second step we have used the additional facotinatectors ‘@()kecn have non-negative real
entries, so that

k | 112 k | | k 12 | 12 2
Wa(@ (X))WViy | = Vi = [WA@ O My ; = Vi) + (Wa@ (X)) = DV ~ Vi1 = k| + Lwacakoo)=1 VK| -
i i i

Proof of Theorem[I.1 We prove the upper and lower bounds|ditx, j) — f(y, K)||* separately. Note that
since both this embedded distance and the original metaie G-invariant it sifices to consider the case

(v.K) = (0,0).
Step 1: upper bound We wish to show that
If(x, j) - £(0,0)l s ylogn-p((x, j), (@,0))

for all (x,]) € G. Sincep is a word metric it sffices to check this forx j) equal to each of the two
generators.

Suppose first thatx( j) = ({0}, 0). Then our formula{6) gives

111010 = FO.00 ~ 3 3" 3" Luarcomp=—n Ml = D D Do ML =nn 3 A1~ P2 = 1,
lel AePl keCp lel AcPl keA AcPl
owing to our choice of;.
Similarly, setting &, j) = (0, 1), we obtain
0.1~ f@.0N2 = > > (Y Moy —Vil* + Z L= M) = D0 DTS Mar V7

lel AePl keCp lel AePl keCp

From our choice of! we deduce that

0 ifkk+1el
RO P e e
dcn(k,|) > n >
and so the above sum can be bounded by
Ln/3] 2 Ln/3J
1(0,1) - £(0,0)> < 2622 Z Z ( ) = 2522 Z Z =~ 26°n2"3logn ~ logn,
lel AePl k=1 leI AePl k=1
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owing to our choice o6.

Taking square roots and comparing these two estimates kdtapproximation given by Lemma 2.1 com-
pletes the check of both generators, and so also the probieadigper bound; note that these two checks
already dictate our choice gfands up to O(+/logn) andQ(1/ +/log n) respectively.

Step 2: lower bound We will obtain the lower bound

(X J) = £(0,0)ll 2 p((x, }), (0,0))

Z Z ( Z VII<+j —V|'<|2 + Z Lowa(e*(9)=-1y |V|'<|2)

lel AcPl keCp keChp

by breaking the sum

into the two obvious subsums and estimating these separatel

Step 2.1: first sum We will use a rather crude estimate obtained by considermigpuys ranges of possible
values ofdc, (0, j) and for each of them summing over only a certain rande thfis will be enough to obtain
the lower bound we seek.

Observe from the definition m}( that ifdc, (0, j) < dc,(k, 1) <n/3—dc,(0, j) then
de, (0, j)

N

Suppose first thadc, (0, j) < n/100; then taking only thodein the above range gives the lower bound

PIDIPI

2 de, @)
| | 2 Ch\Ys
Vi~V 207D D] D [—)]
lel AcPl keCp | lel AePl \k: dc, (0,))<dc, (k.1)<n/3-dc, (0.)) Vdc, (k1)

[n/3-n/100] 1

k=n/100] K

| |

> 6%, (0, )2 (n2v3-1) ~ (62n273) dc., (0, )% ~ de, (0, ),

recalling our choice of.

On the other hand, iflc,(0, j)) > n/100, then for those two arc} and J, of pointsk € C, satisfying
0 < dc,(k, 1) < n/1000, at least one of them, sady, is such thatlc,(k + j,1) > 10dc, (k, ) for all k € J;.

Thesek € J; therefore satisfy also
Vi.; —Vi| 2 Vn/1000

Therefore, taking instead the sum owvglin the above estimate, we have

5350 531275 30 5 (V0 () oo = e 0

lel AePl keCp lel AcPl keJy

In either case, we obtain )
DTS Me — W 2 4,000

lel AePl keCp




Step 2.2: second sumWe now require a lower bound on

Z Z Z Lyanas ) oda M|~ = Z Z |V|'<|2( Z Ljana¥(ol oda))

lel AcPl keCy leT keC, AcPl

Note that for any non-empty subg$tof C, and for eacH € 7, if we choose a subsét of | uniformly at
random then the probability that the intersection $fze Blisodd is ¥2if INnB# 0 and 0ifl N B = 0.
Indeed, choosing a subs&bf | uniformly at random and then consideriAgh B simply generates a subset
of I n B uniformly at random; but precisely half of these are odd ssilen B = 0, in which case they are all
even. Applying this reasoning with = o*(x), we conclude that

1 _
Z Lyanakx) odd = §|50| 1L nakge0 = 23 Mok s0)
AP

and so our sum of interest simplifies to

23t Z Z Lm0} |VL|2‘

lel keCy

Suppose that € xis a point ofx at a maximal distance from 0 @,. Then, in particular] Na¥(x) 2 I N{¢+k}
is nonempty for alk € a~¢(l), and so

l3-1 Z Z 11 nak ()20} |V|I<|2 > 23 Z Z |V‘I<|2'

lel keCy €T kea {(I)

Therefore it will sifice to give a suitably strong lower bound B, |v|'(|2. Moreover we see from the
rotational symmetry in our definition of that this quantity is the same for dlle 7. We may therefore
assume that in the natural labeling@fas{1, 2, ..., n} the arcl appears as an initial segment, and appealing
to symmetry further, we may replaé¢eby —¢ and assume thdte {1,2,...,|[n/2]}. Given this, the terms
appearing in the desired sum are:

e terms equal tg corresponding ti e | N af(1), and hence tke {¢ +1,...,[n/3]};

e the remaining termé, 6 V2,6 V3,...,6 V¢.

Squaring these and summing them therefore yields

t
(I0/31 = O + 62 >t~ (/3= O + 62,
t=1
and so overall

2
D020 2 Liavakeor oda - 2 n2Y3(/3 - On? + 6%%) 2 1+ 2,
lel AePl keCp

recalling again our choices éfands.

Completion of step 2 Given the above estimates for the first and second sum of guegsion we deduce
the lower bound
1£(x ) = £(@,0)% 2 dc, (0, j)* + 1+ 2.

Recalling the choice of, taking square roots and comparing this with the expressidremma2.1l com-
pletes the proof. m]
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3 Discussion and further questions

This section is composed of two parts.

In Subsection 3]1 we present the known result that equiMaBEaclidean embeddings of finite groups with
invariant metrics always appear among the embeddings dfmalrdistortion. This justifies a reduction to
the consideration of equivariant embeddings of which wa tjiee two applications.

In Subsection 3]2 we discuss some further questions.

3.1 Equivariant embeddings sifice

Unlike the special embedding of the lamplighter group cmmséd in Subsectioh 2.2, a generic Hilbert
space embedding is certainly not equivariant. Howevewnritd out that searching in this smaller class
was, in a sense, guaranteed to work: for an invariant metri@a dinite group the restricted family of
equivariant embeddings must contain embeddings of distodt least as low as any other. This is the
conclusion of Lemma_3l1 below. For the same reasontiic&s to consider equivariant embeddings when
proving Euclidean distortion lower bounds for invarianttries on finite groups. The formulation we give
of Lemmal3.1 below is a simplified version for the case of figiteups which we will use to investigate
guantitative distortion bounds. In the case of infinite Adelgroups this lemma was used by Aharoni, Mau-
rey and Mityagin[[1] in their work on uniform embeddings ofrig&h spaces into Hilbert space (see also
chapter 8 in the book [6]). The lemma was discovered indegthdby Gromov (unpublished) in the case
of arbitrary amenable groups, and was used by de CornuksseFa and Valette]|[9] (in terms of Hilbert
space valued cocycles) to prove qualitative non-embetiyat@sults for certain such groups. Note that an
analogous lemma holds for uniform embeddings into Hilbesice, but for the sake of simplicity we present
only the bi-Lipschitz case.

Lemma 3.1. If a finite group G with a left-invariant metrip has a Euclidean embedding f such that

SO = FO)I < p(3) < AIFR) = T )

for all X,y € G, then there is an equivariant embedding g into a Hilbertcgs#/, say g= B(-)v for ve H
andg : G ~ H, which satisfies the same inequalities agdpn

Proof Define a positive semidefinite scalar product @ by K(dy, dy) = ﬁ > cl{f(zX, f(zy)). The

required embedding : G — C® is simply given byg(X) := 64. Lets denote the left-regular representation
of G onCC. Theng(x) = B(X)de, Whereeis the identity element oB. Now we compute that

lg®) -gMllig 1 3 (||f(zx)||2+||f(zw||2—2<f(zx),f(zw)_ 1 an(zx)— fzyI?
pxy)? 1G4 p(X.Y)? CIGI & p(zxzy?

(8)

By (7) each of the summands i (8) lies betweg¢B2and A, and hence so does the whole expression, as
required. It remains to note thgd(x)|| is independent ok € G, so thatg is a unitary representation with
respect to the scalar produgt m|

Given this, we can now prove for arbitrary finite groups a falimed version of the heuristic lower-bound
analysis that was presented in Subsedtioh 2.1 to motivatedhstruction of our embedding:
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Lemma 3.2. Let G be a finite group generated by § G and letp be the corresponding word metric.
Letyr ~ Hi,...,yt ~ H; be the nontrivial irreducible representations of G. Thearéhexist integers
.,a > Osatisfyingy|_, aj dim(%)) < |G| and sets of vector/'}™ | € Hj for which

YxeG P(X, €)2 Zses ZJ 1Zr 1”71(S)V” —vaH

c(G) >
2l ISIZty i [Ivie]f*

Proof Assume that there exists a Euclidean embeddingptisfying [7), and leg be the equivariant
embedding from LemmB_3.1. Note that its dimension is at n®st We can writeg = @ﬁ_ly$aj,

whereaJ € N U {0} are multiplicities. Correspondingly we decompose the areetfrom Lemm as

V= @J LB, viT. Then

Dipe? < A g - 9@l
xeG xeG
t aj . . 2
= A2 2 2 v - |
xeG j=1r=1
3
- AZZZZ(ZHM ~2(3i9v". )
xeG j=1r=
t g
= 2A%(G| ZHV”” 2A222<(Zy1(x))v” V”>
j=1r=1 j=1 r=1 ‘‘ xeG
t g
= 2A%G| (v 9)
j=1r=1

since} yc vj(X) = 0, by the irreducibility ofy; (see[[10]). On the other hand

S| = ;p(& &2 > é ; lo(9) - 9@ = = Z Z Z ysvi =it

seS j=1r=1

It follows that

‘ —
AB> | ZxecPX €2 Xss T S [lyi(ovir 2— Vi
i 1250 2% v

Infimizing overAB yields the required result. m|

Remark We can obtain a larger family of lower bounds {G) by modifying the first part of the proof
of Lemmd 3.2 to the case of a sum over a subgrdugf G. However, this can lead to a more complicated
expression owing to the decomposition of the represemisiipinto smaller irreducible representations of
H. Letmy ~ K1,...,mim ~ Kmbe the irreducible representationsrbfwherer; is the trivial representation

Idg,. Upon ertlng yj as@P n t, “ and correspondingly™’ as ;" 1@3“1@,2‘, the sumy. e vj(X)

equals(lHlIdeBle @ 0. This leads to a modification of](9), and thence to anotheetdbound on the
Euclidean distortion via the same argument.
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In the case of the lamplighter group, this further decommosiremains manageable, and it was by trying
to approach equality in the resulting lower bounds that weeved to the embedding of Subsectionl 2.2.

Remark As indicated in Subsectidn 2.1, the lamplighter gr@pg- C, @ C,, has the curious property that
it does not embed into Hilbert space with distortion bounitelépendent o, but this nonembeddabability
is not detectable (in the sense of Lemimd 3.2 and the remarrkall@vs it) by comparing the averages of
the squared group distangels, y)? and of the squared embedded distanidés) — f(y)||2 across subgroups
of G (the natural averages to take) against the averages aoaagrnovements using the two generators.
We find instead that for any given subgroup@fG itself has embeddings into Hilbert space that look good
on average across that subgroup, and ‘push’ the bad distdiihich we know must be at lea@( +/logn)
somewhere) into some set of pairs of point in the group thataherage does not see. We should stress
that diferent subgroups may require slightlyfdrent embeddings: th@(+/logn) distortion of our actual
construction of Subsectidn 2.2, for example, can be datdntdooking at averages across suitably-chosen
subgroups o5, while other embeddings, poorer overall, cannot be deddnyehose subgroups. The point
is that no small collection of flierent subgroups reliably finds the distortion. This coriolusollows from
considering a number of variants of the embedding of Sulwsg2t2; however, the necessary calculations
seem more lengthy than revealing and we will not discuss timetietail here. Furthermore, one can also
compute easily given the methods bf [17] ti@at like Hilbert space, does have Markov type 2 (another
averaging-based invariant for metric spaces introduce8dilyin [5]) with constant independent of so
that this also does not give an observable obstruction toertispace embeddings.

It results that both the minimal Euclidean distortionGéand also embeddings witnessing that distortion are
hard to find using standard averaging-based machinery. $oitedelicate averaging-based obstruction,
such as the Markov convexity actually used to study this groul14], is really necessary. Furthermore,
while that application of Markov convexity in [14] does anmbtio the identification of a large embedded
tree inG, it is not at all clear a priori that the minimal-distortiombeddings of this embedded tree already
tell us just how bad the Euclidean distortion of the wholeugronust be, or how to attain that distortion. It
is somewhat surprising that this invariant happens to diigecbrrect growth rate of the Euclidean distortion,
and it might be interesting to ask whether Markov convexitybased, in this case, on the presence of
large embedded trees insi— can be replaced by some averaging argument usingferaft kind of
substructure o to give the same lower bound. <

We will finish our discussion of the consequences of Lernmba&H a more concrete application. Recall
that a metric spaceX(p) is of negative typeif the spaceX with the square root metrig/o embeds isomet-
rically into Hilbert space. The Goemans-Linial conjectasserted that any such metric also embeds with
bounded distortion intd.;. This is now known to be false in general: see Khot and Vislib2]j. Their
construction did not give an invariant group metric; howewaore recently Lee and Naar [13] have shown
that a particular invariant metric on the Heisenberg grauglso a counterexample to the Goemans-Linial
conjecture, using a result of Cheeger and Kleinér [8]. Onotther hand, the following proposition shows
that such counterexamples cannot arise from Abelian greupjgct to a restriction on the exponent of the
group (and we suspect that this restriction can be removed).

Proposition 3.3. Let (G, p) be a finite Abelian group equipped with an invariant metricupfose that
2 < me N satisfies mx Ofor all x e G. Let D= c, (G, \/ﬁ). Then

c1(G, p) < D*logm
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andforalll<p<?2
D4/pP

p-1

Cp (G,pl/p) <

Proof LetT = G denote the dual 06. By Lemmal3.](G, vp) admits a distortior® embedding into
Hilbert space which is equivariant, and so which breaks anfdirect sum of characters and associated
vectors. By rescaling it follows that there dgg},r € R, such that for alk € G,

Dla - ¥ <p(x0)<D? > a, [1- x(YI2. (10)

xel xer’
For everyx € G andk > 0 denote
AR ={rel: 278 < y(x) -1 < 271},

We also defineA(x) = {y € I' : x(X) = 0}. ThenT" = A.(X) U U o A(X) and this union is disjoint.
Moreover, 1= x(0) = x(m¥ = Y(X)™, so thaty(x) is anmi" root of unity. Therefore ify(x) # 0 then
(x) - 1) > [e/m - 1] > L.t follows that for finitek > log, m+ 1 the set(X) is empty.

It follows routinely from the definition of(x) that, firstly,

D adi-xF=2% Y a -y, (11)
XEAKX) XEA(X)

and, secondly, that for evegye Ax(X)
1= (077 2 292 - X (9. (12)

Moreover, by the invariance gfand the triangle inequality, we know that for evéry 1,

2Tp(x,0) 2 p(21x,0). (13)
Therefore, for everk > 1 we have
_ @) 2k-1 1 _
27 > all-x(F = rp(x 0% sz (2% Za)(|1 — (@1’
xer xel'
1 k-1]2 GZ) 22k @ 2«
255 0, Al 5 D all®PE 5y 0 al-xMl. (14)
XeAk(X) XEAKX) XEAX)
Thus (fork > 1 by (I4), and trivially fork = 0)
> a -y < D? ) all-x(P, (15)
XEA(X) xer'

and so, combining the above,

X, 0 @)
p( ) < al-xP<2) all-x®W=2 > > all-xM
xer xer k<log,(2m) yeAx(X)
dE)Dzlog mZ all-xy(WP < D 2 logm- p(x,0). (16)
xer’
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Let u be the measure dngiven byu({x}) = a, and consider the embeddirfg: G — L(I", x) defined by
f(X)(x) = xv(X). Inequality [16) says precisely that dift(< D*logm. This completes the proof of the first
assertion of the proposition.

The proof of the second assertion is similar. AnalogousifZit),
DT a -y =2 N A [1- y()P.
XEA(X) XEA(X)

Arguing as for[(1#4)
> a - (P s D27 PR 41— 4 (P,

XEAK(X) xer
Hence
p(x 0) 2 _ 52-p b_ 2\ p
S5 < ) all-x(WP <2 ) all-x(9P =2 Z > adl- x|
xell xel' k=0 yeAx(X)
2 X o (p_1 2 D? 2
—(p- - - . .
$D? Y 2P 8l < Ty P60 S T p(x0) (A7)
k=0 xer
and we may now take the sanfies above to give the required embedding ing@l, 1). m]

Remark Propositior 33 implies, in particular, thanyinvariant metrico on the discrete cubg®, 1}9 for
which ¢, ({0, 19, \/,5) = D has alsoc; ({O, 1}d,p) < D% It seems likely that the fourth power is far from
optimal. More interestingly, for general finite Abelian gps we see no compelling reason to believe that
the factor of logmin Propositior[ 3.8 is necessary. If it can be removed, thigldvamply that no invariant
metric on a finite Abelian group can serve as a counterexatopiee Goemans-Linial conjecture. (Note
that whenG is the cyclic groupCyy, the factor logn can already be improved tglogm- log logm by the
general result of [4].) <

3.2 Further questions

We speculate that the methods suggested by Lemnha 3.1 caredeacugive a fuller analysis of minimal
distortion Euclidean embeddings for various groups anddganeous spaces. For example, our experience
with the lamplighter group suggests that the methods of fiajger may bear on other wreath products
L ¢ H; however, we should observe at once that the behaviour sétt@n depend radically on the choice of
generators, even among those obtained by choosing gersef@atdhe acting groupd and then including a
suitable additional member af*:

Proposition 3.4. Let S be a uniformly random subset qf &f cardinality |S| > 100 logn, conditioned on
the event that it generates,Qwhich occurs asymptotically almost surely). Consider ireath product
C, 1 C,, equipped with the word metriccorresponding to the generating géb} x S) U {({0}, 0)}. Then

c2(C22Cp,p) 2 Vi

asymptotically almost surely.
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Proof LetG be the Cayley graph @, with the generating s&. Then by [[2] the metrip onC,C, is the
shortest path metric on the zig-zag product of the Hammir’@ﬁg" (with the standard graph structure)
and the grapl@, which we denote by (we refer to[[2] 18] for the definition and properties of thg-zag
product). Letl; be the normalized second eigenvalué:@f and let1, be the normalized second eigenvalue
of G. Then it is well known thafl; = 1 - % and the Alon-Roichman theorem [3] states thats bounded
away from 1 asymptotically almost surely. By Theorem 4.31i8]][ the normalized second eigenvaludif
which we denote by, is at most

%(1—A§)Al+%\/(1—/12) RB+4d<1-

where the last estimate holds asymptotically almost surklfollows from a standard argument that for
everyf : C,2Cp — H,

_ 1
|C2 t Cn|2

9(1)

2 1
2 0= TOIP < 7= iz 2, 1100 FOIP.

x,yeCoCp xyeE(H)

Hence, iff satisfiesp(x,y) < [[T(X) — f(Y)I| < Dp(x,y) for everyx,y € C, ¢ Cy, then also

# 2 - nD? X V)2 < nD?

C2¢ Cal? WGZ;C POV e Xyémp by
Now observe that two randomly chosen points of the lampdighgtoup diter in their first coordinate in a
set of sizeQ)(n) with probability bounded away from 0. Therefore a positireportion of the terms in the
left-hand side above are at le&¥t?), since if two statex andy of the lamplighter group diier so much,
the lamplighter must change(n) lamps to pass between them, irrespective of the choicer@drgeors in
the “movement groupC,,. It follows thatD > +/n, as required. m]

It seems natural that the lower bound(f+/n) obtained above is tight, but we have not investigated this.

In spite of the possibility of a purely spectral argumentraPiiopositiori 34, we hope that a consideration
of equivariant embeddings and their decompositions intadircible representations may shed some light
on other families of wreath products, or other semidireotipcts.

Finally, we should note that our construction of Subsedfdhclearly rests crucially on special properties
of Hilbert space embeddings, and so the following quesgonains essentially untouched:

Question 3.5. Does the infimal distortion1€C, 2 C,,) of the lamplighter group with the metrjcinto the
Banach space 1.tend to infinity with n?
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