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FLAT MODULES OVER VALUATION RINGS

FRANÇOIS COUCHOT

Abstract. Let R be a valuation ring and let Q be its total quotient ring.
It is proved that any singly projective (respectively flat) module is finitely
projective if and only if Q is maximal (respectively artinian). It is shown that
each singly projective module is a content module if and only if any non-unit of
R is a zero-divisor and that each singly projective module is locally projective
if and only if R is self injective. Moreover, R is maximal if and only if each
singly projective module is separable, if and only if any flat content module is
locally projective. Necessary and sufficient conditions are given for a valuation
ring with non-zero zero-divisors to be strongly coherent or π-coherent.

A complete characterization of semihereditary commutative rings which are
π-coherent is given. When R is a commutative ring with a self FP-injective
quotient ring Q, it is proved that each flat R-module is finitely projective if
and only if Q is perfect.

In this paper, we consider the following properties of modules: P-flatness, flat-
ness, content flatness, local projectivity, finite projectivity and single projectivity.
We investigate the relations between these properties when R is a PP-ring or a valu-
ation ring. Garfinkel ([11]), Zimmermann-Huisgen ([22]), and Gruson and Raynaud
([13]) introduced the concepts of locally projective modules and strongly coherent
rings and developed important theories on these. The notions of finitely projec-
tive modules and π-coherent rings are due to Jones ([15]). An interesting study of
finitely projective modules and singly projective modules is also done by Azumaya
in [1]. For a module M over a ring R, the following implications always hold:

M is projective ⇒ M is locally projective ⇒ M is flat content
⇓ ⇓

M is finitely projective ⇒ M is flat
⇓ ⇓

M is singly projective ⇒ M is P− flat,

but there are not generally reversible. However, if R satisfies an additional condi-
tion, we get some equivalences. For instance, in [2], Bass defined a ring R to be
right perfect if each flat right module is projective. In [23] it is proved that a ring
R is right perfect if and only if each flat right module is locally projective, and if
and only if each locally projective right module is projective. If R is a commutative
arithmetic ring, i.e. a ring whose lattice of ideals is distributive, then any P-flat
module is flat. By [1, Proposition 16], if R is a commutative domain, each P-flat
module is singly projective, and by [1, Proposition 18 and 15] any flat left module is
finitely projective if R is a commutative arithmetic domain or a left noetherian ring.
Consequently, if R is a valuation domain each P-flat module is finitely projective.
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2 FRANÇOIS COUCHOT

When R is a valuation ring, we prove that this result holds if and only if the ring
Q of quotients of R is artinian. Moreover, we show that R is maximal if and only
if any singly projective module is separable or any flat content module is locally
projective, and that Q is maximal if and only if each singly projective module is
finitely projective.

In Section 2, necessary and sufficient conditions are given for a commutative
semihereditary ring to be π-coherent. Moreover we characterize commutative PP-
rings for which each product of singly projective modules is singly projective.

In the last section we study the valuation rings R for which each product of
content (respectively singly, finitely, locally projective) modules is content (respec-
tively singly, finitely, locally projective). The results are similar to those obtained
by Zimmermann-Huisgen and Franzen in [8], and by Kemper in [16], when R is a
domain. However, each valuation domain is π-coherent but not necessarily strongly
coherent. We prove that a valuation ring with non-zero zero-divisors is π-coherent
if and only if it is strongly coherent.

1. Definitions and preliminaries

If A is a subset of a ring R, we denote respectively by ℓ(A) and r(A) its left
annihilator and its right annihilator. Given a ring R and a left R-module M , we
say that M is P-flat if, for any (s, x) ∈ R×M such that sx = 0, x ∈ r(s)M . When
R is a domain, M is P-flat if and only if it is torsion-free. As in [1], we say that M is
finitely projective (respectively singly projective) if, for any finitely generated
(respectively cyclic) submodule N , the inclusion map N → M factors through a
free module F . A finitely projective module is called f-projective in [15]. As in [22]
we say that M is locally projective if, for any finitely generated submodule N ,
there exist a free module F , an homomorphism φ : M → F and an homomorphism
π : F → M such that π(φ(x)) = x, ∀x ∈ N . A locally projective module is said
to be either a trace module or a universally torsionless module in [11]. Given a
ring R, a left R-module M and x ∈ M , the content ideal c(x) of x in M , is the
intersection of all right ideals A for which x ∈ AM . We say that M is a content

module if x ∈ c(x)M, ∀x ∈ M .
It is obvious that each locally projective module is finitely projective but the

converse doesn’t generally hold. For instance, if R is a commutative domain with
quotient field Q 6= R, then Q is a finitely projective R-module: if N is a finitely
generated submodule of Q, there exists 0 6= s ∈ R such that sN ⊆ R, whence the
inclusion map N → Q factors through R by using the multiplications by s and s−1;
but Q is not locally projective because the only homormorphism from Q into a free
R-module is zero.

Proposition 1.1. Let R be a ring. Then:

(1) Each singly projective left R-module M is P-flat. The converse holds if R
is a domain.

(2) Any P-flat cyclic left module is flat.
(3) Each P-flat content left module M is singly projective.

Proof. (1). Let 0 6= x ∈ M and r ∈ R such that rx = 0. There exist a
free module F and two homomorphisms φ : Rx → F and π : F → M such that
π ◦ φ is the inclusion map Rx → M . Since rφ(x) = 0 and F is free, there exist
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s1, . . . , sn ∈ r(r) and y1, . . . , yn ∈ F such that φ(x) = s1y1 + · · · + snyn. Then
x = s1π(y1) + · · ·+ snπ(yn). The last assertion is obvious.

(2). Let C be a cyclic left module generated by x and let A be a right ideal.
Then each element of A⊗R C is of the form a⊗ x for some a ∈ A. If ax = 0 then
∃b ∈ r(a) such that x = bx. Therefore a⊗x = a⊗ bx = ab⊗x = 0. Hence C is flat.

(3). Let x ∈ M . Then, since x ∈ c(x)M there exist a1, . . . , an ∈ c(x) and
x1, . . . , xn ∈ M such that x = a1x1 + · · · + anxn. Let b ∈ R such that bx = 0.
Therefore x ∈ r(b)M because M is P-flat. It follows that c(x) ⊆ r(b). So, if we put
φ(rx) = (ra1, . . . , ran), then φ is a well defined homomorphism which factors the
inclusion map Rx → M through RR

n. �

Theorem 1.2. A ring R is left perfect if and only if each flat left module is a
content module.

Proof. If R is left perfect then each flat left module is projective. Conversely
suppose that each flat left module is a content module. Let (ak)k∈N be a family
of elements of R, let (ek)k∈N be a basis of a free left module F and let G be the
submodule of F generated by {ek − akek+1 | k ∈ N}. By [2, Lemma 1.1] F/G is
flat. We put zk = ek +G, ∀k ∈ N. Since F/G is content and zk = akzk+1, ∀k ∈ N,
there exist c ∈ R and n ∈ N such that z0 = czn and c(z0) = cR. It follows that
cR = can . . . apR, ∀p > n. Since z0 = a0 . . . an−1zn, there exists k > n such that
can . . . ak = a0 . . . ak. Consequently a0 . . . akR = a0 . . . apR, ∀p ≥ k. So, R is left
perfect because it satisfies the descending chain condition on principal right ideals
by [2, Theorem P]. �

Given a ring R and a left R-module M , we say that M is P-injective if, for
any (s, x) ∈ R × M such that ℓ(s)x = 0, x ∈ sM . When R is a domain, M
is P-injective if and only if it is divisible. As in [19], we say that M is finitely

injective (respectively FP-injective) if, for any finitely generated submodule A
of a (respectively finitely presented) left module B, each homomorphism from A to
M extends to B. If M is an R-module, we put M∗ = HomR(M,R).

Proposition 1.3. Let R be a ring. Then:

(1) If R is a P-injective left module then each singly projective left module is
P-injective;

(2) If R is a FP-injective left module then each finitely projective left module is
FP-injective and a content module;

(3) If R is an injective module then each singly projective module is finitely
injective and locally projective.

Proof. Let M be a left module, F a free left module and π : F → M an
epimorphism.

1. Assume that M is singly projective. Let x ∈ M and r ∈ R such that ℓ(r)x = 0.
There exists a homomorphism φ : Rx → F such that π ◦ φ is the inclusion map
Rx → M . Since F is P-injective, φ(x) = ry for some y ∈ F . Then x = rπ(y).

2. Assume that M is finitely projective. Let L be a finitely generated free left
module, let N be a finitely generated submodule of L and let f : N → M be a
homomorphism. Then f(N) is a finitely generated submodule ofM . So, there exists
a homomorphism φ : f(N) → F such that π ◦ φ is the inclusion map f(N) → M .
Since F is FP-injective, there exists a morphism g : L → F such that φ ◦ f is the
restriction of g to N . Now it is easy to check that π ◦ g is the restriction of f to N .



4 FRANÇOIS COUCHOT

Let x ∈ M . There exists a homomorphism φ : Rx → F such that π ◦ φ is the
inclusion map Rx → M . Let {ei | i ∈ I} be a basis of F . There exist a finite subset
J of I and a family (ai)i∈J of elements of R such that φ(x) =

∑
i∈J aiei. Let A be

the right ideal generated by (ai)i∈J . Then (0 : x) = (0 : φ(x)) = ℓ(A). Let B be a
right ideal such that x ∈ BM . Then x =

∑p
k=1 bkxk where bk ∈ B and xk ∈ M ,

∀k, 1 ≤ k ≤ p. Let N be the submodule of M generated by {π(ei) | i ∈ J} ∪ {xk |
1 ≤ k ≤ p}. Thus there exists a homomorphism ϕ : N → F such that π ◦ ϕ is the
inclusion map N → M . Therefore there exist a finite subset K of I and two families
{dk,j | 1 ≤ k ≤ p, j ∈ K} and {ci,j | (i, j) ∈ J × K} of elements of R such that
ϕ(π(ei)) =

∑
j∈K ci,jej, ∀i ∈ J and ϕ(xk) =

∑
j∈K dk,jej, ∀k, 1 ≤ k ≤ p. It follows

that ϕ(x) =
∑

j∈K(
∑

i∈J aici,j)ej =
∑

j∈K(
∑p

k=1 bkdk,j)ej . So,
∑

i∈J aici,j =∑p
k=1 bkdk,j , ∀j ∈ K. Let A′ be the right ideal generated by {

∑
i∈J aici,j | j ∈ K}.

Then A′ ⊆ A and A′ ⊆ B. Moreover, ℓ(A) = (0 : x) = (0 : ϕ(x)) = ℓ(A′). By [14,
Corollary 2.5] A = A′. So, A ⊆ B. We conclude that c(x) = A and M is a content
module.

3. Let M be a singly projective module and x ∈ M . So, there exists a homo-
morphism φ : Rx → F such that π ◦ φ is the inclusion map Rx → M . Since F
is finitely injective, we can extend φ to M . By using a basis of F we deduce that
x =

∑n
k=1 φk(x)xk where φk ∈ M∗ and xk ∈ M, ∀k, 1 ≤ k ≤ n. Hence M is

locally projective by [11, Theorem 3.2] or [22, Theorem 2.4]. By a similar proof
as in (2), we show that M is finitely injective, except that L is not necessarily a
finitely generated free module. �

A short exact sequence of left R-modules 0 → N → M → L → 0 is pure if it
remains exact when tensoring it with any right R-module. We say that N is a pure
submodule of M . This property holds if L is flat.

Lemma 1.4. Let R be a local ring, let P be its maximal ideal and let N be a flat
left R-module. Assume that N is generated by a family (xi)i∈I of elements of N
such that (xi + PN)i∈I is a basis of N/PN . Then N is free.

Proof. Let (ei)i∈I be a basis of a free left module F , let α : F → N be the
homomorphism defined by α(ei) = xi, ∀i ∈ I and let L be the kernel of α. It is
easy to check that L ⊆ PF . Let y ∈ L . We have y =

∑
i∈J aiei where J is a finite

subset of I and ai ∈ P, ∀i ∈ J . Since L is a pure submodule of F , ∀i ∈ J there
exists yi ∈ L such that

∑
i∈J aiei =

∑
i∈J aiyi. We have yi =

∑
j∈Ji

bi,jej where Ji
is a finite subset of I, bi,j ∈ P, ∀(i, j) ∈ J × Ji. Let K = J ∪ (∪i∈JJi). If i ∈ K \ J
we put ai = 0 and ai,j = 0, ∀j ∈ K, and if j ∈ K \ Ji we put ai,j = 0 too. We
get

∑
i∈K aiei =

∑
j∈K(

∑
i∈K aibi,j)ej . It follows that aj =

∑
i∈K aibi,j . So, if A

is the right ideal generated by {ai | i ∈ K}, then A = AP . By Nakayama lemma
A = 0, whence F ∼= N . �

A left R-module is said to be a Mittag-Leffler module if, for each index set Λ,
the natural homomorphism RΛ ⊗R M → MΛ is injective. The following lemma is
a slight generalization of [6, Proposition 2.3].

Lemma 1.5. Let R be a subring of a ring S and let M be a flat left R-module.
Assume that S ⊗R M is finitely projective over S. Then M is finitely projective.

Proof. By [15, Proposition 2.7] a module is finitely projective if and only if it
is a flat Mittag-Leffler module. So we do as in the proof of [6, Proposition 2.3]. �
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From this lemma and [15, Proposition 2.7] we deduce the following proposition.
We can also see .

Proposition 1.6. Let R be a subring of a left perfect ring S. Then each flat left
R-module is finitely projective.

Proposition 1.7. Let R be a commutative ring and let S be a multiplicative subset
of R. Then:

(1) For each singly (respectively finitely, locally) projective R-module M , S−1M
is singly (respectively finitely, locally) projective over S−1R;

(2) Let M be a singly (respectively finitely) projective S−1R-module. If S con-
tains no zero-divisors then M is singly (respectively finitely) projective over
R.

Proof. (1). We assume that M 6= 0. Let N be a cyclic (respectively finitely
generated) submodule of S−1M . Then there exists a cyclic (respectively finitely
generated) submodule N ′ ofM such that S−1N ′ = N . There exists a free R-module
F , a morphism φ : N ′ → F and a morphism π : F → M such that (π ◦ φ)(x) = x
for each x ∈ N ′. It follows that (S−1π ◦S−1φ)(x) = x for each x ∈ N . We get that
S−1M is singly (respectively finitely) projective over R. We do a similar proof to
show that S−1M is locally projective if M is locally projective.

(2) By Lemma 1.5 M is finitely projective over R if it is finitely projective over
S−1R. It is easy to check that M is singly projective over R if it is singly projective
over S−1R. �

If R is a subring of a ring Q which is either left perfect or left noetherian, then
then each flat left R-module is finitely projective by [20, Corollary 7]. We don’t
know if the converse holds. However we have the following results:

Theorem 1.8. Let R be a commutative ring with a self FP-injective quotient ring
Q. Then each flat R-module is finitely projective if and only if Q is perfect.

Proof. ”Only if” requires a proof. Let M be a flat Q-module. Then M is flat
over R and it follows that M is finitely projective over R. By Proposition 1.7(1)
M ∼= Q ⊗R M is finitely projective over Q. From Proposition 1.3 we deduce that
each flat Q-module is content. We conclude by Theorem 1.2 �

Theorem 1.9. Let R be a commutative ring with a Von Neumann regular quotient
ring Q. Then the following conditions are equivalent:

(1) Q is semi-simple;
(2) each flat R-module is finitely projective;
(3) each flat R-module is singly projective.

Proof. (1) ⇒ (2) is an immediate consequence of [20, Corollary 7] and (2) ⇒ (3)
is obvious.

(3) ⇒ (1). First we show that each Q-module M is singly projective. Every
Q-module M is flat over Q and R. So, M is singly projective over R. It follows
that M ∼= Q ⊗R M is singly projective over Q by Proposition 1.7(1). Now let
A be an ideal of Q. Since Q/A is singly projective, it is projective. So, Q/A is
finitely presented over Q and A is a finitely generated ideal of Q. Hence Q is
semi-simple. �
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2. π-coherence and PP-rings

As in [22] we say that a ring R is left strongly coherent if each product of
locally projective right modules is locally projective and as in [3] R is said to be
right π-coherent if, for each index set Λ, every finitely generated submodule of
RΛ

R is finitely presented.

Theorem 2.1. Let R be a commutative ring. Then the following conditions are
equivalent:

(1) R is π-coherent;
(2) for each index set Λ, RΛ is finitely projective;
(3) each product of finitely projective modules is finitely projective.

Proof. (1) ⇒ (2). Let N be a finitely generated submodule of RΛ. There exist
a free module F and an epimorphism π from F into RΛ. It is obvious that R is
coherent. Consequently RΛ is flat. So ker π is a pure submodule of F . Since N
is finitely presented it follows that there exists φ : N → F such that π ◦ φ is the
inclusion map from N into RΛ.

(2) ⇒ (1). Since RΛ is flat for each index set Λ, R is coherent. Let Λ be an index
set and let N be a finitely generated submodule of RΛ. The finite projectivity of
RΛ implies that N is isomorphic to a submodule of a free module of finite rank.
Hence N is finitely presented.

It is obvious that (3) ⇒ (2).
(2) ⇒ (3). Let Λ be an index set, let (Mλ)λ∈Λ be a family of finitely projective

modules and let N be a finitely generated submodule of M =
∏

λ∈ΛMλ. For
each λ ∈ Λ, let Nλ be the image of N by the canonical map M → Mλ. We put
N ′ =

∏
λ∈ΛNλ. So, N ⊆ N ′ ⊆ M . For each λ ∈ Λ there exists a free module Fλ

of finite rank such that the inclusion map Nλ → Mλ factors through Fλ. It follows
that the inclusion map N → M factors through

∏
λ∈Λ Fλ which is isomorphic to

RΛ′

for some index set Λ′. Now the monomorphismN → RΛ′

factors through a free
module F . It is easy to conclude that the inclusion map N → M factors through
F and that M is finitely projective. �

By using [22, Theorem 4.2] and Proposition 1.3, we deduce the following corol-
lary:

Corollary 2.2. Every strongly coherent commutative ring R is π-coherent and the
converse holds if R is self injective.

Proposition 2.3. Let R be a π-coherent commutative ring and let S be a mul-
tiplicative subset of R. Assume that S contains no zero-divisors. Then S−1R is
π-coherent.

Proof. Let M be a finitely generated S−1R-module. By [3, Theorem 1] we
must prove that HomS−1R(M,S−1R) is finitely generated on S−1R. There exists
a finitely generated R-submodule N of M such that S−1N ∼= M . The following
sequence

0 → N∗ → HomR(N,S−1R) → HomR(N,S−1R/R)

is exact. SinceN is finitely generated and S−1R/R is S-torsion, HomR(N,S−1R/R)
is S-torsion too. So, HomS−1R(M,S−1R) ∼= HomR(N,S−1R) ∼= S−1N∗. By [3,
Theorem 1] N∗ is finitely generated. Hence HomS−1R(M,S−1R) is finitely gener-
ated over S−1R. �
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Theorem 2.4. Let R be a commutative semihereditary ring and let Q be its quotient
ring. Then the following conditions are equivalent:

(1) R is π-coherent;
(2) Q is self injective;

Moreover, when these conditions are satisfied, each singly projective R-module is
finitely projective.

Proof. (1) ⇒ (2). By Proposition 2.3 Q is π-coherent. We know that Q is Von
Neumann regular. It follows from [18, Theorem 2] that Q is self injective.

(2) ⇒ (1). Let (Mi)i∈I be a family of finitely projective R-modules, where I
is an index set, and let N be a finitely generated submodule of

∏
i∈I Mi. Then

N is flat. Since N is a submodule of
∏

i∈I Q ⊗R Mi, Q ⊗R N is isomorphic to
a finitely generated Q-submodule of

∏
i∈I Q ⊗R Mi. It follows that Q ⊗R N is a

projective Q-module. Hence N is projective by [6, Proposition 2.3]. We conclude
by Theorem 2.1.

Let M be a singly projective R-module and let N be a finitely generated sub-
module of M . Then Q ⊗R M is finitely projective over Q by Propositions 1.7(1)
and 1.3. It follows that Q⊗R N is projective over Q. Hence N is projective by [6,
Proposition 2.3]. �

Proposition 2.5. Let R be a Von Neumann regular ring. Then a right R-module
is content if and only if it is singly projective.

Proof. By Proposition 1.1(3) it remains to show that each singly projective
right module M is content. Let m ∈ M . Then mR is projective because it is
isomorphic to a finitely generated submodule of a free module. So, mR is content.
For each left ideal A, mR ∩ MA = mA because mR is a pure submodule of M .
Hence M is content. �

A topological space X is said to be extremally disconnected if every open
set has an open closure. Let R be a ring. We say that R is a right Baer ring if
for any subset A of R, r(A) is generated by an idempotent. The ring R defined in
[22, Example 4.4 ] is not self injective and satisfies the conditions of the following
theorem.

Theorem 2.6. Let R be a Von Neumann regular ring. Then the following condi-
tions are equivalent:

(1) Each product of singly projective right modules is singly projective;
(2) Each product of content right modules is content;
(3) RR

R is singly projective;
(4) RR

R is a content module;
(5) R is a right Baer ring;
(6) The intersection of each family of finitely generated left ideals is finitely

generated too;
(7) For each cyclic left module C, C∗ is finitely generated.

Moreover, when R is commutative, these conditions are equivalent to the following:
Spec R is extremally disconnected.

Proof. The conditions (2), (4), (6) are equivalent by [11, Theorem 5.15]. By
Proposition 2.5 (4) ⇔ (3) and (1) ⇔ (2). It is easy to check that (5) ⇔ (7).



8 FRANÇOIS COUCHOT

(3) ⇒ (5). Let A ⊆ R and let x = (a)a∈A ∈ RA
R. So, r(A) = (0 : x). Then

xR is projective because it is isomorphic to a submodule of a free module. Thus
r(A) = eR, where e is an idempotent.

(5) ⇒ (1). Let (Mi)i∈I be a family of singly projective right modules and
m = (mi)i∈I be an element of M =

∏
i∈I Mi. For each i ∈ I, there exists an

idempotent ei such that (0 : mi) = eiR. Let e be the idempotent which satisfies
eR = r({1− ei | i ∈ I}). Then eR = (0 : m), whence mR is projective.

If R is commutative and reduced, then the closure of D(A), where A is an ideal
of R, is V ((0 : A)). So, Spec R is extremally disconnected if and only if, for each
ideal A there exists an idempotent e such that V ((0 : A)) = V (e). This last equality
holds if and only if (0 : A) = Re because (0 : A) and Re are semiprime since R is
reduced. Consequently Spec R is extremally disconnected if and only if R is Baer.
The proof is now complete. �

Let R be a ring. We say that R is a right PP-ring if any principal right ideal
is projective.

Lemma 2.7. Let R be a right PP-ring. Then each cyclic submodule of a free right
module is projective.

Proof. Let C be a cyclic submodule of a free right module F . We may assume
that F is finitely generated by the basis {e1, . . . , en}. Let p : F → R be the
homomorphism defined by p(e1r1 + · · · + enrn) = rn where r1, . . . , rn ∈ R. Then
p(C) is a principal right ideal. Since p(C) is projective, C ∼= C′ ⊕ p(C) where
C′ = C ∩ ker p. So C′ is a cyclic submodule of the free right module generated by
{e1, . . . , en−1}. We complete the proof by induction on n. �

Theorem 2.8. Let R be a commutative PP-ring and let Q be its quotient ring.
Then the following conditions are equivalent:

(1) Each product of singly projective modules is singly projective;
(2) RR is singly projective;
(3) R is a Baer ring;
(4) Q satisfies the equivalent conditions of Theorem 2.6;
(5) For each cyclic module C, C∗ is finitely generated;
(6) Spec R is extremally disconnected;
(7) Min R is extremally disconnected.

Proof. It is obvious that (1) ⇒ (2). It is easy to check that (3) ⇔ (5). We show
that (2) ⇒ (3) as we proved (3) ⇒ (5) in Theorem 2.6, by using Lemma 2.7.

(5) ⇒ (4). Let C be a cyclic Q-module. We do as in proof of Proposition 2.3 to
show that HomQ(C,Q) is finitely generated over Q.

(4) ⇒ (1). Let (Mi)i∈I be a family of singly projective right modules and let N
be a cyclic submodule of M =

∏
i∈I Mi. Since R is PP, N is a P-flat module. By

Proposition 1.1 N is flat. We do as in the proof of (2) ⇒ (1) of Theorem 2.4 to
show that N is projective.

(3) ⇔ (6) is shown in the proof of Theorem 2.6.
(4) ⇔ (7) holds because Spec Q is homeomorphic to Min R. �
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3. Flat modules

Let M be a non-zero module over a commutative ring R. As in [10, p.338] we
set:

M♯ = {s ∈ R | ∃0 6= x ∈ M such that sx = 0} and M ♯ = {s ∈ R | sM ⊂ M}.

Then R \M♯ and R \M ♯ are multiplicative subsets of R.

Lemma 3.1. Let M be a non-zero P-flat R-module over a commutative ring R.
Then M♯ ⊆ R♯ ∩M ♯.

Proof. Let 0 6= s ∈ M♯. Then there exists 0 6= x ∈ M such that sx = 0. Since
M is P-flat, we have x ∈ (0 : s)M . Hence (0 : s) 6= 0 and s ∈ R♯.

Suppose that M♯ * M ♯ and let s ∈ M♯\M
♯. Then ∃0 6= x ∈ M such that sx = 0.

It follows that x = t1y1+ · · ·+ tpyp for some y1, . . . , yp ∈ M and t1, . . . , tp ∈ (0 : s).
Since s /∈ M ♯ we have M = sM . So yk = szk for some zk ∈ M , ∀k, 1 ≤ k ≤ p. We
get x = t1sz1 + · · ·+ tpszp = 0. Whence a contradiction. �

Now we assume that R is a commutative ring. An R-module M is said to
be uniserial if its set of submodules is totally ordered by inclusion and R is a
valuation ring if it is uniserial as R-module. If M is a module over a valuation
ring R then M♯ and M ♯ are prime ideals of R. In the sequel, if R is a valuation
ring, we denote by P its maximal ideal and we put Z = R♯ and Q = RZ . Since
each finitely generated ideal of a valuation ring R is principal, it follows that any
P-flat R-module is flat.

Proposition 3.2. Let R be a valuation ring, let M be a flat R-module and let E
be its injective hull. Then E is flat.

Proof. Let x ∈ E \M and r ∈ R such that rx = 0. There exists a ∈ R such
that 0 6= ax ∈ M . From ax 6= 0 and rx = 0 we deduce that r = ac for some c ∈ R.
Since cax = 0 and M is flat we have ax = by for some y ∈ M and b ∈ (0 : c). From
bc = 0 and ac = r 6= 0 we get b = at for some t ∈ R. We have a(x− ty) = 0. Since
at = b 6= 0, (0 : t) ⊂ Ra. So (0 : t) ⊆ (0 : x− ty). The injectivity of E implies that
there exists z ∈ E such that x = t(y + z). On the other hand tr = tac = bc = 0, so
t ∈ (0 : r). �

In the sequel, if J is a prime ideal of R we denote by 0J the kernel of the natural
map: R → RJ .

Proposition 3.3. Let R be a valuation ring and let M be a non-zero flat R-module.
Then:

(1) If M♯ ⊂ Z we have ann(M) = 0M♯
and M is an RM♯

-module;
(2) If M♯ = Z, ann(M) = 0 if MZ 6= ZMZ and ann(M) = (0 : Z) if MZ =

ZMZ . In this last case, M is a Q-module.

Proof. Observe that the natural map M → MM♯
is a monomorphism. First

we assume that R is self FP-injective and P = M♯. So M ♯ = P by Lemma 3.1.
If M 6= PM let x ∈ M \ PM . Then (0 : x) = 0 else ∃r ∈ R, r 6= 0 such that
x ∈ (0 : r)M ⊆ PM . If M = PM then P is not finitely generated else M = pM ,
where P = pR, and p /∈ M ♯ = P . If P is not faithful then (0 : P ) ⊆ ann(M).
Thus M is flat over R/(0 : P ). So we can replace R with R/(0 : P ) and assume
that P is faithful. Suppose ∃0 6= r ∈ P such that rM = 0. Then M = (0 : r)M .
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Since (0 : r) 6= P , let t ∈ P \ (0 : r). Thus M = tM and t /∈ M ♯ = P . Whence a
contradiction. So M is faithful or ann(M) = (0 : P ).

Return to the general case. We put J = M♯.
If J ⊂ Z then RJ is coherent and self FP-injective by [4, Theorem 11]. In this

case JRJ is principal or faithful. So MJ is faithful over RJ , whence ann(M) = 0J .
Let s ∈ R \ J . There exists t ∈ Zs \ J . It is easy to check that ∀a ∈ R, (0 : a) is
also an ideal of Q. On the other hand, ∀a ∈ Q, Qa = (0 : (0 : a)) because Q is self
FP-injective. It follows that (0 : s) ⊂ (0 : t). Let r ∈ (0 : t) \ (0 : s). Then r ∈ 0J .
So, rM = 0. Hence M = (0 : r)M = sM . Therefore the multiplication by s in M
is bijective for each s ∈ R \ J .

Now suppose that J = Z. Since Q is self FP-injective then M is faithful or
ann(M) = (0 : Z). Let s ∈ R \ Z. Thus Z ⊂ Rs and sZ = Z. It follows that
ZMZ = ZM . So, M is a Q-module if ZMZ = MZ . �

When R is a valuation ring, N is a pure submodule ofM if rN = rM∩N, ∀r ∈ R.

Proposition 3.4. Let R be a valuation ring and let M be a non-zero flat R-module
such that MM♯

6= M♯MM♯
. Then M contains a non-zero pure uniserial submodule.

Proof. Let J = M♯ and x ∈ MJ \ JMJ . If J ⊂ Z then M is a module over
R/0J and J/0J is the subset of zero-divisors of R/0J . So, after replacing R with
R/0J we may assume that Z = J . If rx = 0 then x ∈ (0 : r)MZ ⊆ ZMZ if r 6= 0.
Hence Qx is faithful over Q which is FP-injective. So V = Qx is a pure submodule
of MZ . We put U = M ∩ V . Thus U is uniserial and UZ = V . Then M/U is a
submodule of MZ/V , and this last module is flat. Let z ∈ M/U and 0 6= r ∈ R
such that rz = 0. Then z = as−1y where s /∈ Z, a ∈ (0 : r) ⊆ Z and y ∈ M/U . It
follows that a = bs for some b ∈ R and sbr = 0. So b ∈ (0 : r) and z = by. Since
M/U is flat, U is a pure submodule of M . �

Proposition 3.5. Let R be a valuation ring and let M be a flat R-module. Then
M contains a pure free submodule N such that M/PM ∼= N/PN .

Proof. Let (xi)i∈I be a family of elements of M such that (xi + PM)i∈I is a
basis of M/PM over R/P , and let N be the submodule of M generated by this
family. If we show that N is a pure submodule of M , we deduce that N is flat. It
follows that N is free by Lemma 1.4. Let x ∈ M and r ∈ R such that rx ∈ N .
Then rx =

∑
i∈J aixi where J is a finite subset of I and ai ∈ R, ∀i ∈ J . Let a ∈ R

such that Ra =
∑

i∈J Rai. It follows that, ∀i ∈ J , there exists ui ∈ R such that
ai = aui and there is at least one i ∈ J such that ui is a unit. Suppose that a /∈ Rr.
Thus there exists c ∈ P such that r = ac. We get that a(

∑
i∈J uixi−cx) = 0. Since

M is flat, we deduce that
∑

i∈J uixi ∈ PM . This contradicts that (xi +PM)i∈I is
a basis of M/PM over R/P . So, a ∈ Rr. Hence N is a pure submodule. �

4. Singly projective modules

Lemma 4.1. Let R be a valuation ring. Then a non-zero R-module M is singly
projective if and only if for each x ∈ M there exists y ∈ M such that (0 : y) = 0
and x ∈ Ry. Moreover M♯ = Z and MZ 6= ZMZ .

Proof. Assume that M is singly projective and let x ∈ M . There exist a
free module F , a morphism φ : Rx → F and a morphism π : F → M such
that (π ◦ φ)(x) = x. Let (ei)i∈I be a basis of F . Then φ(x) =

∑
i∈J aiei where
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J is a finite subset of I and ai ∈ R, ∀i ∈ J . There exists a ∈ R such that∑
i∈J Rai = Ra. Thus, ∀i ∈ J there exists ui ∈ R such ai = aui. We put

z =
∑

i∈J uiei. Then φ(x) = az. Since there is at least one index i ∈ J such
that ui is a unit, then (0 : z) = 0. It follows that (0 : φ(x)) = (0 : a). But
(0 : x) = (0 : φ(x)) because φ is a monomorphism. We have x = aπ(z). So, by [4,
Lemma 2] (0 : π(z)) = a(0 : x) = a(0 : a) = 0. The converse and the last assertion
are obvious. �

Let R be a valuation ring and let M be a non-zero R-module. A submodule
N of M is said to be pure-essential if it is a pure submodule and if 0 is the
only submodule K satisfying N ∩K = 0 and (N +K)/K is a pure submodule of
M/K. An R-module E is said to be pure-injective if for any pure-exact sequence
0 → N → M → L → 0, the following sequence is exact:

0 → HomR(L,E) → HomR(M,E) → HomR(N,E) → 0.

We say that E is a pure-injective hull of K if E is pure-injective and K is a
pure-essential submodule of E. We say that R is maximal if every family of cosets
{ai + Li | i ∈ I} with the finite intersection property has a non-empty intersection
(here ai ∈ R, Li denote ideals of R, and I is an arbitrary index set).

Proposition 4.2. Let R be a valuation ring and let M be a non-zero R-module.
Then the following conditions are equivalent:

(1) M is a flat content module;
(2) M is flat and contains a pure-essential free submodule.

Moreover, if these conditions are satisfied, then any element of M is contained in
a pure cyclic free submodule L of M . If R is maximal then M is locally projective.

Proof. (1) ⇒ (2). Let 0 6= x ∈ M . Then x =
∑

1≤i≤n aixi where ai ∈ c(x)
and xi ∈ M, ∀i, 1 ≤ i ≤ n. Since R is a valuation ring ∃a ∈ R such that
Ra = Ra1 + · · · + Ran. So, we get that c(x) = Ra and x = ay for some y ∈ M .
Thus y /∈ PM else c(x) ⊂ Ra. So PM 6= M and we can apply Proposition 3.5.
It remains to show that N is a pure-essential submodule of M . Let x ∈ M such
that Rx ∩ N = 0 and N is a pure submodule of M/Rx. There exist b ∈ R and
y ∈ M \ PM such that x = by. Since M = N + PM , we have y = n+ pm where
n ∈ N, m ∈ M and p ∈ P . Then n /∈ PN and bpm = −bn + x. Since N is pure
in M/Rx there exist n′ ∈ N and t ∈ R such that bpn′ = −bn + tx. We get that
b(n+ pn′) ∈ N ∩Rx = 0. So b = 0 because n+ pn′ /∈ PN . Hence x = 0.

(2) ⇒ (1). First we show that M is a content module if each element x of M is
of the form s(y + cz), where s ∈ R, y ∈ N \ PN, c ∈ P and z ∈ M . Since N is
a pure submodule, PM ∩ N = PN whence y /∈ PM . If x = stw with t ∈ P and
w ∈ M we get that s(y + cz − tw) = 0 whence y ∈ PM because M is flat. This
is a contradiction. Consequently c(x) = Rs and M is content. Now we prove that
each element x of M is of the form s(y + cz), where s ∈ R, y ∈ N \ PN, c ∈ P
and z ∈ M . If x ∈ N , then we check this property by using a basis of N . Suppose
x /∈ N and Rx∩N 6= 0. There exists a ∈ P such that 0 6= ax ∈ N . Since N is pure,
there exists y′ ∈ N such that ax = ay′. We get x = y′ + bz for some b ∈ (0 : a)
and z ∈ M , because M is flat. We have y′ = sy with s ∈ R and y ∈ N \ PN .
Since as 6= 0, b = sc for some c ∈ P . Hence x = s(y + cz). Now suppose that
Rx ∩ N = 0. Since N is pure-essential in M , there exist r ∈ R and m ∈ M such
that rm ∈ N+Rx and rm /∈ rN+Rx. Hence rm = n+ tx where n ∈ N and t ∈ R.
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Thus n = by′ where b ∈ R and y′ ∈ N \ PN . Then b /∈ rR. So, r = bc for some
c ∈ P . We get bcm = by′ + tx. If t = bd for some d ∈ P then b(cm− y′ − dx) = 0.
Since M is flat, it follows that y′ ∈ PM ∩N = PN . But this is false. So b = st for
some s ∈ R. We obtain t(x + sy′ − scm) = 0. Since M is flat and tsc 6= 0 there
exists z ∈ M such that x = s(−y′ + cz).

Let y ∈ M . There exists x ∈ M \ PM such that y ∈ Rx. We may assume that
x+PM is an element of a basis (xi +PM)i∈I of M/PM . Then Rx is a summand
of the free pure submodule N generated by the family (xi)i∈I .

Assume that R is maximal. Let the notations be as above. By [9, Theorem
XI.4.2] each uniserial R-module is pure-injective. So, Rx is a summand of M .
Let u be the composition of a projection from M onto Rx with the isomorphism
between Rx and R. Thus u ∈ M∗ and u(x) = 1. It follows that y = u(y)x. Hence
M is locally projective by [11, Theorem 3.2] or [22, Theorem 2.1]. �

Proposition 4.3. Let R be a valuation ring such that Z = P 6= 0 and let M be a
non-zero R-module. Then the following conditions are equivalent:

(1) M is singly projective;
(2) M is a flat content module;
(3) M is flat and contains an essential free submodule.

Proof. (2) ⇒ (1) by Proposition 1.1.
(1) ⇒ (2). It remains to show that M is a content module. Let x ∈ M . There

exists y ∈ M and a ∈ R such that x = ay and (0 : y) = 0. Since Z = P then
y /∈ PM . We deduce that c(x) = Ra.

(2) ⇔ (3). By Proposition 4.2 it remains to show that (2) ⇒ (3). Let N be a
pure-essential free submodule of M . Since R is self FP-injective by [12, Lemma], it
follows that N is a pure submodule of each overmodule. So, if K is a submodule of
M such that K ∩N = 0, then N is a pure submodule of M/K, whence K = 0. �

Corollary 4.4. Let R be a valuation ring. The following conditions are equivalent:

(1) Z = P ;
(2) Each singly projective module is a content module.

Proof. It remains to show that (2) ⇒ (1). By Proposition 1.7 Q is finitely
projective over R. If R 6= Q, then Q is not content on R because, ∀x ∈ Q\Z, c(x) =
Z. So Z = P . �

Corollary 4.5. Let R be a valuation ring. Then the injective hull of any singly
projective module is singly projective too.

Proof. Let N be a non-zero singly projective module. We denote by E its
injective hull. For each s ∈ R \ Z the multiplication by s in N is injective, so
the multiplication by s in E is bijective. Hence E is a Q-module which is flat by
Proposition 3.2. It is an essential extension of NZ . From Propositions 4.3 and
1.7(2) we deduce that E is singly projective. �

Let R be a valuation ring and let M be a non-zero R-module. We say that M
is separable if any finite subset is contained in a summand which is a finite direct
sum of uniserial submodules.

Corollary 4.6. Let R be a valuation ring. Then any element of a singly projective
module M is contained in a pure uniserial submodule L. Moreover, if R is maximal,
each singly projective module is separable.
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Proof. By Proposition 4.2 any element of M is contained in a pure cyclic free
Q-submodule G of MZ . We put L = M ∩ G. As in proof of Proposition 3.4 we
show that L is a pure uniserial submodule of M . The first assertion is proved.

Since R is maximal L is pure-injective by [9, Theorem XI.4.2]. So, L is a sum-
mand of M . Each summand of M is singly projective. It follows that we can
complete the proof by induction on the cardinal of the chosen finite subset ofM . �

Corollary 4.7. Let R be a valuation ring. Then the following conditions are equiv-
alent:

(1) R is self injective;
(2) Each singly projective module is locally projective;
(3) Z = P and each singly projective module is finitely projective.

Proof. (1) ⇒ (2) by Proposition 1.3.
(2) ⇒ (3) follows from [11, Proposition 5.14(4)] and Corollary 4.4.
(3) ⇒ (1). By way of contradiction suppose that R is not self injective. Let E be

the injective hull of R. By Corollary 4.5 E is singly projective. Let x ∈ E \R and
M = R + Rx. Since E is finitely projective, then there exist a finitely generated
free module F , a morphism φ : M → F and a morphism π : F → E such that
(π ◦ φ)(y) = y for each y ∈ M . Let φ̃ : M/R → F/φ(R) and π̃ : F/φ(R) → E/R

be the morphisms induced by φ and π. Then (π̃ ◦ φ̃)(y + R) = y + R for each
y ∈ M . Since φ(R) is a pure submodule of F , then F/φ(R) is a finitely generated
flat module. Hence F/φ(R) is free and E/R is singly projective. But E/R =
P (E/R) by [4, Lemma 12]. This contradicts that E/R is a flat content module.
By Proposition 4.3 we conclude that E = R. �

Corollary 4.8. Let R be a valuation ring. Then Q is self injective if and only if
each singly projective module is finitely projective.

Proof. By [17, Theorem 2.3] Q is maximal if and only if it is self injective. Sup-
pose that Q is self injective and let M be a singly projective R-module. Then MZ

is locally projective over Q by Proposition 1.7(1) and corollary 4.7. Consequently
M is finitely projective by Lemma 1.5.

Conversely let M be a singly projective Q-module. Then M is singly projec-
tive over R, whence M is finitely projective over R. If follows that M is finitely
projective over Q. From Corollary 4.7 we deduce that Q is self injective. �

Theorem 4.9. Let R be a valuation ring. Then the following conditions are equiv-
alent:

(1) R is maximal;
(2) each singly projective R-module is separable;
(3) each flat content module is locally projective.

Proof. (1) ⇒ (2) by Corollary 4.6 and (1) ⇒ (3) by Proposition 4.2.

(2) ⇒ (1) : let R̂ be the pure-injective hull of R. By [5, Proposition 1 and 2] R̂ is a

flat content module. Consequently 1 belongs to a summand L of R̂ which is a finite

direct sum of uniserial modules. But, by [7, Proposition 5.3] R̂ is indecomposable.

Hence R̂ is uniserial. Suppose that R 6= R̂. Let x ∈ R̂ \ R. Then there exists

c ∈ P such that 1 = cx. Since R is pure in R̂ we get that 1 ∈ P which is absurd.
Consequently, R is a pure-injective module. So, R is maximal by [21, Proposition
9].
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(3) ⇒ (1) : since R̂ is locally projective then R is a summand of R̂ which is
indecomposable. So R is maximal. �

A submodule N of a module M is said to be strongly pure if, ∀x ∈ N there
exists an homomorphism u : M → N such that u(x) = x. Moreover, if N is
pure-essential, we say that M is a strongly pure-essential extension of N .

Proposition 4.10. Let R be a valuation ring and let M be a flat R-module. Then
M is locally projective if and only if it is a strongly pure-essential extension of a
free module.

Proof. Let M be a non-zero locally projective R-module. Then M is a flat
content module. So M contains a pure-essential free submodule N . Let x ∈ N .
There exist u1, . . . , un ∈ M∗ and y1, . . . , yn ∈ M such that x =

∑n
i=1 ui(x)yi.

Since N is a pure submodule, y1, . . . , yn can be chosen in N . Let φ : M → N be
the homomorphism defined by φ(z) =

∑n
i=1 ui(z)yi. Then φ(x) = x. So, N is a

strongly pure submodule of M .
Conversely, assume that M is a strongly pure-essential extension of a free sub-

module N . Let x ∈ M . As in proof of Proposition 4.2, x = s(y + cz), where
s ∈ R, y ∈ N \ PN, c ∈ P and z ∈ M . Since N is strongly pure, there exists a
morphism φ : M → N such that φ(y) = y. Let {ei | i ∈ I} be a basis of N . Then
y =

∑
i∈J aiei where J is a finite subset of I and ai ∈ R, ∀i ∈ J . Since y ∈ N \PN

there exists j ∈ J such that aj /∈ P . We easily check that {y, ei | i ∈ I, i 6= j} is a
basis of N too. Hence Ry is a summand of N . Let u be the composition of φ with
a projection of N onto Ry and with the isomorphism between Ry and R. Then
u ∈ M∗, u(y) = 1 and u(y+cz) = 1+cu(z) = v is a unit. We put m = v−1(y+cz).
It follows that x = u(x)m. Hence M is locally projective by [11, Theorem 3.2] or
[22, Theorem 2.1]. �

Corollary 4.11. Let R be a valuation ring and let M be a locally projective R-
module. If M/PM is finitely generated then M is free.

Theorem 4.12. Let R be a valuation ring. The following conditions are equivalent:

(1) Z is nilpotent;
(2) Q is an artinian ring;
(3) Each flat R-module is finitely projective;
(4) Each flat R-module is singly projective.

Proof. (1) ⇔ (2). If Z is nilpotent then Z2 6= Z. It follows that Z is finitely
generated over Q and it is the only prime ideal of Q. So, Q is artinian. The converse
is well known.

(2) ⇒ (3) is a consequence of [20, Corollary 7] and it is obvious that (3) ⇒ (4).
(4) ⇒ (2). First we prove that each flat Q-module is singly projective. By

Proposition 4.3 it follows that each flat Q-module is content. We deduce that Q
is perfect by Theorem 1.2. We conclude that Q is artinian since Q is a valuation
ring. �

5. Strongly coherence or π-coherence of valuation rings.

In this section we study the valuation rings, with non-zero zero-divisors, for which
any product of content (respectively singly, finitely, locally projective) modules is
content (respectively singly, finitely, locally projective) too.
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Theorem 5.1. Let R be a valuation ring such that Z 6= 0. Then the following
conditions are equivalent:

(1) Each product of content modules is content;
(2) RR is a content module;
(3) For each ideal A there exists a ∈ R such that either A = Ra or A = Pa;
(4) Each ideal is countably generated and RN is a content module;
(5) The intersection of any non-empty family of principal ideals is finitely gen-

erated.

Proof. The conditions (1), (2) and (5) are equivalent by [11, Theorem 5.15].
By [4, Lemma 29] (3) ⇔ (5).

(2) ⇒ (4). It is obvious that RN is a content module. Since (2) ⇔ (3) then P is
the only prime ideal. We conclude by [4, Corollary 36].

(4) ⇒ (3). Let A be a non-finitely generated ideal. Let {an | n ∈ N} be a
spanning set of A. Then x = (an)n∈N ∈ RN. It follows that x = ay for some
a ∈ c(x) and y ∈ RN, and c(x) = Ra . So, if y = (bn)n∈N, we easily check that P is
generated by {bn | n ∈ N}. Hence A = aP . �

By Proposition 1.1 each valuation domain R verifies the first two conditions of
the next theorem.

Theorem 5.2. Let R be a valuation ring such that Z 6= 0. Then the following
conditions are equivalent:

(1) Each product of singly projective modules is singly projective.
(2) RR is singly projective;
(3) C∗ is a finitely generated module for each cyclic module C;
(4) (0 : A) is finitely generated for each proper ideal A;
(5) P is principal or faithful and for each ideal A there exists a ∈ R such that

either A = Ra or A = Pa;
(6) Each ideal is countably generated and RN is singly projective;
(7) Each product of flat content modules is flat content;
(8) RR is a flat content module;
(9) Each ideal is countably generated and RN is a flat content module;

(10) P is principal or faithful and the intersection of any non-empty family of
principal ideals is finitely generated.

Proof. It is obvious that (1) ⇒ (2) and (7) ⇒ (8).
(3) ⇔ (4) because (0 : A) ∼= (R/A)∗.
(2) ⇒ (4). Let A be a proper ideal. Then RA is singly projective too and

x = (a)a∈A is an element of RA. Therefore x belongs to a cyclic free submodule
of RA by Lemma 4.1. Since RR is flat, R is coherent by [10, Theorem IV.2.8].
Consequently (0 : A) = (0 : x) is finitely generated.

(4) ⇒ (5). Then R is coherent because R is a valuation ring. Since Z 6= 0, Z = P
by [4, Theorem 10]. If P is not finitely generated then P cannot be an annihilator.
So P is faithful. By [12, Lemma 3] and [17, Proposition 1.3], if A is a proper ideal
then either A = (0 : (0 : A)) or A = P (0 : (0 : A)). By (4), (0 : (0 : A)) = Ra for
some a ∈ P .

(5) ⇒ (1). Let (Mi)i∈I be a family of singly projective modules. Let x = (xi)i∈I

be an element of Πi∈IMi. Since Mi is singly projective for each i ∈ I there exist
ai ∈ R and yi ∈ Mi such that xi = aiyi and (0 : yi) = 0. We have either



16 FRANÇOIS COUCHOT

∑
i∈I Rai = Ra or

∑
i∈I Rai = Pa for some a ∈ R. Then, ∀i ∈ I, ∃bi ∈ R such

that ai = abi. Therefore either ∃i ∈ I such that bi is a unit, or P =
∑

i∈I Rbi. It
follows that x = ay where y = (biyi)i∈I . Now it is easy to check that (0 : y) = 0.

(6) ⇒ (4). Since each ideal is countably generated then so is each submodule of
a finitely generated free module. So, the flatness of RN implies that R is coherent.
Let A be a proper ideal generated by {an | n ∈ N}. Then x = (an)n∈N is an
element of RN. Therefore x belongs to a cyclic free submodule of RN by Lemma 4.1.
Consequently (0 : A) = (0 : x) is finitely generated because R is coherent.

(5) ⇒ (9). By Theorem 5.1((3) ⇔ (4)) it remains to show that RN is flat. This
is true because (5) ⇒ (1).

(1) ⇔ (7). Since (1) ⇒ (2) or (7) ⇒ (8), R is coherent. From Z 6= 0 and [4,
Theorem 10] it follows that Z = P . Now we use Proposition 4.3 to conclude.

(2) ⇔ (8). Since RR is flat, R is coherent. We do as above to conclude.
(6) ⇔ (9). Since each submodule of a free module of finite rank is countably

generated, then the flatness of RN implies that R is coherent. So we conclude as
above.

(5) ⇔ (10) by Theorem 5.1((3) ⇔ (5)).
The last assertion is already shown. So, the proof is complete. �

Remark 5.3. When R is a valuation domain, the conditions (5), (7), (8), (9) and
(10) are equivalent by [16, Theorem 4] and [4, Corollary 36].

Remark 5.4. If R satisfies the conditions of Theorem 5.1 and if P is not faithful
and not finitely generated then R is not coherent and doesn’t satisfy the conditions
of Theorem 5.2.

By [8, Corollary 3.5] or [16, Theorem 3], a valuation domain R is strongly co-
herent if and only if either its order group is Z or if R is maximal and its order
group is R. It is easy to check that each Prüfer domain is π-coherent because it
satisfies the fourth condition of the next theorem. When R is a valuation ring with
non-zero zero-divisors we get:

Theorem 5.5. Let R be a valuation ring such that Z 6= 0. Then the following
conditions are equivalent:

(1) R is strongly coherent;
(2) R is π-coherent;
(3) RR is singly projective and separable;
(4) C∗ is a finitely generated module for each finitely generated module C;
(5) (0 : A) is finitely generated for each proper ideal A and R is self injective;
(6) R is maximal, P is principal or faithful and for each ideal A there exists

a ∈ R such that either A = Ra or A = Pa;
(7) Each ideal is countably generated and RN is singly projective and separable;
(8) RR is a separable flat content module;
(9) Each ideal is countably generated and RN is a separable flat content module;

(10) Each product of separable flat content modules is a separable flat content
module;

(11) R is maximal, P is principal or faithful and the intersection of any non-
empty family of principal ideals is finitely generated.
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Proof. By Theorem 2.1 (1) ⇒ (2). It is obvious that (10) ⇒ (8). By [3, Theorem
1] (2) ⇔ (4). By Theorem 5.2, Theorem 4.9 and [17, Theorem 2.3] (5) ⇔ (6) and
(6) ⇒ (7) . By Theorem 5.2 (6) ⇔ (11), (7) ⇔ (9) and (3) ⇔ (8).

(4) ⇒ (6). By Theorem 5.2 R is coherent and self FP-injective and it remains
to prove that R is maximal if P is not principal. Let E be the injective hull of R.
If R 6= E let x ∈ E \ R. Since R is an essential submodule of E, (R : x) = rP
for some r ∈ R. Then (R : rx) = P . Let M be the submodule of E generated by
1 and rx. We put N = M/R. Then N ∼= R/P . We get that N∗ = 0 and M∗ is
isomorphic to a principal ideal of R. Moreover, since (R : rx) = P , for each t ∈ P
the multiplication by t in M is a non-zero element of M∗. Since P is faithful we get
that M∗ ∼= R. Let g ∈ M∗ such that the restriction of g to R is the identity. For
each p ∈ P we have pg(rx) = prx. So (0 : g(rx)−rx) = P . Since P is faithful, there
is no simple submodule in E. Hence g(rx) = rx but this is not possible because
g(rx) ∈ R and rx /∈ R. Consequently R is self-injective and maximal.

(2) ⇒ (1). Since (2) ⇒ (6) R is self injective. We conclude by proposition 1.3.
(3) ⇒ (1). Since RR is singly projective, by Theorem 5.2 R is coherent and self

FP-injective. So, if U is a uniserial summand of RR, then U is singly projective
and consequently U 6= PU . Let x ∈ U \ PU . It is easy to check that U = Rx and
that (0 : x) = 0. Hence RR is locally projective and R is strongly coherent.

(7) ⇒ (4). Let F1 → F0 → C → 0 be a free presentation of a finitely generated
module C, where F0 is finitely generated. It follows that F1 is countably generated.
As above we prove that RN is locally projective. By Theorem 5.2 R is coherent and
consequently each finitely generated submodule of RN is finitely presented. Since
F ∗
1
∼= RN we easily deduce that C∗ is finitely generated.
(1) ⇒ (10). Since (1) ⇒ (6), R is maximal. We use Theorem 4.9 to conclude.

The proof is now complete. �
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