FLAT MODULES OVER VALUATION RINGS

FRANCOIS COUCHOT

ABSTRACT. Let R be a valuation ring and let Q be its total quotient ring. It is proved that any singly projective (respectively flat) module is finitely projective if and only if Q is maximal (respectively artinian). It is shown that each singly projective module is a content module if and only if any non-unit of R is a zero-divisor and that each singly projective module is locally projective if and only if R is self injective. Moreover, R is maximal if and only if each singly projective module is separable, if and only if any flat content module is locally projective. Necessary and sufficient conditions are given for a valuation ring with non-zero zero-divisors to be strongly coherent or π -coherent.

A complete characterization of semihereditary commutative rings which are π -coherent is given. When R is a commutative ring with a self FP-injective quotient ring Q , it is proved that each flat R -module is finitely projective if and only if Q is perfect.

In this paper, we consider the following properties of modules: P-flatness, flatness, content flatness, local projectivity, finite projectivity and single projectivity. We investigate the relations between these properties when R is a PP-ring or a valuation ring. Garfinkel ([\[11\]](#page-16-0)), Zimmermann-Huisgen ([\[22\]](#page-17-0)), and Gruson and Raynaud ([\[13\]](#page-16-1)) introduced the concepts of locally projective modules and strongly coherent rings and developed important theories on these. The notions of finitely projective modules and π -coherent rings are due to Jones ([\[15\]](#page-17-1)). An interesting study of finitely projective modules and singly projective modules is also done by Azumaya in [\[1\]](#page-16-2). For a module M over a ring R, the following implications always hold:

$$
M \text{ is projective } \Rightarrow M \text{ is locally projective } \Rightarrow M \text{ is flat content}
$$

\n
$$
\Downarrow
$$

\n
$$
M \text{ is finitely projective } \Rightarrow M \text{ is flat}
$$

\n
$$
\Downarrow
$$

\n
$$
M \text{ is singly projective } \Rightarrow M \text{ is P-flat},
$$

but there are not generally reversible. However, if R satisfies an additional condition, we get some equivalences. For instance, in $[2]$, Bass defined a ring R to be right perfect if each flat right module is projective. In [\[23\]](#page-17-2) it is proved that a ring R is right perfect if and only if each flat right module is locally projective, and if and only if each locally projective right module is projective. If R is a commutative arithmetic ring, i.e. a ring whose lattice of ideals is distributive, then any P-flat module is flat. By [\[1,](#page-16-2) Proposition 16], if R is a commutative domain, each P-flat module is singly projective, and by [\[1,](#page-16-2) Proposition 18 and 15] any flat left module is finitely projective if R is a commutative arithmetic domain or a left noetherian ring. Consequently, if R is a valuation domain each P-flat module is finitely projective.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13F30, 13C11; Secondary 16D40.

Key words and phrases. valuation ring, flat module, finitely projective module, singly projective module, locally projective module, content module, strongly coherent ring, π -coherent ring.

When R is a valuation ring, we prove that this result holds if and only if the ring Q of quotients of R is artinian. Moreover, we show that R is maximal if and only if any singly projective module is separable or any flat content module is locally projective, and that Q is maximal if and only if each singly projective module is finitely projective.

In Section [2,](#page-5-0) necessary and sufficient conditions are given for a commutative semihereditary ring to be π -coherent. Moreover we characterize commutative PPrings for which each product of singly projective modules is singly projective.

In the last section we study the valuation rings R for which each product of content (respectively singly, finitely, locally projective) modules is content (respectively singly, finitely, locally projective). The results are similar to those obtained by Zimmermann-Huisgen and Franzen in $[8]$, and by Kemper in $[16]$, when R is a domain. However, each valuation domain is π -coherent but not necessarily strongly coherent. We prove that a valuation ring with non-zero zero-divisors is π -coherent if and only if it is strongly coherent.

1. Definitions and preliminaries

If A is a subset of a ring R, we denote respectively by $\ell(A)$ and $r(A)$ its left annihilator and its right annihilator. Given a ring R and a left R -module M , we say that M is **P-flat** if, for any $(s, x) \in R \times M$ such that $sx = 0, x \in r(s)M$. When R is a domain, M is P-flat if and only if it is torsion-free. As in [\[1\]](#page-16-2), we say that M is finitely projective (respectively singly projective) if, for any finitely generated (respectively cyclic) submodule N, the inclusion map $N \to M$ factors through a free module F. A finitely projective module is called f-projective in $[15]$. As in $[22]$ we say that M is locally projective if, for any finitely generated submodule N , there exist a free module F, an homomorphism $\phi : M \to F$ and an homomorphism $\pi : F \to M$ such that $\pi(\phi(x)) = x$, $\forall x \in N$. A locally projective module is said to be either a trace module or a universally torsionless module in [\[11\]](#page-16-0). Given a ring R, a left R-module M and $x \in M$, the **content ideal** c(x) of x in M, is the intersection of all right ideals A for which $x \in AM$. We say that M is a **content** module if $x \in c(x)M$, $\forall x \in M$.

It is obvious that each locally projective module is finitely projective but the converse doesn't generally hold. For instance, if R is a commutative domain with quotient field $Q \neq R$, then Q is a finitely projective R-module: if N is a finitely generated submodule of Q, there exists $0 \neq s \in R$ such that $sN \subseteq R$, whence the inclusion map $N \to Q$ factors through R by using the multiplications by s and s^{-1} ; but Q is not locally projective because the only homormorphism from Q into a free R-module is zero.

Proposition 1.1. *Let* R *be a ring. Then:*

- (1) *Each singly projective left* R*-module* M *is P-flat. The converse holds if* R *is a domain.*
- (2) *Any P-flat cyclic left module is flat.*
- (3) *Each P-flat content left module* M *is singly projective.*

Proof. (1). Let $0 \neq x \in M$ and $r \in R$ such that $rx = 0$. There exist a free module F and two homomorphisms $\phi: Rx \to F$ and $\pi: F \to M$ such that $\pi \circ \phi$ is the inclusion map $Rx \to M$. Since $r\phi(x) = 0$ and F is free, there exist $s_1, \ldots, s_n \in \mathbf{r}(r)$ and $y_1, \ldots, y_n \in F$ such that $\phi(x) = s_1y_1 + \cdots + s_ny_n$. Then $x = s_1 \pi(y_1) + \cdots + s_n \pi(y_n)$. The last assertion is obvious.

(2). Let C be a cyclic left module generated by x and let A be a right ideal. Then each element of $A \otimes_R C$ is of the form $a \otimes x$ for some $a \in A$. If $ax = 0$ then $\exists b \in \mathbf{r}(a)$ such that $x = bx$. Therefore $a \otimes x = a \otimes bx = ab \otimes x = 0$. Hence C is flat.

(3). Let $x \in M$. Then, since $x \in c(x)M$ there exist $a_1, \ldots, a_n \in c(x)$ and $x_1, \ldots, x_n \in M$ such that $x = a_1x_1 + \cdots + a_nx_n$. Let $b \in R$ such that $bx = 0$. Therefore $x \in \Gamma(b)M$ because M is P-flat. It follows that $c(x) \subseteq \Gamma(b)$. So, if we put $\phi(rx) = (ra_1, \ldots, ra_n)$, then ϕ is a well defined homomorphism which factors the inclusion map $Rx \to M$ through $_RR^n$.

Theorem 1.2. *A ring* R *is left perfect if and only if each flat left module is a content module.*

Proof. If R is left perfect then each flat left module is projective. Conversely suppose that each flat left module is a content module. Let $(a_k)_{k \in \mathbb{N}}$ be a family of elements of R, let $(e_k)_{k\in\mathbb{N}}$ be a basis of a free left module F and let G be the submodule of F generated by $\{e_k - a_k e_{k+1} \mid k \in \mathbb{N}\}\$. By [\[2,](#page-16-3) Lemma 1.1] F/G is flat. We put $z_k = e_k + G$, $\forall k \in \mathbb{N}$. Since F/G is content and $z_k = a_k z_{k+1}$, $\forall k \in \mathbb{N}$, there exist $c \in R$ and $n \in \mathbb{N}$ such that $z_0 = cz_n$ and $c(z_0) = cR$. It follows that $cR = ca_n \dots a_p R$, $\forall p > n$. Since $z_0 = a_0 \dots a_{n-1} z_n$, there exists $k > n$ such that $ca_n \ldots a_k = a_0 \ldots a_k$. Consequently $a_0 \ldots a_k R = a_0 \ldots a_p R$, $\forall p \geq k$. So, R is left perfect because it satisfies the descending chain condition on principal right ideals by [\[2,](#page-16-3) Theorem P]. \Box

Given a ring R and a left R-module M, we say that M is **P-injective** if, for any $(s, x) \in R \times M$ such that $\ell(s)x = 0, x \in sM$. When R is a domain, M is P-injective if and only if it is divisible. As in [\[19\]](#page-17-4), we say that M is **finitely** injective (respectively $\bf FP\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}\text{-}$ if, for any finitely generated submodule A of a (respectively finitely presented) left module B , each homomorphism from A to M extends to B. If M is an R-module, we put $M^* = \text{Hom}_R(M, R)$.

Proposition 1.3. *Let* R *be a ring. Then:*

- (1) *If* R *is a P-injective left module then each singly projective left module is P-injective;*
- (2) *If* R *is a FP-injective left module then each finitely projective left module is FP-injective and a content module;*
- (3) *If* R *is an injective module then each singly projective module is finitely injective and locally projective.*

Proof. Let M be a left module, F a free left module and $\pi : F \to M$ and epimorphism.

1. Assume that M is singly projective. Let $x \in M$ and $r \in R$ such that $\ell(r)x = 0$. There exists a homomorphism $\phi : Rx \to F$ such that $\pi \circ \phi$ is the inclusion map $Rx \to M$. Since F is P-injective, $\phi(x) = ry$ for some $y \in F$. Then $x = r\pi(y)$.

2. Assume that M is finitely projective. Let L be a finitely generated free left module, let N be a finitely generated submodule of L and let $f: N \to M$ be a homomorphism. Then $f(N)$ is a finitely generated submodule of M. So, there exists a homomorphism $\phi: f(N) \to F$ such that $\pi \circ \phi$ is the inclusion map $f(N) \to M$. Since F is FP-injective, there exists a morphism $g: L \to F$ such that $\phi \circ f$ is the restriction of g to N. Now it is easy to check that $\pi \circ g$ is the restriction of f to N.

Let $x \in M$. There exists a homomorphism $\phi : Rx \to F$ such that $\pi \circ \phi$ is the inclusion map $Rx \to M$. Let $\{e_i \mid i \in I\}$ be a basis of F. There exist a finite subset *J* of *I* and a family $(a_i)_{i\in J}$ of elements of *R* such that $\phi(x) = \sum_{i\in J} a_i e_i$. Let *A* be the right ideal generated by $(a_i)_{i\in J}$. Then $(0 : x) = (0 : \phi(x)) = \ell(A)$. Let B be a right ideal such that $x \in BM$. Then $x = \sum_{k=1}^{p} b_k x_k$ where $b_k \in B$ and $x_k \in M$, $\forall k, 1 \leq k \leq p$. Let N be the submodule of M generated by $\{\pi(e_i) \mid i \in J\} \cup \{x_k \mid$ $1 \leq k \leq p$. Thus there exists a homomorphism $\varphi : N \to F$ such that $\pi \circ \varphi$ is the inclusion map $N \to M$. Therefore there exist a finite subset K of I and two families ${d_{k,j} \mid 1 \leq k \leq p, j \in K}$ and ${c_{i,j} \mid (i,j) \in J \times K}$ of elements of R such that $\varphi(\pi(e_i)) = \sum_{j \in K} c_{i,j} e_j, \forall i \in J$ and $\varphi(x_k) = \sum_{j \in K} d_{k,j} e_j, \forall k, 1 \le k \le p$. It follows that $\varphi(x) = \sum_{j \in K} (\sum_{i \in J} a_i c_{i,j}) e_j = \sum_{j \in K} (\sum_{k=1}^p b_k d_{k,j}) e_j$. So, $\sum_{i \in J} a_i c_{i,j} = \sum_{k=1}^p b_k d_{k,j}$, $\forall j \in K$. Let A' be the right ideal generated by $\{\sum_{i \in J} a_i c_{i,j} \mid j \in K\}$. Then $A' \subseteq A$ and $A' \subseteq B$. Moreover, $\ell(A) = (0 : x) = (0 : \varphi(x)) = \ell(A')$. By [\[14,](#page-16-5) Corollary 2.5] $A = A'$. So, $A \subseteq B$. We conclude that $c(x) = A$ and M is a content module.

3. Let M be a singly projective module and $x \in M$. So, there exists a homomorphism $\phi : Rx \to F$ such that $\pi \circ \phi$ is the inclusion map $Rx \to M$. Since F is finitely injective, we can extend ϕ to M. By using a basis of F we deduce that $x = \sum_{k=1}^{n} \phi_k(x) x_k$ where $\phi_k \in M^*$ and $x_k \in M$, $\forall k, 1 \leq k \leq n$. Hence M is locally projective by [\[11,](#page-16-0) Theorem 3.2] or [\[22,](#page-17-0) Theorem 2.4]. By a similar proof as in (2) , we show that M is finitely injective, except that L is not necessarily a finitely generated free module.

A short exact sequence of left R-modules $0 \to N \to M \to L \to 0$ is pure if it remains exact when tensoring it with any right R -module. We say that N is a pure submodule of M . This property holds if L is flat.

Lemma 1.4. *Let* R *be a local ring, let* P *be its maximal ideal and let* N *be a flat left* R-module. Assume that N is generated by a family $(x_i)_{i\in I}$ of elements of N *such that* $(x_i + PN)_{i \in I}$ *is a basis of* N/PN *. Then* N *is free.*

Proof. Let $(e_i)_{i\in I}$ be a basis of a free left module F, let $\alpha : F \to N$ be the homomorphism defined by $\alpha(e_i) = x_i$, $\forall i \in I$ and let L be the kernel of α . It is easy to check that $L \subseteq PF$. Let $y \in L$. We have $y = \sum_{i \in J} a_i e_i$ where J is a finite subset of I and $a_i \in P$, $\forall i \in J$. Since L is a pure submodule of F, $\forall i \in J$ there exists $y_i \in L$ such that $\sum_{i \in J} a_i e_i = \sum_{i \in J} a_i y_i$. We have $y_i = \sum_{j \in J_i} b_{i,j} e_j$ where J_i is a finite subset of I, $b_{i,j} \in P$, $\forall (i,j) \in J \times J_i$. Let $K = J \cup (\cup_{i \in J} J_i)$. If $i \in K \setminus J$ we put $a_i = 0$ and $a_{i,j} = 0$, $\forall j \in K$, and if $j \in K \setminus J_i$ we put $a_{i,j} = 0$ too. We get $\sum_{i\in K} a_i e_i = \sum_{j\in K} (\sum_{i\in K} a_i b_{i,j}) e_j$. It follows that $a_j = \sum_{i\in K} a_i b_{i,j}$. So, if A is the right ideal generated by $\{a_i \mid i \in K\}$, then $A = AP$. By Nakayama lemma $A = 0$, whence $F \cong N$.

A left R-module is said to be a Mittag-Leffler module if, for each index set Λ , the natural homomorphism $R^{\Lambda} \otimes_R M \to M^{\Lambda}$ is injective. The following lemma is a slight generalization of [\[6,](#page-16-6) Proposition 2.3].

Lemma 1.5. *Let* R *be a subring of a ring* S *and let* M *be a flat left* R*-module. Assume that* $S \otimes_R M$ *is finitely projective over* S. Then M *is finitely projective.*

Proof. By [\[15,](#page-17-1) Proposition 2.7] a module is finitely projective if and only if it is a flat Mittag-Leffler module. So we do as in the proof of [\[6,](#page-16-6) Proposition 2.3]. \Box

From this lemma and [\[15,](#page-17-1) Proposition 2.7] we deduce the following proposition. We can also see .

Proposition 1.6. *Let* R *be a subring of a left perfect ring* S*. Then each flat left* R*-module is finitely projective.*

Proposition 1.7. *Let* R *be a commutative ring and let* S *be a multiplicative subset of* R*. Then:*

- (1) For each singly (respectively finitely, locally) projective R -module $M, S^{-1}M$ μ *is singly (respectively finitely, locally) projective over* $S^{-1}R$;
- (2) Let M be a singly (respectively finitely) projective $S^{-1}R$ -module. If S con*tains no zero-divisors then* M *is singly (respectively finitely) projective over* R*.*

Proof. (1). We assume that $M \neq 0$. Let N be a cyclic (respectively finitely generated) submodule of $S^{-1}M$. Then there exists a cyclic (respectively finitely generated) submodule N' of M such that $S^{-1}N' = N$. There exists a free R-module F, a morphism $\phi: N' \to F$ and a morphism $\pi: F \to M$ such that $(\pi \circ \phi)(x) = x$ for each $x \in N'$. It follows that $(S^{-1}\pi \circ S^{-1}\phi)(x) = x$ for each $x \in N$. We get that $S^{-1}M$ is singly (respectively finitely) projective over R. We do a similar proof to show that $S^{-1}M$ is locally projective if M is locally projective.

(2) By Lemma [1.5](#page-3-0) M is finitely projective over R if it is finitely projective over $S^{-1}R$. It is easy to check that M is singly projective over R if it is singly projective over $S^{-1}R$. $-1R$.

If R is a subring of a ring Q which is either left perfect or left noetherian, then then each flat left R-module is finitely projective by [\[20,](#page-17-5) Corollary 7]. We don't know if the converse holds. However we have the following results:

Theorem 1.8. *Let* R *be a commutative ring with a self FP-injective quotient ring* Q*. Then each flat* R*-module is finitely projective if and only if* Q *is perfect.*

Proof. "Only if" requires a proof. Let M be a flat Q-module. Then M is flat over R and it follows that M is finitely projective over R. By Proposition [1.7\(](#page-4-0)1) $M \cong Q \otimes_R M$ is finitely projective over Q. From Proposition [1.3](#page-2-0) we deduce that each flat Q -module is content. We conclude by Theorem [1.2](#page-2-1)

Theorem 1.9. *Let* R *be a commutative ring with a Von Neumann regular quotient ring* Q*. Then the following conditions are equivalent:*

- (1) Q *is semi-simple;*
- (2) *each flat* R*-module is finitely projective;*
- (3) *each flat* R*-module is singly projective.*

Proof. (1) \Rightarrow (2) is an immediate consequence of [\[20,](#page-17-5) Corollary 7] and (2) \Rightarrow (3) is obvious.

 $(3) \Rightarrow (1)$. First we show that each Q-module M is singly projective. Every Q -module M is flat over Q and R . So, M is singly projective over R . It follows that $M \cong Q \otimes_R M$ is singly projective over Q by Proposition [1.7\(](#page-4-0)1). Now let A be an ideal of Q. Since Q/A is singly projective, it is projective. So, Q/A is finitely presented over Q and A is a finitely generated ideal of Q . Hence Q is semi-simple. \square

2. π -coherence and PP-rings

As in $[22]$ we say that a ring R is left strongly coherent if each product of locally projective right modules is locally projective and as in $[3]$ R is said to be right π -coherent if, for each index set Λ , every finitely generated submodule of R_R^{Λ} is finitely presented.

Theorem 2.1. *Let* R *be a commutative ring. Then the following conditions are equivalent:*

(1) R *is* π -coherent;

(2) *for each index set* Λ , R^{Λ} *is finitely projective;*

(3) *each product of finitely projective modules is finitely projective.*

Proof. (1) \Rightarrow (2). Let N be a finitely generated submodule of R^Λ. There exist a free module F and an epimorphism π from F into R^{Λ} . It is obvious that R is coherent. Consequently R^{Λ} is flat. So ker π is a pure submodule of F. Since N is finitely presented it follows that there exists $\phi : N \to F$ such that $\pi \circ \phi$ is the inclusion map from N into R^{Λ} .

 $(2) \Rightarrow (1)$. Since R^{Λ} is flat for each index set Λ , R is coherent. Let Λ be an index set and let N be a finitely generated submodule of R^{Λ} . The finite projectivity of R^{Λ} implies that N is isomorphic to a submodule of a free module of finite rank. Hence N is finitely presented.

It is obvious that $(3) \Rightarrow (2)$.

 $(2) \Rightarrow (3)$. Let Λ be an index set, let $(M_{\lambda})_{\lambda \in \Lambda}$ be a family of finitely projective modules and let N be a finitely generated submodule of $M = \prod_{\lambda \in \Lambda} M_{\lambda}$. For each $\lambda \in \Lambda$, let N_{λ} be the image of N by the canonical map $M \to M_{\lambda}$. We put $N' = \prod_{\lambda \in \Lambda} N_{\lambda}$. So, $N \subseteq N' \subseteq M$. For each $\lambda \in \Lambda$ there exists a free module F_{λ} of finite rank such that the inclusion map $N_{\lambda} \to M_{\lambda}$ factors through F_{λ} . It follows that the inclusion map $N \to M$ factors through $\prod_{\lambda \in \Lambda} F_{\lambda}$ which is isomorphic to $R^{\Lambda'}$ for some index set Λ' . Now the monomorphism $N \to R^{\Lambda'}$ factors through a free module F. It is easy to conclude that the inclusion map $N \to M$ factors through F and that M is finitely projective.

By using [\[22,](#page-17-0) Theorem 4.2] and Proposition [1.3,](#page-2-0) we deduce the following corollary:

Corollary 2.2. *Every strongly coherent commutative ring* R *is* π*-coherent and the converse holds if* R *is self injective.*

Proposition 2.3. *Let* R *be a* π*-coherent commutative ring and let* S *be a multiplicative subset of* R *. Assume that* S *contains no zero-divisors. Then* $S^{-1}R$ *is* π*-coherent.*

Proof. Let M be a finitely generated $S^{-1}R$ -module. By [\[3,](#page-16-7) Theorem 1] we must prove that $\text{Hom}_{S^{-1}R}(M, S^{-1}R)$ is finitely generated on $S^{-1}R$. There exists a finitely generated R-submodule N of M such that $S^{-1}N \cong M$. The following sequence

 $0 \to N^* \to \text{Hom}_R(N, S^{-1}R) \to \text{Hom}_R(N, S^{-1}R/R)$

is exact. Since N is finitely generated and $S^{-1}R/R$ is S-torsion, $\text{Hom}_R(N, S^{-1}R/R)$ is S-torsion too. So, $\text{Hom}_{S^{-1}R}(M, S^{-1}R) \cong \text{Hom}_R(N, S^{-1}R) \cong S^{-1}N^*$. By [\[3,](#page-16-7) Theorem 1] N^* is finitely generated. Hence $\text{Hom}_{S^{-1}R}(M, S^{-1}R)$ is finitely generated over $S^{-1}R$. ^{-1}R . Theorem 2.4. *Let* R *be a commutative semihereditary ring and let* Q *be its quotient ring. Then the following conditions are equivalent:*

- (1) R *is* π -coherent;
- (2) Q *is self injective;*

Moreover, when these conditions are satisfied, each singly projective R*-module is finitely projective.*

Proof. (1) \Rightarrow (2). By Proposition [2.3](#page-5-1) Q is π -coherent. We know that Q is Von Neumann regular. It follows from [\[18,](#page-17-6) Theorem 2] that Q is self injective.

 $(2) \Rightarrow (1)$. Let $(M_i)_{i \in I}$ be a family of finitely projective R-modules, where I is an index set, and let N be a finitely generated submodule of $\prod_{i\in I} M_i$. Then N is flat. Since N is a submodule of $\prod_{i\in I} Q \otimes_R M_i$, $Q \otimes_R N$ is isomorphic to a finitely generated Q-submodule of $\prod_{i\in I} Q \otimes_R M_i$. It follows that $Q \otimes_R N$ is a projective Q -module. Hence N is projective by [\[6,](#page-16-6) Proposition 2.3]. We conclude by Theorem [2.1.](#page-5-2)

Let M be a singly projective R -module and let N be a finitely generated submodule of M. Then $Q \otimes_R M$ is finitely projective over Q by Propositions [1.7\(](#page-4-0)1) and [1.3.](#page-2-0) It follows that $Q \otimes_R N$ is projective over Q. Hence N is projective by [\[6,](#page-16-6) Proposition 2.3.

Proposition 2.5. *Let* R *be a Von Neumann regular ring. Then a right* R*-module is content if and only if it is singly projective.*

Proof. By Proposition [1.1\(](#page-1-0)3) it remains to show that each singly projective right module M is content. Let $m \in M$. Then mR is projective because it is isomorphic to a finitely generated submodule of a free module. So, mR is content. For each left ideal A, $mR \cap MA = mA$ because mR is a pure submodule of M. Hence M is content.

A topological space X is said to be **extremally disconnected** if every open set has an open closure. Let R be a ring. We say that R is a right **Baer ring** if for any subset A of R, $r(A)$ is generated by an idempotent. The ring R defined in [\[22,](#page-17-0) Example 4.4] is not self injective and satisfies the conditions of the following theorem.

Theorem 2.6. *Let* R *be a Von Neumann regular ring. Then the following conditions are equivalent:*

- (1) *Each product of singly projective right modules is singly projective;*
- (2) *Each product of content right modules is content;*
- (3) R^R ^R *is singly projective;*
- (4) R_R^R *is a content module;*
- (5) R *is a right Baer ring;*
- (6) *The intersection of each family of finitely generated left ideals is finitely generated too;*
- (7) For each cyclic left module C, C^* is finitely generated.

Moreover, when R *is commutative, these conditions are equivalent to the following:* Spec R *is extremally disconnected.*

Proof. The conditions $(2), (4), (6)$ are equivalent by [\[11,](#page-16-0) Theorem 5.15]. By Proposition [2.5](#page-6-0) (4) \Leftrightarrow (3) and (1) \Leftrightarrow (2). It is easy to check that (5) \Leftrightarrow (7).

 $(3) \Rightarrow (5)$. Let $A \subseteq R$ and let $x = (a)_{a \in A} \in R_R^A$. So, $r(A) = (0 : x)$. Then xR is projective because it is isomorphic to a submodule of a free module. Thus $r(A) = eR$, where e is an idempotent.

 $(5) \Rightarrow (1)$. Let $(M_i)_{i\in I}$ be a family of singly projective right modules and $m = (m_i)_{i \in I}$ be an element of $M = \prod_{i \in I} M_i$. For each $i \in I$, there exists an idempotent e_i such that $(0 : m_i) = e_i R$. Let e be the idempotent which satisfies $eR = r({1 - e_i | i \in I}).$ Then $eR = (0 : m)$, whence mR is projective.

If R is commutative and reduced, then the closure of $D(A)$, where A is an ideal of R, is $V((0:A))$. So, Spec R is extremally disconnected if and only if, for each ideal A there exists an idempotent e such that $V((0:A)) = V(e)$. This last equality holds if and only if $(0 : A) = Re$ because $(0 : A)$ and Re are semiprime since R is reduced. Consequently Spec R is extremally disconnected if and only if R is Baer. The proof is now complete.

Let R be a ring. We say that R is a right **PP-ring** if any principal right ideal is projective.

Lemma 2.7. *Let* R *be a right PP-ring. Then each cyclic submodule of a free right module is projective.*

Proof. Let C be a cyclic submodule of a free right module F . We may assume that F is finitely generated by the basis $\{e_1, \ldots, e_n\}$. Let $p : F \to R$ be the homomorphism defined by $p(e_1r_1 + \cdots + e_nr_n) = r_n$ where $r_1, \ldots, r_n \in R$. Then $p(C)$ is a principal right ideal. Since $p(C)$ is projective, $C \cong C' \oplus p(C)$ where $C' = C \cap \ker p$. So C' is a cyclic submodule of the free right module generated by $\{e_1, \ldots, e_{n-1}\}.$ We complete the proof by induction on n.

Theorem 2.8. *Let* R *be a commutative PP-ring and let* Q *be its quotient ring. Then the following conditions are equivalent:*

- (1) *Each product of singly projective modules is singly projective;*
- (2) R^R *is singly projective;*
- (3) R *is a Baer ring;*
- (4) Q *satisfies the equivalent conditions of Theorem [2.6;](#page-6-1)*
- (5) *For each cyclic module* C*,* C ∗ *is finitely generated;*
- (6) Spec R *is extremally disconnected;*
- (7) Min R *is extremally disconnected.*

Proof. It is obvious that $(1) \Rightarrow (2)$. It is easy to check that $(3) \Leftrightarrow (5)$. We show that $(2) \Rightarrow (3)$ as we proved $(3) \Rightarrow (5)$ in Theorem [2.6,](#page-6-1) by using Lemma [2.7.](#page-7-0)

 $(5) \Rightarrow (4)$. Let C be a cyclic Q-module. We do as in proof of Proposition [2.3](#page-5-1) to show that $\text{Hom}_Q(C, Q)$ is finitely generated over Q.

 $(4) \Rightarrow (1)$. Let $(M_i)_{i \in I}$ be a family of singly projective right modules and let N be a cyclic submodule of $M = \prod_{i \in I} M_i$. Since R is PP, N is a P-flat module. By Proposition [1.1](#page-1-0) N is flat. We do as in the proof of $(2) \Rightarrow (1)$ of Theorem [2.4](#page-6-2) to show that N is projective.

 $(3) \Leftrightarrow (6)$ is shown in the proof of Theorem [2.6.](#page-6-1)

 $(4) \Leftrightarrow (7)$ holds because Spec Q is homeomorphic to Min R.

3. Flat modules

Let M be a non-zero module over a commutative ring R. As in [\[10,](#page-16-8) p.338] we set:

 $M_{\sharp} = \{s \in R \mid \exists 0 \neq x \in M \text{ such that } sx = 0\} \text{ and } M^{\sharp} = \{s \in R \mid sM \subset M\}.$

Then $R \setminus M_{\dagger}$ and $R \setminus M^{\sharp}$ are multiplicative subsets of R.

Lemma 3.1. *Let* M *be a non-zero P-flat* R*-module over a commutative ring* R*. Then* $M_{\sharp} \subseteq R_{\sharp} \cap M^{\sharp}$.

Proof. Let $0 \neq s \in M_{\sharp}$. Then there exists $0 \neq x \in M$ such that $sx = 0$. Since M is P-flat, we have $x \in (0:s)M$. Hence $(0:s) \neq 0$ and $s \in R_{\sharp}$.

Suppose that $M_{\sharp} \nsubseteq M^{\sharp}$ and let $s \in M_{\sharp} \backslash M^{\sharp}$. Then $\exists 0 \neq x \in M$ such that $sx = 0$. It follows that $x = t_1y_1 + \cdots + t_py_p$ for some $y_1, \ldots, y_p \in M$ and $t_1, \ldots, t_p \in (0:s)$. Since $s \notin M^{\sharp}$ we have $M = sM$. So $y_k = sz_k$ for some $z_k \in M$, $\forall k, 1 \leq k \leq p$. We get $x = t_1 s z_1 + \cdots + t_p s z_p = 0$. Whence a contradiction.

Now we assume that R is a commutative ring. An R-module M is said to be uniserial if its set of submodules is totally ordered by inclusion and R is a **valuation ring** if it is uniserial as R -module. If M is a module over a valuation ring R then M_{\sharp} and M^{\sharp} are prime ideals of R. In the sequel, if R is a valuation ring, we denote by P its maximal ideal and we put $Z = R_{\sharp}$ and $Q = R_Z$. Since each finitely generated ideal of a valuation ring R is principal, it follows that any P-flat R-module is flat.

Proposition 3.2. *Let* R *be a valuation ring, let* M *be a flat* R*-module and let* E *be its injective hull. Then* E *is flat.*

Proof. Let $x \in E \setminus M$ and $r \in R$ such that $rx = 0$. There exists $a \in R$ such that $0 \neq ax \in M$. From $ax \neq 0$ and $rx = 0$ we deduce that $r = ac$ for some $c \in R$. Since $cax = 0$ and M is flat we have $ax = by$ for some $y \in M$ and $b \in (0 : c)$. From $bc = 0$ and $ac = r \neq 0$ we get $b = at$ for some $t \in R$. We have $a(x - ty) = 0$. Since $at = b \neq 0, (0 : t) \subset Ra$. So $(0 : t) \subseteq (0 : x - ty)$. The injectivity of E implies that there exists $z \in E$ such that $x = t(y + z)$. On the other hand $tr = tac = bc = 0$, so $t \in (0:r).$

In the sequel, if J is a prime ideal of R we denote by 0_J the kernel of the natural map: $R \to R_J$.

Proposition 3.3. *Let* R *be a valuation ring and let* M *be a non-zero flat* R*-module. Then:*

- (1) If $M_{\sharp} \subset Z$ we have $ann(M) = 0_{M_{\sharp}}$ and M is an $R_{M_{\sharp}}$ -module;
- (2) *If* $M_{\sharp} = Z$, $\text{ann}(M) = 0$ *if* $M_Z \neq ZM_Z$ *and* $\text{ann}(M) = (0 : Z)$ *if* $M_Z =$ ZMZ*. In this last case,* M *is a* Q*-module.*

Proof. Observe that the natural map $M \to M_{M_{\sharp}}$ is a monomorphism. First we assume that R is self FP-injective and $P = M_{\sharp}$. So $M^{\sharp} = P$ by Lemma [3.1.](#page-8-0) If $M \neq PM$ let $x \in M \setminus PM$. Then $(0 : x) = 0$ else $\exists r \in R, r \neq 0$ such that $x \in (0 : r)M \subseteq PM$. If $M = PM$ then P is not finitely generated else $M = pM$, where $P = pR$, and $p \notin M^{\sharp} = P$. If P is not faithful then $(0 : P) \subseteq \text{ann}(M)$. Thus M is flat over $R/(0 : P)$. So we can replace R with $R/(0 : P)$ and assume that P is faithful. Suppose $\exists 0 \neq r \in P$ such that $rM = 0$. Then $M = (0 : r)M$. Since $(0 : r) \neq P$, let $t \in P \setminus (0 : r)$. Thus $M = tM$ and $t \notin M^{\sharp} = P$. Whence a contradiction. So M is faithful or $ann(M) = (0 : P)$.

Return to the general case. We put $J = M_{\sharp}$.

If $J \subset Z$ then R_J is coherent and self FP-injective by [\[4,](#page-16-9) Theorem 11]. In this case JR_J is principal or faithful. So M_J is faithful over R_J , whence ann $(M) = 0_J$. Let $s \in R \setminus J$. There exists $t \in Zs \setminus J$. It is easy to check that $\forall a \in R$, $(0 : a)$ is also an ideal of Q. On the other hand, $\forall a \in Q$, $Qa = (0 : (0 : a))$ because Q is self FP-injective. It follows that $(0 : s) \subset (0 : t)$. Let $r \in (0 : t) \setminus (0 : s)$. Then $r \in 0_J$. So, $rM = 0$. Hence $M = (0 : r)M = sM$. Therefore the multiplication by s in M is bijective for each $s \in R \setminus J$.

Now suppose that $J = Z$. Since Q is self FP-injective then M is faithful or ann $(M) = (0 : Z)$. Let $s \in R \setminus Z$. Thus $Z \subset Rs$ and $sZ = Z$. It follows that $ZM_Z = ZM$. So, M is a Q-module if $ZM_Z = M_Z$.

When R is a valuation ring, N is a pure submodule of M if $rN = rM \cap N$, $\forall r \in R$.

Proposition 3.4. *Let* R *be a valuation ring and let* M *be a non-zero flat* R*-module* such that $M_{M_{\sharp}} \neq M_{\sharp} M_{M_{\sharp}}$. Then M contains a non-zero pure uniserial submodule.

Proof. Let $J = M_{\sharp}$ and $x \in M_J \setminus JM_J$. If $J \subset Z$ then M is a module over $R/0_J$ and $J/0_J$ is the subset of zero-divisors of $R/0_J$. So, after replacing R with $R/0_J$ we may assume that $Z = J$. If $rx = 0$ then $x \in (0 : r)M_Z \subseteq ZM_Z$ if $r \neq 0$. Hence Qx is faithful over Q which is FP-injective. So $V = Qx$ is a pure submodule of M_Z . We put $U = M \cap V$. Thus U is uniserial and $U_Z = V$. Then M/U is a submodule of M_Z/V , and this last module is flat. Let $z \in M/U$ and $0 \neq r \in R$ such that $rz = 0$. Then $z = as^{-1}y$ where $s \notin Z$, $a \in (0 : r) \subseteq Z$ and $y \in M/U$. It follows that $a = bs$ for some $b \in R$ and $sbr = 0$. So $b \in (0 : r)$ and $z = by$. Since M/U is flat, U is a pure submodule of M.

Proposition 3.5. *Let* R *be a valuation ring and let* M *be a flat* R*-module. Then* M contains a pure free submodule N such that $M/PM \cong N/PN$.

Proof. Let $(x_i)_{i\in I}$ be a family of elements of M such that $(x_i + PM)_{i\in I}$ is a basis of M/PM over R/P , and let N be the submodule of M generated by this family. If we show that N is a pure submodule of M , we deduce that N is flat. It follows that N is free by Lemma [1.4.](#page-3-1) Let $x \in M$ and $r \in R$ such that $rx \in N$. Then $rx = \sum_{i \in J} a_i x_i$ where J is a finite subset of I and $a_i \in R$, $\forall i \in J$. Let $a \in R$ such that $Ra = \sum_{i \in J} Ra_i$. It follows that, $\forall i \in J$, there exists $u_i \in R$ such that $a_i = au_i$ and there is at least one $i \in J$ such that u_i is a unit. Suppose that $a \notin Rr$. Thus there exists $c \in P$ such that $r = ac$. We get that $a(\sum_{i \in J} u_i x_i - cx) = 0$. Since M is flat, we deduce that $\sum_{i\in J} u_i x_i \in PM$. This contradicts that $(x_i + PM)_{i\in I}$ is a basis of M/PM over R/P . So, $a \in Rr$. Hence N is a pure submodule. \square

4. Singly projective modules

Lemma 4.1. *Let* R *be a valuation ring. Then a non-zero* R*-module* M *is singly projective if and only if for each* $x \in M$ *there exists* $y \in M$ *such that* $(0 : y) = 0$ *and* $x \in Ry$ *. Moreover* $M_{\sharp} = Z$ *and* $M_Z \neq ZM_Z$ *.*

Proof. Assume that M is singly projective and let $x \in M$. There exist a free module F, a morphism $\phi : Rx \to F$ and a morphism $\pi : F \to M$ such that $(\pi \circ \phi)(x) = x$. Let $(e_i)_{i \in I}$ be a basis of F. Then $\phi(x) = \sum_{i \in J} a_i e_i$ where

J is a finite subset of *I* and $a_i \in R$, $\forall i \in J$. There exists $a \in R$ such that $\sum_{i\in J} Ra_i = Ra$. Thus, $\forall i \in J$ there exists $u_i \in R$ such $a_i = au_i$. We put $z = \sum_{i \in J} u_i e_i$. Then $\phi(x) = az$. Since there is at least one index $i \in J$ such that u_i is a unit, then $(0 : z) = 0$. It follows that $(0 : \phi(x)) = (0 : a)$. But $(0 : x) = (0 : \phi(x))$ because ϕ is a monomorphism. We have $x = a\pi(z)$. So, by [\[4,](#page-16-9)] Lemma 2 $(0: \pi(z)) = a(0: x) = a(0: a) = 0$. The converse and the last assertion are obvious. \square

Let R be a valuation ring and let M be a non-zero R -module. A submodule N of M is said to be **pure-essential** if it is a pure submodule and if 0 is the only submodule K satisfying $N \cap K = 0$ and $(N + K)/K$ is a pure submodule of M/K . An R-module E is said to be **pure-injective** if for any pure-exact sequence $0 \to N \to M \to L \to 0$, the following sequence is exact:

$$
0 \to \text{Hom}_R(L, E) \to \text{Hom}_R(M, E) \to \text{Hom}_R(N, E) \to 0.
$$

We say that E is a **pure-injective hull** of K if E is pure-injective and K is a pure-essential submodule of E . We say that R is **maximal** if every family of cosets ${a_i + L_i \mid i \in I}$ with the finite intersection property has a non-empty intersection (here $a_i \in R$, L_i denote ideals of R, and I is an arbitrary index set).

Proposition 4.2. *Let* R *be a valuation ring and let* M *be a non-zero* R*-module. Then the following conditions are equivalent:*

- (1) M *is a flat content module;*
- (2) M *is flat and contains a pure-essential free submodule.*

Moreover, if these conditions are satisfied, then any element of M *is contained in a pure cyclic free submodule* L *of* M*. If* R *is maximal then* M *is locally projective.*

Proof. (1) \Rightarrow (2). Let $0 \neq x \in M$. Then $x = \sum_{1 \leq i \leq n} a_i x_i$ where $a_i \in c(x)$ and $x_i \in M$, $\forall i$, $1 \leq i \leq n$. Since R is a valuation ring $\exists a \in R$ such that $Ra = Ra_1 + \cdots + Ra_n$. So, we get that $c(x) = Ra$ and $x = ay$ for some $y \in M$. Thus $y \notin PM$ else $c(x) \subset Ra$. So $PM \neq M$ and we can apply Proposition [3.5.](#page-9-0) It remains to show that N is a pure-essential submodule of M. Let $x \in M$ such that $Rx \cap N = 0$ and N is a pure submodule of M/Rx . There exist $b \in R$ and $y \in M \setminus PM$ such that $x = by$. Since $M = N + PM$, we have $y = n + pm$ where $n \in N$, $m \in M$ and $p \in P$. Then $n \notin PN$ and $bpm = -bn + x$. Since N is pure in M/Rx there exist $n' \in N$ and $t \in R$ such that $bpn' = -bn + tx$. We get that $b(n + pn') \in N \cap Rx = 0$. So $b = 0$ because $n + pn' \notin PN$. Hence $x = 0$.

 $(2) \Rightarrow (1)$. First we show that M is a content module if each element x of M is of the form $s(y + cz)$, where $s \in R$, $y \in N \setminus PN$, $c \in P$ and $z \in M$. Since N is a pure submodule, $PM \cap N = PN$ whence $y \notin PM$. If $x = stw$ with $t \in P$ and $w \in M$ we get that $s(y + cz - tw) = 0$ whence $y \in PM$ because M is flat. This is a contradiction. Consequently $c(x) = Rs$ and M is content. Now we prove that each element x of M is of the form $s(y + cz)$, where $s \in R$, $y \in N \setminus PN$, $c \in P$ and $z \in M$. If $x \in N$, then we check this property by using a basis of N. Suppose $x \notin N$ and $Rx \cap N \neq 0$. There exists $a \in P$ such that $0 \neq ax \in N$. Since N is pure, there exists $y' \in N$ such that $ax = ay'$. We get $x = y' + bz$ for some $b \in (0 : a)$ and $z \in M$, because M is flat. We have $y' = sy$ with $s \in R$ and $y \in N \setminus PN$. Since $as \neq 0$, $b = sc$ for some $c \in P$. Hence $x = s(y + cz)$. Now suppose that $Rx \cap N = 0$. Since N is pure-essential in M, there exist $r \in R$ and $m \in M$ such that $rm \in N + Rx$ and $rm \notin rN + Rx$. Hence $rm = n + tx$ where $n \in N$ and $t \in R$.

Thus $n = by'$ where $b \in R$ and $y' \in N \setminus PN$. Then $b \notin rR$. So, $r = bc$ for some $c \in P$. We get $bcm = by' + tx$. If $t = bd$ for some $d \in P$ then $b(cm - y' - dx) = 0$. Since M is flat, it follows that $y' \in PM \cap N = PN$. But this is false. So $b = st$ for some $s \in R$. We obtain $t(x + sy' - scm) = 0$. Since M is flat and $tsc \neq 0$ there exists $z \in M$ such that $x = s(-y' + cz)$.

Let $y \in M$. There exists $x \in M \setminus PM$ such that $y \in Rx$. We may assume that $x + PM$ is an element of a basis $(x_i + PM)_{i\in I}$ of M/PM . Then Rx is a summand of the free pure submodule N generated by the family $(x_i)_{i\in I}$.

Assume that R is maximal. Let the notations be as above. By [\[9,](#page-16-10) Theorem $XI.4.2$ each uniserial R-module is pure-injective. So, Rx is a summand of M . Let u be the composition of a projection from M onto Rx with the isomorphism between Rx and R. Thus $u \in M^*$ and $u(x) = 1$. It follows that $y = u(y)x$. Hence M is locally projective by [\[11,](#page-16-0) Theorem 3.2] or [\[22,](#page-17-0) Theorem 2.1].

Proposition 4.3. Let R be a valuation ring such that $Z = P \neq 0$ and let M be a *non-zero* R*-module. Then the following conditions are equivalent:*

- (1) M *is singly projective;*
- (2) M *is a flat content module;*
- (3) M *is flat and contains an essential free submodule.*

Proof. $(2) \Rightarrow (1)$ by Proposition [1.1.](#page-1-0)

 $(1) \Rightarrow (2)$. It remains to show that M is a content module. Let $x \in M$. There exists $y \in M$ and $a \in R$ such that $x = ay$ and $(0 : y) = 0$. Since $Z = P$ then $y \notin PM$. We deduce that $c(x) = Ra$.

 $(2) \Leftrightarrow (3)$. By Proposition [4.2](#page-10-0) it remains to show that $(2) \Rightarrow (3)$. Let N be a pure-essential free submodule of M . Since R is self FP-injective by [\[12,](#page-16-11) Lemma], it follows that N is a pure submodule of each overmodule. So, if K is a submodule of M such that $K \cap N = 0$, then N is a pure submodule of M/K , whence $K = 0$.

Corollary 4.4. *Let* R *be a valuation ring. The following conditions are equivalent:*

 (1) $Z = P$;

(2) *Each singly projective module is a content module.*

Proof. It remains to show that $(2) \Rightarrow (1)$. By Proposition [1.7](#page-4-0) Q is finitely projective over R. If $R \neq Q$, then Q is not content on R because, $\forall x \in Q \setminus Z$, $c(x) =$ Z. So $Z = P$.

Corollary 4.5. *Let* R *be a valuation ring. Then the injective hull of any singly projective module is singly projective too.*

Proof. Let N be a non-zero singly projective module. We denote by E its injective hull. For each $s \in R \setminus Z$ the multiplication by s in N is injective, so the multiplication by s in E is bijective. Hence E is a Q -module which is flat by Proposition [3.2.](#page-8-1) It is an essential extension of N_Z . From Propositions [4.3](#page-11-0) and [1.7\(](#page-4-0)2) we deduce that E is singly projective. \square

Let R be a valuation ring and let M be a non-zero R-module. We say that M is separable if any finite subset is contained in a summand which is a finite direct sum of uniserial submodules.

Corollary 4.6. *Let* R *be a valuation ring. Then any element of a singly projective module* M *is contained in a pure uniserial submodule* L*. Moreover, if* R *is maximal, each singly projective module is separable.*

Proof. By Proposition [4.2](#page-10-0) any element of M is contained in a pure cyclic free Q-submodule G of M_Z . We put $L = M \cap G$. As in proof of Proposition [3.4](#page-9-1) we show that L is a pure uniserial submodule of M . The first assertion is proved.

Since R is maximal L is pure-injective by [\[9,](#page-16-10) Theorem XI.4.2]. So, L is a summand of M . Each summand of M is singly projective. It follows that we can complete the proof by induction on the cardinal of the chosen finite subset of M . \Box

Corollary 4.7. *Let* R *be a valuation ring. Then the following conditions are equivalent:*

- (1) R *is self injective;*
- (2) *Each singly projective module is locally projective;*
- (3) Z = P *and each singly projective module is finitely projective.*

Proof. (1) \Rightarrow (2) by Proposition [1.3.](#page-2-0)

 $(2) \Rightarrow (3)$ follows from [\[11,](#page-16-0) Proposition 5.14(4)] and Corollary [4.4.](#page-11-1)

 $(3) \Rightarrow (1)$. By way of contradiction suppose that R is not self injective. Let E be the injective hull of R. By Corollary [4.5](#page-11-2) E is singly projective. Let $x \in E \setminus R$ and $M = R + Rx$. Since E is finitely projective, then there exist a finitely generated free module F, a morphism $\phi : M \to F$ and a morphism $\pi : F \to E$ such that $(\pi \circ \phi)(y) = y$ for each $y \in M$. Let $\phi : M/R \to F/\phi(R)$ and $\tilde{\pi} : F/\phi(R) \to E/R$ be the morphisms induced by ϕ and π . Then $(\tilde{\pi} \circ \tilde{\phi})(y + R) = y + R$ for each $y \in M$. Since $\phi(R)$ is a pure submodule of F, then $F/\phi(R)$ is a finitely generated flat module. Hence $F/\phi(R)$ is free and E/R is singly projective. But $E/R =$ $P(E/R)$ by [\[4,](#page-16-9) Lemma 12]. This contradicts that E/R is a flat content module. By Proposition [4.3](#page-11-0) we conclude that $E = R$.

Corollary 4.8. *Let* R *be a valuation ring. Then* Q *is self injective if and only if each singly projective module is finitely projective.*

Proof. By [\[17,](#page-17-7) Theorem 2.3] Q is maximal if and only if it is self injective. Suppose that Q is self injective and let M be a singly projective R-module. Then M_Z is locally projective over Q by Proposition [1.7\(](#page-4-0)1) and corollary [4.7.](#page-12-0) Consequently M is finitely projective by Lemma [1.5.](#page-3-0)

Conversely let M be a singly projective Q -module. Then M is singly projective over R , whence M is finitely projective over R . If follows that M is finitely projective over Q . From Corollary [4.7](#page-12-0) we deduce that Q is self injective.

Theorem 4.9. *Let* R *be a valuation ring. Then the following conditions are equivalent:*

- (1) R *is maximal;*
- (2) *each singly projective* R*-module is separable;*
- (3) *each flat content module is locally projective.*

Proof. (1) \Rightarrow (2) by Corollary [4.6](#page-11-3) and (1) \Rightarrow (3) by Proposition [4.2.](#page-10-0)

 $(2) \Rightarrow (1)$: let \hat{R} be the pure-injective hull of R. By [\[5,](#page-16-12) Proposition 1 and 2] \hat{R} is a flat content module. Consequently 1 belongs to a summand L of \tilde{R} which is a finite direct sum of uniserial modules. But, by [\[7,](#page-16-13) Proposition 5.3] \widehat{R} is indecomposable. Hence \widehat{R} is uniserial. Suppose that $R \neq \widehat{R}$. Let $x \in \widehat{R} \setminus R$. Then there exists $c \in P$ such that $1 = cx$. Since R is pure in \widehat{R} we get that $1 \in P$ which is absurd. Consequently, R is a pure-injective module. So, R is maximal by [\[21,](#page-17-8) Proposition 9].

 $(3) \Rightarrow (1)$: since \widehat{R} is locally projective then R is a summand of \widehat{R} which is indecomposable. So R is maximal. \square

A submodule N of a module M is said to be **strongly pure** if, $\forall x \in N$ there exists an homomorphism $u : M \to N$ such that $u(x) = x$. Moreover, if N is pure-essential, we say that M is a strongly pure-essential extension of N .

Proposition 4.10. *Let* R *be a valuation ring and let* M *be a flat* R*-module. Then* M *is locally projective if and only if it is a strongly pure-essential extension of a free module.*

Proof. Let M be a non-zero locally projective R-module. Then M is a flat content module. So M contains a pure-essential free submodule N. Let $x \in N$. There exist $u_1, \ldots, u_n \in M^*$ and $y_1, \ldots, y_n \in M$ such that $x = \sum_{i=1}^n u_i(x)y_i$. Since N is a pure submodule, y_1, \ldots, y_n can be chosen in N. Let $\phi : M \to N$ be the homomorphism defined by $\phi(z) = \sum_{i=1}^{n} u_i(z) y_i$. Then $\phi(x) = x$. So, N is a strongly pure submodule of M.

Conversely, assume that M is a strongly pure-essential extension of a free submodule N. Let $x \in M$. As in proof of Proposition [4.2,](#page-10-0) $x = s(y + cz)$, where $s \in R$, $y \in N \setminus PN$, $c \in P$ and $z \in M$. Since N is strongly pure, there exists a morphism $\phi: M \to N$ such that $\phi(y) = y$. Let $\{e_i \mid i \in I\}$ be a basis of N. Then $y = \sum_{i \in J} a_i e_i$ where J is a finite subset of I and $a_i \in R$, $\forall i \in J$. Since $y \in N \setminus PN$ there exists $j \in J$ such that $a_j \notin P$. We easily check that $\{y, e_i \mid i \in I, i \neq j\}$ is a basis of N too. Hence Ry is a summand of N. Let u be the composition of ϕ with a projection of N onto Ry and with the isomorphism between Ry and R. Then $u \in M^*$, $u(y) = 1$ and $u(y + cz) = 1 + cu(z) = v$ is a unit. We put $m = v^{-1}(y + cz)$. It follows that $x = u(x)m$. Hence M is locally projective by [\[11,](#page-16-0) Theorem 3.2] or [\[22,](#page-17-0) Theorem 2.1].

Corollary 4.11. *Let* R *be a valuation ring and let* M *be a locally projective* R*module. If* M/PM *is finitely generated then* M *is free.*

Theorem 4.12. *Let* R *be a valuation ring. The following conditions are equivalent:*

- (1) Z *is nilpotent;*
- (2) Q *is an artinian ring;*
- (3) *Each flat* R*-module is finitely projective;*
- (4) *Each flat* R*-module is singly projective.*

Proof. (1) \Leftrightarrow (2). If Z is nilpotent then $Z^2 \neq Z$. It follows that Z is finitely generated over Q and it is the only prime ideal of Q . So, Q is artinian. The converse is well known.

 $(2) \Rightarrow (3)$ is a consequence of [\[20,](#page-17-5) Corollary 7] and it is obvious that $(3) \Rightarrow (4)$.

 $(4) \Rightarrow (2)$. First we prove that each flat Q-module is singly projective. By Proposition [4.3](#page-11-0) it follows that each flat Q-module is content. We deduce that Q is perfect by Theorem [1.2.](#page-2-1) We conclude that Q is artinian since Q is a valuation \Box

5. STRONGLY COHERENCE OR π -COHERENCE OF VALUATION RINGS.

In this section we study the valuation rings, with non-zero zero-divisors, for which any product of content (respectively singly, finitely, locally projective) modules is content (respectively singly, finitely, locally projective) too.

Theorem 5.1. Let R be a valuation ring such that $Z \neq 0$. Then the following *conditions are equivalent:*

- (1) *Each product of content modules is content;*
- (2) R^R *is a content module;*
- (3) For each ideal A there exists $a \in R$ such that either $A = Ra$ or $A = Pa$;
- (4) *Each ideal is countably generated and* R^N *is a content module;*
- (5) *The intersection of any non-empty family of principal ideals is finitely generated.*

Proof. The conditions (1) , (2) and (5) are equivalent by $[11]$, Theorem 5.15]. By [\[4,](#page-16-9) Lemma 29] $(3) \Leftrightarrow (5)$.

 $(2) \Rightarrow (4)$. It is obvious that $R^{\mathbb{N}}$ is a content module. Since $(2) \Leftrightarrow (3)$ then P is the only prime ideal. We conclude by [\[4,](#page-16-9) Corollary 36].

(4) \Rightarrow (3). Let A be a non-finitely generated ideal. Let $\{a_n \mid n \in \mathbb{N}\}\$ be a spanning set of A. Then $x = (a_n)_{n \in \mathbb{N}} \in R^{\mathbb{N}}$. It follows that $x = ay$ for some $a \in c(x)$ and $y \in R^{\mathbb{N}}$, and $c(x) = Ra$. So, if $y = (b_n)_{n \in \mathbb{N}}$, we easily check that P is generated by $\{b_n \mid n \in \mathbb{N}\}\$. Hence $A = aP$.

By Proposition [1.1](#page-1-0) each valuation domain R verifies the first two conditions of the next theorem.

Theorem 5.2. Let R be a valuation ring such that $Z \neq 0$. Then the following *conditions are equivalent:*

- (1) *Each product of singly projective modules is singly projective.*
- (2) R^R *is singly projective;*
- (3) C^* is a finitely generated module for each cyclic module C ;
- (4) (0 : A) *is finitely generated for each proper ideal* A*;*
- (5) P *is principal or faithful and for each ideal* A *there exists* $a \in R$ *such that either* $A = Ra$ *or* $A = Pa$;
- (6) *Each ideal is countably generated and* R^N *is singly projective*;
- (7) *Each product of flat content modules is flat content;*
- (8) R^R *is a flat content module;*
- (9) *Each ideal is countably generated and* R^N *is a flat content module;*
- (10) P *is principal or faithful and the intersection of any non-empty family of principal ideals is finitely generated.*

Proof. It is obvious that $(1) \Rightarrow (2)$ and $(7) \Rightarrow (8)$. $(3) \Leftrightarrow (4)$ because $(0:A) \cong (R/A)^*$.

(2) \Rightarrow (4). Let A be a proper ideal. Then R^A is singly projective too and $x = (a)_{a \in A}$ is an element of R^A . Therefore x belongs to a cyclic free submodule of R^A by Lemma [4.1.](#page-9-2) Since R^R is flat, R is coherent by [\[10,](#page-16-8) Theorem IV.2.8]. Consequently $(0 : A) = (0 : x)$ is finitely generated.

 $(4) \Rightarrow (5)$. Then R is coherent because R is a valuation ring. Since $Z \neq 0$, $Z = P$ by [\[4,](#page-16-9) Theorem 10]. If P is not finitely generated then P cannot be an annihilator. So P is faithful. By $[12, \text{Lemma 3}]$ and $[17, \text{ Proposition 1.3}],$ if A is a proper ideal then either $A = (0 : (0 : A))$ or $A = P(0 : (0 : A))$. By (4), $(0 : (0 : A)) = Ra$ for some $a \in P$.

 $(5) \Rightarrow (1)$. Let $(M_i)_{i \in I}$ be a family of singly projective modules. Let $x = (x_i)_{i \in I}$ be an element of $\Pi_{i\in I}M_i$. Since M_i is singly projective for each $i \in I$ there exist $a_i \in R$ and $y_i \in M_i$ such that $x_i = a_i y_i$ and $(0 : y_i) = 0$. We have either

 $\sum_{i\in I} Ra_i = Ra$ or $\sum_{i\in I} Ra_i = Pa$ for some $a \in R$. Then, $\forall i \in I$, $\exists b_i \in R$ such that $a_i = ab_i$. Therefore either $\exists i \in I$ such that b_i is a unit, or $P = \sum_{i \in I} Rb_i$. It follows that $x = ay$ where $y = (b_i y_i)_{i \in I}$. Now it is easy to check that $(0 : y) = 0$.

 $(6) \Rightarrow (4)$. Since each ideal is countably generated then so is each submodule of a finitely generated free module. So, the flatness of $R^{\mathbb{N}}$ implies that R is coherent. Let A be a proper ideal generated by $\{a_n \mid n \in \mathbb{N}\}\$. Then $x = (a_n)_{n \in \mathbb{N}}$ is an element of $R^{\mathbb{N}}$. Therefore x belongs to a cyclic free submodule of $R^{\mathbb{N}}$ by Lemma [4.1.](#page-9-2) Consequently $(0 : A) = (0 : x)$ is finitely generated because R is coherent.

 $(5) \Rightarrow (9)$. By Theorem $5.1((3) \Leftrightarrow (4))$ it remains to show that $R^{\mathbb{N}}$ is flat. This is true because $(5) \Rightarrow (1)$.

 $(1) \Leftrightarrow (7)$. Since $(1) \Rightarrow (2)$ or $(7) \Rightarrow (8)$, R is coherent. From $Z \neq 0$ and [\[4,](#page-16-9) Theorem 10 it follows that $Z = P$. Now we use Proposition [4.3](#page-11-0) to conclude.

 $(2) \Leftrightarrow (8)$. Since R^R is flat, R is coherent. We do as above to conclude.

 $(6) \Leftrightarrow (9)$. Since each submodule of a free module of finite rank is countably generated, then the flatness of R^N implies that R is coherent. So we conclude as above.

 $(5) \Leftrightarrow (10)$ by Theorem $5.1((3) \Leftrightarrow (5))$.

The last assertion is already shown. So, the proof is complete. \Box

Remark 5.3. When R is a valuation domain, the conditions (5) , (7) , (8) , (9) and (10) are equivalent by [\[16,](#page-17-3) Theorem 4] and [\[4,](#page-16-9) Corollary 36].

Remark 5.4. If R satisfies the conditions of Theorem [5.1](#page-14-0) and if P is not faithful and not finitely generated then R is not coherent and doesn't satisfy the conditions of Theorem [5.2.](#page-14-1)

By [\[8,](#page-16-4) Corollary 3.5] or [\[16,](#page-17-3) Theorem 3], a valuation domain R is strongly coherent if and only if either its order group is $\mathbb Z$ or if R is maximal and its order group is R. It is easy to check that each Prüfer domain is π -coherent because it satisfies the fourth condition of the next theorem. When R is a valuation ring with non-zero zero-divisors we get:

Theorem 5.5. Let R be a valuation ring such that $Z \neq 0$. Then the following *conditions are equivalent:*

- (1) R *is strongly coherent;*
- (2) R *is* π -coherent;
- (3) R^R *is singly projective and separable;*
- (4) C^* is a finitely generated module for each finitely generated module C ;
- (5) (0 : A) *is finitely generated for each proper ideal* A *and* R *is self injective;*
- (6) R *is maximal,* P *is principal or faithful and for each ideal* A *there exists* $a \in R$ *such that either* $A = Ra$ *or* $A = Pa$;
- (7) *Each ideal is countably generated and* R^N *is singly projective and separable:*
- (8) R^R *is a separable flat content module;*
- (9) *Each ideal is countably generated and* R^N *is a separable flat content module;*
- (10) *Each product of separable flat content modules is a separable flat content module;*
- (11) R *is maximal,* P *is principal or faithful and the intersection of any nonempty family of principal ideals is finitely generated.*

Proof. By Theorem [2.1](#page-5-2) (1) \Rightarrow (2). It is obvious that (10) \Rightarrow (8). By [\[3,](#page-16-7) Theorem 1] (2) \Leftrightarrow (4). By Theorem [5.2,](#page-14-1) Theorem [4.9](#page-12-1) and [\[17,](#page-17-7) Theorem 2.3] (5) \Leftrightarrow (6) and $(6) \Rightarrow (7)$. By Theorem [5.2](#page-14-1) $(6) \Leftrightarrow (11)$, $(7) \Leftrightarrow (9)$ and $(3) \Leftrightarrow (8)$.

 $(4) \Rightarrow (6)$. By Theorem [5.2](#page-14-1) R is coherent and self FP-injective and it remains to prove that R is maximal if P is not principal. Let E be the injective hull of R. If $R \neq E$ let $x \in E \setminus R$. Since R is an essential submodule of E, $(R : x) = rP$ for some $r \in R$. Then $(R : rx) = P$. Let M be the submodule of E generated by 1 and rx. We put $N = M/R$. Then $N \cong R/P$. We get that $N^* = 0$ and M^* is isomorphic to a principal ideal of R. Moreover, since $(R : rx) = P$, for each $t \in P$ the multiplication by t in M is a non-zero element of M^* . Since P is faithful we get that $M^* \cong R$. Let $g \in M^*$ such that the restriction of g to R is the identity. For each $p \in P$ we have $pg(rx) = prx$. So $(0 : g(rx) - rx) = P$. Since P is faithful, there is no simple submodule in E. Hence $q(rx) = rx$ but this is not possible because $g(rx) \in R$ and $rx \notin R$. Consequently R is self-injective and maximal.

 $(2) \Rightarrow (1)$. Since $(2) \Rightarrow (6)$ R is self injective. We conclude by proposition [1.3.](#page-2-0)

 $(3) \Rightarrow (1)$. Since R^R is singly projective, by Theorem [5.2](#page-14-1) R is coherent and self FP-injective. So, if U is a uniserial summand of R^R , then U is singly projective and consequently $U \neq PU$. Let $x \in U \setminus PU$. It is easy to check that $U = Rx$ and that $(0 : x) = 0$. Hence R^R is locally projective and R is strongly coherent.

 $(7) \Rightarrow (4)$. Let $F_1 \rightarrow F_0 \rightarrow C \rightarrow 0$ be a free presentation of a finitely generated module C, where F_0 is finitely generated. It follows that F_1 is countably generated. As above we prove that $R^{\mathbb{N}}$ is locally projective. By Theorem [5.2](#page-14-1) R is coherent and consequently each finitely generated submodule of R^N is finitely presented. Since $F_1^* \cong R^{\mathbb{N}}$ we easily deduce that C^* is finitely generated.

 $(1) \Rightarrow (10)$. Since $(1) \Rightarrow (6)$, R is maximal. We use Theorem [4.9](#page-12-1) to conclude. The proof is now complete. \Box

REFERENCES

- [1] G. Azumaya. Finite splitness and finite projectivity. J. Algebra, 106:114–134, (1987).
- [2] H. Bass. Finistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc., 95:466–488, (1960).
- V. Camillo. Coherence for polynomial rings. J. Algebra, 132:72-76, (1990).
- [4] F. Couchot. Injective modules and fp-injective modules over valuations rings. J. Algebra, 267:359–376, (2003).
- [5] F. Couchot. Pure-injective hulls of modules over valuation rings. J. Pure Appl. Algebra, 207:63–76, (2006).
- [6] H. Cox and R. Pendleton. Rings for which certain flat modules are projective. Trans. Amer. Math. Soc., 150:139–156, (1970).
- [7] A. Facchini. Relative injectivity and pure-injective modules over Prüfer rings. J. Algebra, 110:380–406, (1987).
- [8] B. Franzen. On the separability of a direct product of free modules over a valuation domain. Arch. Math., 42:131–135, (1984).
- [9] L. Fuchs and L. Salce. Modules over valuation domains, volume 97 of Lecture Notes in Pure an Appl. Math. Marcel Dekker, New York, (1985).
- [10] L. Fuchs and L. Salce. Modules over Non-Noetherian Domains. Number 84 in Mathematical Surveys and Monographs. American Mathematical Society, Providence, (2001).
- [11] G.S. Garfinkel. Universally Torsionless and Trace Modules. Trans. Amer. Math. Soc., 215:119–144, (1976).
- [12] D.T. Gill. Almost maximal valuation rings. J. London Math. Soc., 4:140–146, (1971).
- [13] L. Gruson and M. Raynaud. Critèrs de platitude et de projectivité. Invent. Math., 13:1–89, (1971).
- [14] S. Jain. Flatness and FP-injectivity. Proc. Amer. Math. Soc., 41(2):437–442, (1973).

- [15] M.F. Jones. Flatness and f-projectivity of torsion-free modules and injective modules. In Advances in Non-commutative Ring Theory, number 951 in Lecture Notes in Mathematics, pages 94–116, New York/Berlin, (1982). Springer-Verlag.
- [16] R. Kemper. Product-trace-rings and a question of G. S. Garfinkel. Proc. Amer. Math. Soc., 128(3):709–712, (2000).
- [17] G.B. Klatt and L.S. Levy. Pre-self injectives rings. Trans. Amer. Math. Soc., 137:407–419, (1969).
- [18] S. Kobayashi. A note on regular self-injective rings. Osaka J. Math., 21(3):679–682, (1984).
- [19] V.S. Ramamurthi and K.M. Rangaswamy. On finitely injective modules. J. Aust. Math. Soc., XVI(2):239–248, (1973).
- [20] Zhu Shenglin. On rings over which every flat left module is finitely projective. J. Algebra, 139:311–321, (1991).
- [21] R.B. Warfield. Purity and algebraic compactness for modules. Pac. J. Math., 28(3):689–719, (1969).
- [22] B. Zimmermann-Huisgen. Pure submodules of direct products of free modules. Math. Ann., 224:233–245, (1976).
- [23] B. Zimmermann-Huisgen. Direct products of modules and algebraic compactness. Habilitationsschrift, Tech. Univ. München, (1980).

LABORATOIRE DE MATHÉMATIQUES NICOLAS ORESME, CNRS UMR 6139, DÉPARTEMENT DE math´ematiques et m´ecanique, 14032 Caen cedex, France

E-mail address: couchot@math.unicaen.fr

