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FLAT MODULES OVER VALUATION RINGS

FRANCOIS COUCHOT

ABSTRACT. Let R be a valuation ring and let @ be its total quotient ring.
It is proved that any singly projective (respectively flat) module is finitely
projective if and only if @ is maximal (respectively artinian). It is shown that
each singly projective module is a content module if and only if any non-unit of
R is a zero-divisor and that each singly projective module is locally projective
if and only if R is self injective. Moreover, R is maximal if and only if each
singly projective module is separable, if and only if any flat content module is
locally projective. Necessary and sufficient conditions are given for a valuation
ring with non-zero zero-divisors to be strongly coherent or m-coherent.

A complete characterization of semihereditary commutative rings which are
m-coherent is given. When R is a commutative ring with a self FP-injective
quotient ring @, it is proved that each flat R-module is finitely projective if
and only if Q is perfect.

In this paper, we consider the following properties of modules: P-flatness, flat-
ness, content flatness, local projectivity, finite projectivity and single projectivity.
We investigate the relations between these properties when R is a PP-ring or a valu-
ation ring. Garfinkel ([I1]), Zimmermann-Huisgen ([22]), and Gruson and Raynaud
([13]) introduced the concepts of locally projective modules and strongly coherent
rings and developed important theories on these. The notions of finitely projec-
tive modules and w-coherent rings are due to Jones ([I5]). An interesting study of
finitely projective modules and singly projective modules is also done by Azumaya
in [TI]. For a module M over a ring R, the following implications always hold:

M is projective = M is locally projective = M is flat content

\ I
M is finitely projective = M is flat
I I

M is singly projective = M is P — flat,

but there are not generally reversible. However, if R satisfies an additional condi-
tion, we get some equivalences. For instance, in [2], Bass defined a ring R to be
right perfect if each flat right module is projective. In [23] it is proved that a ring
R is right perfect if and only if each flat right module is locally projective, and if
and only if each locally projective right module is projective. If R is a commutative
arithmetic ring, i.e. a ring whose lattice of ideals is distributive, then any P-flat
module is flat. By [I Proposition 16], if R is a commutative domain, each P-flat
module is singly projective, and by [I, Proposition 18 and 15] any flat left module is
finitely projective if R is a commutative arithmetic domain or a left noetherian ring.
Consequently, if R is a valuation domain each P-flat module is finitely projective.
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When R is a valuation ring, we prove that this result holds if and only if the ring
Q@ of quotients of R is artinian. Moreover, we show that R is maximal if and only
if any singly projective module is separable or any flat content module is locally
projective, and that ) is maximal if and only if each singly projective module is
finitely projective.

In Section 2] necessary and sufficient conditions are given for a commutative
semihereditary ring to be m-coherent. Moreover we characterize commutative PP-
rings for which each product of singly projective modules is singly projective.

In the last section we study the valuation rings R for which each product of
content (respectively singly, finitely, locally projective) modules is content (respec-
tively singly, finitely, locally projective). The results are similar to those obtained
by Zimmermann-Huisgen and Franzen in [8], and by Kemper in [16], when R is a
domain. However, each valuation domain is w-coherent but not necessarily strongly
coherent. We prove that a valuation ring with non-zero zero-divisors is m-coherent
if and only if it is strongly coherent.

1. DEFINITIONS AND PRELIMINARIES

If A is a subset of a ring R, we denote respectively by £(A) and r(A) its left
annihilator and its right annihilator. Given a ring R and a left R-module M, we
say that M is P-flat if, for any (s,z) € R x M such that sz =0, z € r(s)M. When
R is a domain, M is P-flat if and only if it is torsion-free. As in [I], we say that M is
finitely projective (respectively singly projective) if, for any finitely generated
(respectively cyclic) submodule N, the inclusion map N — M factors through a
free module F. A finitely projective module is called f-projective in [I5]. As in [22]
we say that M is locally projective if, for any finitely generated submodule NV,
there exist a free module F', an homomorphism ¢ : M — F and an homomorphism
7w F — M such that 7w(¢(z)) = z, Yz € N. A locally projective module is said
to be either a trace module or a universally torsionless module in [II]. Given a
ring R, a left R-module M and x € M, the content ideal c(x) of z in M, is the
intersection of all right ideals A for which x € AM. We say that M is a content
module if x € c(z)M, VYx € M.

It is obvious that each locally projective module is finitely projective but the
converse doesn’t generally hold. For instance, if R is a commutative domain with
quotient field @ # R, then @ is a finitely projective R-module: if N is a finitely
generated submodule of @, there exists 0 # s € R such that sN C R, whence the
inclusion map N — @ factors through R by using the multiplications by s and s~ !;
but @ is not locally projective because the only homormorphism from @ into a free
R-module is zero.

Proposition 1.1. Let R be a ring. Then:

(1) Each singly projective left R-module M is P-flat. The converse holds if R
is a domain.

(2) Any P-flat cyclic left module is flat.

(3) Each P-flat content left module M is singly projective.

Proof. (1). Let 0 # © € M and r € R such that rz = 0. There exist a
free module F' and two homomorphisms ¢ : Rx — F and 7 : F — M such that
7o ¢ is the inclusion map Rz — M. Since r¢(z) = 0 and F is free, there exist
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S1y.-.,8, € 1(r) and y1,...,yn € F such that ¢(z) = s1y1 + -+ + Spyn. Then
x=s17m(y1) + - + $pnm(yn). The last assertion is obvious.

(2). Let C be a cyclic left module generated by x and let A be a right ideal.
Then each element of A ®g C is of the form a ® x for some a € A. If ax = 0 then
3b € r(a) such that = bx. Therefore a®x = a®br = ab®x = 0. Hence C is flat.

(3). Let x € M. Then, since € c(x)M there exist ai,...,a, € c(z) and
T1,...,Tn € M such that x = a1x1 + -+ + anz,. Let b € R such that bx = 0.
Therefore x € r(b)M because M is P-flat. It follows that c¢(z) C r(b). So, if we put
¢(rx) = (raq,...,ra,), then ¢ is a well defined homomorphism which factors the
inclusion map Rx — M through rR". (I

Theorem 1.2. A ring R is left perfect if and only if each flat left module is a
content module.

Proof. If R is left perfect then each flat left module is projective. Conversely
suppose that each flat left module is a content module. Let (ax)ren be a family
of elements of R, let (ex)ren be a basis of a free left module F' and let G be the
submodule of F' generated by {ex — arert+1 | & € N}. By [2) Lemma 1.1] F/G is
flat. We put 2z = e, + G, Vk € N. Since F/G is content and zy = apzk+1, Vk € N,
there exist ¢ € R and n € N such that zg = ¢z, and c(z9) = cR. It follows that
cR =cay,...apR, ¥p > n. Since 2y = ap . ..a,—12y, there exists k£ > n such that
CQy, ...a = Qg ...a. Consequently ag...arR =ag...apR, Yp > k. So, R is left
perfect because it satisfies the descending chain condition on principal right ideals
by [2, Theorem P]. O

Given a ring R and a left R-module M, we say that M is P-injective if, for
any (s,x) € R x M such that ¢(s)x = 0, z € sM. When R is a domain, M
is P-injective if and only if it is divisible. As in [19], we say that M is finitely
injective (respectively FP-injective) if, for any finitely generated submodule A
of a (respectively finitely presented) left module B, each homomorphism from A to
M extends to B. If M is an R-module, we put M* = Hompg(M, R).

Proposition 1.3. Let R be a ring. Then:

(1) If R is a P-injective left module then each singly projective left module is
P-injective;

(2) If R is a FP-injective left module then each finitely projective left module is
FP-injective and a content module;

(3) If R is an injective module then each singly projective module is finitely
injective and locally projective.

Proof. Let M be a left module, F' a free left module and « : FF — M an
epimorphism.

1. Assume that M is singly projective. Let z € M and r € R such that £(r)z = 0.
There exists a homomorphism ¢ : Rz — F such that 7 o ¢ is the inclusion map
Rx — M. Since F is P-injective, ¢(x) = ry for some y € F. Then x = rn(y).

2. Assume that M is finitely projective. Let L be a finitely generated free left
module, let N be a finitely generated submodule of L and let f : N — M be a
homomorphism. Then f(N) is a finitely generated submodule of M. So, there exists
a homomorphism ¢ : f(N) — F such that 7 o ¢ is the inclusion map f(N) — M.
Since F' is FP-injective, there exists a morphism ¢ : L — F' such that ¢ o f is the
restriction of g to N. Now it is easy to check that 7o g is the restriction of f to N.
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Let x € M. There exists a homomorphism ¢ : Rx — F such that 7 o ¢ is the
inclusion map Rz — M. Let {e; | i € I'} be a basis of F'. There exist a finite subset
J of I and a family (a;)ics of elements of R such that ¢(x) = >, ; ase;. Let A be
the right ideal generated by (a;)i;cs. Then (0:2) = (0: ¢(z)) = £(A). Let B be a
right ideal such that x € BM. Then x = 22:1 brxy where by € B and x, € M,
Vk, 1 <k <p. Let N be the submodule of M generated by {m(e;) | i € J} U {z |
1 < k < p}. Thus there exists a homomorphism ¢ : N — F such that 7 o ¢ is the
inclusion map N — M. Therefore there exist a finite subset K of I and two families
{dr; | 1<k<p, je K}and {¢;; | (4,j) € J x K} of elements of R such that
p(m(ei) =D ek Cigejs Vi € J and (zk) = 32 e g dijej, Yk, 1 <k < p. It follows
that o(x) = 3 icx(Cicsaicijle; = 2 e (Ohoy brdrj)es. So, 3. jaici; =
> k1 brdyj, Vi € K. Let A’ be the right ideal generated by {>",.; aic;j | j € K}.
Then A’ C A and A’ C B. Moreover, {(A) = (0:z) = (0: ¢(z)) = £(4"). By [14}
Corollary 2.5] A= A’. So, A C B. We conclude that c¢(z) = A and M is a content
module.

3. Let M be a singly projective module and z € M. So, there exists a homo-
morphism ¢ : Rx — F such that w o ¢ is the inclusion map Rx — M. Since F
is finitely injective, we can extend ¢ to M. By using a basis of F' we deduce that
r =Y p_, ¢p(x)zy where ¢, € M* and zp € M, Vk, 1 < k < n. Hence M is
locally projective by [I1, Theorem 3.2] or [22, Theorem 2.4]. By a similar proof
as in (2), we show that M is finitely injective, except that L is not necessarily a
finitely generated free module. ]

A short exact sequence of left R-modules 0 - N — M — L — 0 is pure if it
remains exact when tensoring it with any right R-module. We say that N is a pure
submodule of M. This property holds if L is flat.

Lemma 1.4. Let R be a local ring, let P be its maximal ideal and let N be a flat
left R-module. Assume that N is generated by a family (x;)icr of elements of N
such that (x; + PN);cr is a basis of N/PN. Then N is free.

Proof. Let (e;);cr be a basis of a free left module F, let « : F — N be the
homomorphism defined by «(e;) = x;, Vi € I and let L be the kernel of a. It is
easy to check that L C PF. Let y € L . We have y = ), ; a;e; where J is a finite
subset of I and a; € P, Vi € J. Since L is a pure submodule of F, Vi € J there
exists y; € L such that ). ;aie; = ), ; a;y;. We have y; = ZjeJi bi je; where J;
is a finite subset of I, b; ; € P, V(i,5) € J x J;. Let K = JU (UsegJ;). Ifie K\ J
we put ¢; =0 and a;; =0, Vj € K, and if j € K\ J; we put a;; = 0 too. We
get ZiEK a;e; = ZjEK(ZiEK aibiyj)ej. It follows that a; = EiEK aibiﬁj. SO7 if A
is the right ideal generated by {a; | i € K}, then A = AP. By Nakayama lemma
A =0, whence F' = N. |

A left R-module is said to be a Mittag-Leffler module if, for each index set A,
the natural homomorphism R* @ g M — M?" is injective. The following lemma is
a slight generalization of [6, Proposition 2.3].

Lemma 1.5. Let R be a subring of a ring S and let M be a flat left R-module.
Assume that S @ r M is finitely projective over S. Then M is finitely projective.

Proof. By [I5, Proposition 2.7] a module is finitely projective if and only if it
is a flat Mittag-Leffler module. So we do as in the proof of [0, Proposition 2.3]. O
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From this lemma and [I5, Proposition 2.7] we deduce the following proposition.
We can also see .

Proposition 1.6. Let R be a subring of a left perfect ring S. Then each flat left
R-module is finitely projective.

Proposition 1.7. Let R be a commutative ring and let S be a multiplicative subset
of R. Then:

(1) For each singly (respectively finitely, locally) projective R-module M, S~ M
is singly (respectively finitely, locally) projective over S™'R;

(2) Let M be a singly (respectively finitely) projective S—*R-module. If S con-
tains no zero-divisors then M is singly (respectively finitely) projective over

R.

Proof. (1). We assume that M # 0. Let N be a cyclic (respectively finitely
generated) submodule of S™'M. Then there exists a cyclic (respectively finitely
generated) submodule N’ of M such that SN’ = N. There exists a free R-module
F, a morphism ¢ : N’ — F and a morphism 7 : F' — M such that (7o ¢)(x) =«
for each x € N'. Tt follows that (S71moS™1¢)(z) = z for each z € N. We get that
S~1M is singly (respectively finitely) projective over R. We do a similar proof to
show that S~'M is locally projective if M is locally projective.

(2) By Lemma [[L5] M is finitely projective over R if it is finitely projective over
STLR. Tt is easy to check that M is singly projective over R if it is singly projective
over ST'R. O

If R is a subring of a ring @) which is either left perfect or left noetherian, then
then each flat left R-module is finitely projective by [20, Corollary 7]. We don’t
know if the converse holds. However we have the following results:

Theorem 1.8. Let R be a commutative ring with a self FP-injective quotient ring
Q. Then each flat R-module is finitely projective if and only if Q is perfect.

Proof. 7Only if’ requires a proof. Let M be a flat @-module. Then M is flat
over R and it follows that M is finitely projective over R. By Proposition [[L7)(1)
M = Q ®gr M is finitely projective over ). From Proposition [[.3] we deduce that
each flat Q-module is content. We conclude by Theorem ([l

Theorem 1.9. Let R be a commutative ring with a Von Neumann regular quotient
ring Q. Then the following conditions are equivalent:

(1) Q is semi-simple;

(2) each flat R-module is finitely projective;

(3) each flat R-module is singly projective.

Proof. (1) = (2) is an immediate consequence of [20, Corollary 7] and (2) = (3)
is obvious.

(3) = (1). First we show that each @-module M is singly projective. Every
@Q-module M is flat over Q and R. So, M is singly projective over R. It follows
that M = Q ®g M is singly projective over @ by Proposition [[7(1). Now let
A be an ideal of Q. Since Q/A is singly projective, it is projective. So, Q/A is
finitely presented over ) and A is a finitely generated ideal of (). Hence @Q is
semi-simple. O
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2. m-COHERENCE AND PP-RINGS

As in [22] we say that a ring R is left strongly coherent if each product of
locally projective right modules is locally projective and as in [3] R is said to be
right m-coherent if, for each index set A, every finitely generated submodule of
R% is finitely presented.

Theorem 2.1. Let R be a commutative ring. Then the following conditions are
equivalent:

(1) R is w-coherent;

(2) for each index set A, R™ is finitely projective;

(3) each product of finitely projective modules is finitely projective.

Proof. (1) = (2). Let N be a finitely generated submodule of R*. There exist
a free module F and an epimorphism 7 from F into R*. It is obvious that R is
coherent. Consequently R is flat. So ker 7 is a pure submodule of F. Since N
is finitely presented it follows that there exists ¢ : N — F such that 7 o ¢ is the
inclusion map from N into R™.

(2) = (1). Since R? is flat for each index set A, R is coherent. Let A be an index
set and let N be a finitely generated submodule of R*. The finite projectivity of
R” implies that N is isomorphic to a submodule of a free module of finite rank.
Hence N is finitely presented.

It is obvious that (3) = (2).

(2) = (3). Let A be an index set, let (My)rea be a family of finitely projective
modules and let N be a finitely generated submodule of M = [[ ., Mx. For
each A € A, let Ny be the image of N by the canonical map M — M. We put
N" = [Ixea Na. So, N € N’ € M. For each A € A there exists a free module Fj
of finite rank such that the inclusion map Ny — M) factors through F). It follows
that the inclusion map N — M factors through [],., Fx which is isomorphic to
RM for some index set A’. Now the monomorphism N — R factors through a free
module F. It is easy to conclude that the inclusion map N — M factors through
F and that M is finitely projective. ([

By using [22] Theorem 4.2] and Proposition [[.3] we deduce the following corol-
lary:

Corollary 2.2. Fwvery strongly coherent commutative ring R is w-coherent and the
converse holds if R s self injective.

Proposition 2.3. Let R be a m-coherent commutative ring and let S be a mul-
tiplicative subset of R. Assume that S contains no zero-divisors. Then S~ 'R is
m-coherent.

Proof. Let M be a finitely generated S—!'R-module. By [3, Theorem 1] we
must prove that Homg-15(M, S™!R) is finitely generated on S~!R. There exists
a finitely generated R-submodule N of M such that SN = M. The following
sequence

0 — N* — Hompg(N,S™'R) — Hompg(N,S™'R/R)
is exact. Since N is finitely generated and S~'R/R is S-torsion, Homz (N, S~'R/R)
is S-torsion too. So, Homg-1z(M,S™'R) = Homg(N,S™'R) =2 S~'!N*. By [3,
Theorem 1] N* is finitely generated. Hence Homg-15(M, S~ R) is finitely gener-
ated over ST1R. O
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Theorem 2.4. Let R be a commutative semihereditary ring and let Q) be its quotient
ring. Then the following conditions are equivalent:

(1) R is w-coherent;

(2) Q is self injective;
Moreover, when these conditions are satisfied, each singly projective R-module is
finitely projective.

Proof. (1) = (2). By Proposition [Z3] Q is m-coherent. We know that @ is Von
Neumann regular. It follows from [I8, Theorem 2] that Q is self injective.

(2) = (1). Let (M;);cr be a family of finitely projective R-modules, where T
is an index set, and let N be a finitely generated submodule of [],.; M;. Then
N is flat. Since N is a submodule of [[,.; @ ®r M;, @ ®r N is isomorphic to
a finitely generated @-submodule of [],.; Q@ ®r M;. It follows that Q ®r N is a
projective @-module. Hence N is projective by [6, Proposition 2.3]. We conclude
by Theorem 2.11

Let M be a singly projective R-module and let N be a finitely generated sub-
module of M. Then Q ®g M is finitely projective over @@ by Propositions [[7(1)
and It follows that @Q ®g N is projective over . Hence N is projective by [6,
Proposition 2.3]. O

Proposition 2.5. Let R be a Von Neumann regular ring. Then a right R-module
is content if and only if it is singly projective.

Proof. By Proposition [[.I(3) it remains to show that each singly projective
right module M is content. Let m € M. Then mR is projective because it is
isomorphic to a finitely generated submodule of a free module. So, mR is content.
For each left ideal A, mR N MA = mA because mR is a pure submodule of M.
Hence M is content. O

A topological space X is said to be extremally disconnected if every open
set has an open closure. Let R be a ring. We say that R is a right Baer ring if
for any subset A of R, r(A) is generated by an idempotent. The ring R defined in
[22, Example 4.4 | is not self injective and satisfies the conditions of the following
theorem.

Theorem 2.6. Let R be a Von Neumann regular ring. Then the following condi-
tions are equivalent:

(1) Each product of singly projective right modules is singly projective;

(2) Each product of content right modules is content;

(3) RE is singly projective;

(4) RE is a content module;

(5) R is a right Baer ring;

(6) The intersection of each family of finitely generated left ideals is finitely

generated too;
(7) For each cyclic left module C, C* is finitely generated.

Moreover, when R is commutative, these conditions are equivalent to the following:
Spec R is extremally disconnected.

Proof. The conditions (2), (4), (6) are equivalent by [II, Theorem 5.15]. By
Proposition 28] (4) < (3) and (1) < (2). It is easy to check that (5) < (7).
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(3) = (5). Let A C R and let 2 = (a)sea € RH. So, r(A) = (0 : x). Then
xR is projective because it is isomorphic to a submodule of a free module. Thus
r(A) = eR, where e is an idempotent.

(5) = (1). Let (M;);cr be a family of singly projective right modules and
m = (m;)icr be an element of M = [[,.; M;. For each i € I, there exists an
idempotent e; such that (0 : m;) = e¢;R. Let e be the idempotent which satisfies
eR=r({l—e¢;|i€I}). Then eR = (0:m), whence mR is projective.

If R is commutative and reduced, then the closure of D(A), where A is an ideal
of R,is V((0: A)). So, Spec R is extremally disconnected if and only if, for each
ideal A there exists an idempotent e such that V((0 : A)) = V(e). This last equality
holds if and only if (0 : A) = Re because (0 : A) and Re are semiprime since R is
reduced. Consequently Spec R is extremally disconnected if and only if R is Baer.
The proof is now complete. O

Let R be a ring. We say that R is a right PP-ring if any principal right ideal
is projective.

Lemma 2.7. Let R be a right PP-ring. Then each cyclic submodule of a free right
module is projective.

Proof. Let C be a cyclic submodule of a free right module F. We may assume
that F' is finitely generated by the basis {e1,...,e,}. Let p : FF — R be the
homomorphism defined by p(e1r1 + - - + enrn) = 7, where r1,...,7, € R. Then
p(C) is a principal right ideal. Since p(C) is projective, C' = C' & p(C) where
C" = Cnker p. So C' is a cyclic submodule of the free right module generated by
{e1,...,en—1}. We complete the proof by induction on n. O

Theorem 2.8. Let R be a commutative PP-ring and let Q be its quotient ring.
Then the following conditions are equivalent:

(1) FEach product of singly projective modules is singly projective;

(2)
(3) R is a Baer ring;

(4) Q satisfies the equivalent conditions of Theorem [2.0;
(5) For each cyclic module C, C* is finitely generated;
(6) Spec R is extremally disconnected;

(7) Min R is extremally disconnected.

Proof. Tt is obvious that (1) = (2). It is easy to check that (3) < (5). We show
that (2) = (3) as we proved (3) = (5) in Theorem [2.6 by using Lemma 27

(5) = (4). Let C be a cyclic @-module. We do as in proof of Proposition 23] to
show that Homg (C, @) is finitely generated over Q).

(4) = (1). Let (M;);cr be a family of singly projective right modules and let N
be a cyclic submodule of M = [],.; M;. Since R is PP, N is a P-flat module. By
Proposition [LT] NV is flat. We do as in the proof of (2) = (1) of Theorem 2.4 to
show that IV is projective.

(3) < (6) is shown in the proof of Theorem 2.6l

(4) < (7) holds because Spec @ is homeomorphic to Min R. O
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3. FLAT MODULES

Let M be a non-zero module over a commutative ring R. As in [10, p.338] we
set:

My ={s€ R|30+#z € M such that st =0} and M*={sc R|sM C M}.
Then R\ My and R\ M* are multiplicative subsets of R.

Lemma 3.1. Let M be a non-zero P-flat R-module over a commutative ring R.
Then Mﬁ - Rﬁ N M

Proof. Let 0 # s € My. Then there exists 0 # « € M such that sz = 0. Since
M is P-flat, we have € (0: s)M. Hence (0:s) # 0 and s € Ry.

Suppose that My ¢ M* and let s € My\ M*. Then 30 # 2 € M such that sz = 0.
It follows that = t1y1 + - - -+ t,y, for some y1,...,y, € M and t1,...,t, € (0: s).
Since s ¢ M* we have M = sM. So yj, = sz, for some 2z, € M, Vk, 1 <k <p. We
get x = t1521 + - - +tpszp, = 0. Whence a contradiction. [l

Now we assume that R is a commutative ring. An R-module M is said to
be uniserial if its set of submodules is totally ordered by inclusion and R is a
valuation ring if it is uniserial as R-module. If M is a module over a valuation
ring R then My and M # are prime ideals of R. In the sequel, if R is a valuation
ring, we denote by P its maximal ideal and we put Z = Ry and Q = Rz. Since
each finitely generated ideal of a valuation ring R is principal, it follows that any
P-flat R-module is flat.

Proposition 3.2. Let R be a valuation ring, let M be a flat R-module and let E
be its injective hull. Then E is flat.

Proof. Let x € E\ M and r € R such that rz = 0. There exists a € R such
that 0 # ax € M. From ax # 0 and rz = 0 we deduce that r = ac for some ¢ € R.
Since cax = 0 and M is flat we have ax = by for some y € M and b € (0 : ¢). From
bc =0 and ac = r # 0 we get b = at for some ¢t € R. We have a(z — ty) = 0. Since
at=>b+#0,(0:t) C Ra. So (0:t) C (0:x — ty). The injectivity of E implies that
there exists z € E such that = t(y + z). On the other hand ¢r = tac = bc = 0, so
te(0:r). O

In the sequel, if J is a prime ideal of R we denote by 0; the kernel of the natural
map: R — Rj.

Proposition 3.3. Let R be a valuation ring and let M be a non-zero flat R-module.
Then:
(1) If My C Z we have ann(M) = O, and M is an Ry, -module;
(2) If My = Z, ann(M) = 0 if Mz # ZMz and ann(M) = (0 : Z) if Mz =
ZMz. In this last case, M is a Q-module.

Proof. Observe that the natural map M — My, is a monomorphism. First
we assume that R is self FP-injective and P = My. So M*! = P by Lemma B11
If M # PMlet x € M\ PM. Then (0 : z) = 0 else Ir € R, r # 0 such that
x € (0:r)M C PM. If M = PM then P is not finitely generated else M = pM,
where P = pR, and p ¢ M* = P. If P is not faithful then (0 : P) C ann(M).
Thus M is flat over R/(0 : P). So we can replace R with R/(0 : P) and assume
that P is faithful. Suppose 30 # r € P such that rM = 0. Then M = (0 : r)M.
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Since (0:7) # P,let t € P\ (0:7). Thus M = tM and t ¢ M* = P. Whence a
contradiction. So M is faithful or ann(M) = (0 : P).

Return to the general case. We put J = M;.

If J C Z then Rj is coherent and self FP-injective by [4 Theorem 11]. In this
case JR is principal or faithful. So M} is faithful over R, whence ann(M) = 0.
Let s € R\ J. There exists t € Zs\ J. It is easy to check that Va € R, (0: a) is
also an ideal of ). On the other hand, Va € Q, Qa = (0: (0: a)) because Q is self
FP-injective. It follows that (0:s) C (0:¢). Let r € (0:¢)\ (0:s). Then r € 0.
So, rM = 0. Hence M = (0 : r)M = sM. Therefore the multiplication by s in M
is bijective for each s € R\ J.

Now suppose that J = Z. Since @ is self FP-injective then M is faithful or
ann(M) = (0: Z). Let s € R\ Z. Thus Z C Rs and sZ = Z. It follows that
ZMyz =ZM. So, M is a Q-module if ZMyz = M. O

When R is a valuation ring, N is a pure submodule of M if rN = rMNN, Vr € R.

Proposition 3.4. Let R be a valuation ring and let M be a non-zero flat R-module
such that My, #+ MMy, - Then M contains a non-zero pure uniserial submodule.

Proof. Let J = My and x € M;\ JM;. If J C Z then M is a module over
R/0; and J/0; is the subset of zero-divisors of R/0;. So, after replacing R with
R/0; we may assume that Z = J. If re =0 then x € (0: r)Mz C ZMyz if r # 0.
Hence Qz is faithful over @ which is FP-injective. So V = Qx is a pure submodule
of Mz. Weput U = M NV. Thus U is uniserial and Uz = V. Then M/U is a
submodule of Mz/V, and this last module is flat. Let z € M/U and 0 #r € R
such that 7z = 0. Then z = as 'y where s ¢ Z,a€ (0:7r) C Zand y € M/U. It
follows that a = bs for some b € R and sbr = 0. So b € (0:r) and z = by. Since
M/U is flat, U is a pure submodule of M. O

Proposition 3.5. Let R be a valuation ring and let M be a flat R-module. Then
M contains a pure free submodule N such that M/PM = N/PN.

Proof. Let (x;);c; be a family of elements of M such that (z; + PM);cs is a
basis of M/PM over R/P, and let N be the submodule of M generated by this
family. If we show that IV is a pure submodule of M, we deduce that N is flat. It
follows that N is free by Lemma [[4l Let x € M and r € R such that rz € N.
Then rz = Zie] a;x; where J is a finite subset of I and a; € R, Vi € J. Let a € R
such that Ra = Zie] Ra;. It follows that, Vi € J, there exists u; € R such that
a; = au; and there is at least one ¢ € J such that u; is a unit. Suppose that a ¢ Rr.
Thus there exists ¢ € P such that r = ac. We get that a( ;. ; uiz; —cr) = 0. Since
M is flat, we deduce that ), ; u;z; € PM. This contradicts that (x; + PM);er is
a basis of M/PM over R/P. So, a € Rr. Hence N is a pure submodule. g

4. SINGLY PROJECTIVE MODULES

Lemma 4.1. Let R be a valuation ring. Then a non-zero R-module M 1is singly
projective if and only if for each x € M there exists y € M such that (0 :y) =0
and © € Ry. Moreover My = Z and My # ZMy.

Proof. Assume that M is singly projective and let x € M. There exist a
free module F, a morphism ¢ : Rr — F and a morphism w : F — M such

that (m o ¢)(x) = x. Let (e;)icr be a basis of F. Then ¢(x) = >, ; a;e; where
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J is a finite subset of I and a; € R, Vi € J. There exists a € R such that
> icsRa; = Ra. Thus, Vi € J there exists u; € R such a; = au;. We put
z = Y cyuie;. Then ¢(x) = az. Since there is at least one index i € J such
that w; is a unit, then (0 : 2) = 0. It follows that (0 : ¢(x)) = (0 : a). But
(0:2) =(0: ¢(x)) because ¢ is a monomorphism. We have 2 = an(z). So, by [4,
Lemma 2] (0: 7w(z)) =a(0:2) =a(0:a) =0. The converse and the last assertion
are obvious. g

Let R be a valuation ring and let M be a non-zero R-module. A submodule
N of M is said to be pure-essential if it is a pure submodule and if 0 is the
only submodule K satisfying NN K =0 and (N + K)/K is a pure submodule of
M/K. An R-module FE is said to be pure-injective if for any pure-exact sequence
0— N — M — L — 0, the following sequence is exact:

0 — Hompg(L, E) — Hompg (M, E) — Hompg(N, E) — 0.

We say that E is a pure-injective hull of K if FE is pure-injective and K is a
pure-essential submodule of E. We say that R is maximal if every family of cosets
{a; + L; | i € I'} with the finite intersection property has a non-empty intersection
(here a; € R, L; denote ideals of R, and I is an arbitrary index set).

Proposition 4.2. Let R be a valuation ring and let M be a non-zero R-module.
Then the following conditions are equivalent:

(1) M is a flat content module;
(2) M is flat and contains a pure-essential free submodule.

Moreover, if these conditions are satisfied, then any element of M is contained in
a pure cyclic free submodule L of M. If R is mazimal then M is locally projective.

Proof. (1) = (2). Let 0 # x € M. Then x = ) ,,., a;x; where a; € c(x)
and z; € M, Vi, 1 < i < n. Since R is a valuation ;ing da € R such that
Ra = Ray + -+ + Ra,. So, we get that ¢(z) = Ra and & = ay for some y € M.
Thus y ¢ PM else ¢c(z) C Ra. So PM # M and we can apply Proposition
It remains to show that N is a pure-essential submodule of M. Let x € M such
that Rx N N = 0 and N is a pure submodule of M/Rz. There exist b € R and
y € M\ PM such that z = by. Since M = N + PM, we have y = n + pm where
n€ N, mée Mandp € P. Then n ¢ PN and bprmn = —bn + z. Since N is pure
in M/Rx there exist n’ € N and ¢t € R such that bpn’ = —bn + tx. We get that
b(n+pn') € NN Rz =0. So b =0 because n + pn’ ¢ PN. Hence z = 0.

(2) = (1). First we show that M is a content module if each element x of M is
of the form s(y + cz), where s € R, y € N\ PN, c€ P and z € M. Since N is
a pure submodule, PM NN = PN whence y ¢ PM. If z = stw with ¢ € P and
w € M we get that s(y + cz — tw) = 0 whence y € PM because M is flat. This
is a contradiction. Consequently ¢(z) = Rs and M is content. Now we prove that
each element x of M is of the form s(y + cz), where s € R, y € N\ PN, c€ P
and z € M. If x € N, then we check this property by using a basis of N. Suppose
x ¢ N and ReNN # 0. There exists a € P such that 0 # ax € N. Since N is pure,
there exists ' € N such that ax = ay’. We get = y' + bz for some b € (0 : a)
and z € M, because M is flat. We have y' = sy with s € R and y € N\ PN.
Since as # 0, b = sc for some ¢ € P. Hence x = s(y + ¢z). Now suppose that
Rx NN = 0. Since N is pure-essential in M, there exist r € R and m € M such
that rm € N+ Rz and rm ¢ rN + Rz. Hence rm = n+tx wheren € N and t € R.
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Thus n = by’ where b € R and y' € N\ PN. Then b ¢ rR. So, r = bc for some
c € P. We get bem = by’ + tx. If t = bd for some d € P then b(em — 3y’ — dz) = 0.
Since M is flat, it follows that ¢y’ € PM NN = PN. But this is false. So b = st for
some s € R. We obtain t(x + sy’ — scm) = 0. Since M is flat and tsc # 0 there
exists z € M such that z = s(—y’ + cz).

Let y € M. There exists x € M \ PM such that y € Rz. We may assume that
x+ PM is an element of a basis (x; + PM);c; of M/PM. Then Rz is a summand
of the free pure submodule N generated by the family (z;);e;.

Assume that R is maximal. Let the notations be as above. By [9, Theorem
X1.4.2] each uniserial R-module is pure-injective. So, Rz is a summand of M.
Let u be the composition of a projection from M onto Rx with the isomorphism
between Rx and R. Thus v € M™* and u(x) = 1. It follows that y = u(y)z. Hence
M is locally projective by [I1 Theorem 3.2] or [22] Theorem 2.1]. O

Proposition 4.3. Let R be a valuation ring such that Z = P # 0 and let M be a
non-zero R-module. Then the following conditions are equivalent:

(1) M is singly projective;

(2) M is a flat content module;

(3) M is flat and contains an essential free submodule.

Proof. (2) = (1) by Proposition [[11

(1) = (2). It remains to show that M is a content module. Let x € M. There
exists y € M and a € R such that z = ay and (0 : y) = 0. Since Z = P then
y ¢ PM. We deduce that c(z) = Ra.

(2) & (3). By Proposition [£.2] it remains to show that (2) = (3). Let N be a
pure-essential free submodule of M. Since R is self FP-injective by [12] Lemma], it
follows that N is a pure submodule of each overmodule. So, if K is a submodule of
M such that K NN = 0, then N is a pure submodule of M/K, whence K =0. O

Corollary 4.4. Let R be a valuation ring. The following conditions are equivalent:
(1) Z = P;
(2) Each singly projective module is a content module.

Proof. It remains to show that (2) = (1). By Proposition [['1 @ is finitely
projective over R. If R # @, then @ is not content on R because, Vo € Q\ Z, c(z) =
Z. S0 Z =P. O

Corollary 4.5. Let R be a valuation ring. Then the injective hull of any singly
projective module is singly projective too.

Proof. Let N be a non-zero singly projective module. We denote by E its
injective hull. For each s € R\ Z the multiplication by s in N is injective, so
the multiplication by s in E is bijective. Hence E is a @Q-module which is flat by
Proposition It is an essential extension of Nz. From Propositions 4.3 and
[C7(2) we deduce that E is singly projective. O

Let R be a valuation ring and let M be a non-zero R-module. We say that M
is separable if any finite subset is contained in a summand which is a finite direct
sum of uniserial submodules.

Corollary 4.6. Let R be a valuation ring. Then any element of a singly projective
module M is contained in a pure uniserial submodule L. Moreover, if R is mazimal,
each singly projective module is separable.
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Proof. By Proposition any element of M is contained in a pure cyclic free
Q-submodule G of Mz. We put L = M NG. As in proof of Proposition [3.4] we
show that L is a pure uniserial submodule of M. The first assertion is proved.

Since R is maximal L is pure-injective by [9 Theorem XI1.4.2]. So, L is a sum-
mand of M. Each summand of M is singly projective. It follows that we can
complete the proof by induction on the cardinal of the chosen finite subset of M. O

Corollary 4.7. Let R be a valuation ring. Then the following conditions are equiv-
alent:
(1) R is self injective;
(2) Each singly projective module is locally projective;
(3) Z = P and each singly projective module is finitely projective.

Proof. (1) = (2) by Proposition [[.3l

(2) = (3) follows from [IIl, Proposition 5.14(4)] and Corollary [1.4

(3) = (1). By way of contradiction suppose that R is not self injective. Let E be
the injective hull of R. By Corollary L5 F is singly projective. Let € E'\ R and
M = R+ Rz. Since FE is finitely projective, then there exist a finitely generated
free module F', a morphism ¢ : M — F and a morphism 7 : F' — FE such that
(mo¢)(y) =y for each y € M. Let ¢ : M/R — F/¢(R) and 7 : F/¢(R) — E/R
be the morphisms induced by ¢ and w. Then (7 o ¢)(y + R) = y + R for each
y € M. Since ¢(R) is a pure submodule of F, then F/¢(R) is a finitely generated
flat module. Hence F/¢(R) is free and E/R is singly projective. But E/R =
P(E/R) by [4, Lemma 12]. This contradicts that E/R is a flat content module.
By Proposition we conclude that F = R. (I

Corollary 4.8. Let R be a valuation ring. Then Q is self injective if and only if
each singly projective module is finitely projective.

Proof. By [I7, Theorem 2.3] ) is maximal if and only if it is self injective. Sup-
pose that @ is self injective and let M be a singly projective R-module. Then My
is locally projective over @ by Proposition [[L7(1) and corollary 7l Consequently
M is finitely projective by Lemma

Conversely let M be a singly projective Q-module. Then M is singly projec-
tive over R, whence M is finitely projective over R. If follows that M is finitely
projective over Q. From Corollary [ we deduce that @ is self injective. O

Theorem 4.9. Let R be a valuation ring. Then the following conditions are equiv-
alent:

(1) R is mazimal;

(2) each singly projective R-module is separable;

(3) each flat content module is locally projective.

Proof. (1) = (2) by Corollary 6l and (1) = (3) by Proposition 21

(2) = (1) : let R be the pure-injective hull of R. By [5, Proposition 1 and 2] R is a
flat content module. Consequently 1 belongs to a summand L of R which is a finite
direct sum of uniserial modules. But, by [7, Proposition 5.3] R is indecomposable.
Hence R is uniserial. Suppose that R # R. Let z € R \ R. Then there exists
¢ € P such that 1 = cx. Since R is pure in R we get that 1 € P which is absurd.
Consequently, R is a pure-injective module. So, R is maximal by [21 Proposition

9].



14 FRANCOIS COUCHOT

(3) = (1) : since R is locally projective then R is a summand of R which is
indecomposable. So R is maximal. O

A submodule N of a module M is said to be strongly pure if, Vz € N there
exists an homomorphism w : M — N such that u(z) = z. Moreover, if N is
pure-essential, we say that M is a strongly pure-essential extension of N.

Proposition 4.10. Let R be a valuation ring and let M be a flat R-module. Then
M s locally projective if and only if it is a strongly pure-essential extension of a
free module.

Proof. Let M be a non-zero locally projective R-module. Then M is a flat
content module. So M contains a pure-essential free submodule N. Let x € N.
There exist u1,...,u, € M* and y1,...,yn € M such that x = > | u;(2)y;.
Since N is a pure submodule, ¥1,...,y, can be chosen in N. Let ¢ : M — N be
the homomorphism defined by ¢(z) = Y. | ui(z)y;. Then ¢(z) = z. So, N is a
strongly pure submodule of M.

Conversely, assume that M is a strongly pure-essential extension of a free sub-
module N. Let z € M. As in proof of Proposition £2] = = s(y + ¢z), where
sE€R, ye N\ PN, c€ P and z € M. Since N is strongly pure, there exists a
morphism ¢ : M — N such that ¢(y) = y. Let {e; | i € I} be a basis of N. Then
Y = ;e aie; where J is a finite subset of I and a; € R, Vi € J. Since y € N\ PN
there exists j € J such that a; ¢ P. We easily check that {y,e; |1 €1, i # j}is a
basis of N too. Hence Ry is a summand of N. Let u be the composition of ¢ with
a projection of N onto Ry and with the isomorphism between Ry and R. Then
u€ M*, u(y) =1and u(y+cz) = 1+cu(z) = v is a unit. We put m = v~ (y+cz).
It follows that = u(xz)m. Hence M is locally projective by [11, Theorem 3.2] or
[22, Theorem 2.1]. O

Corollary 4.11. Let R be a valuation ring and let M be a locally projective R-
module. If M/PM is finitely generated then M is free.

Theorem 4.12. Let R be a valuation ring. The following conditions are equivalent:
(1) Z is nilpotent;
(2) Q is an artinian ring;
(3) Each flat R-module is finitely projective;
(4) FEach flat R-module is singly projective.

Proof. (1) < (2). If Z is nilpotent then Z2? # Z. It follows that Z is finitely
generated over ) and it is the only prime ideal of Q). So, @ is artinian. The converse
is well known.

(2) = (3) is a consequence of [20, Corollary 7] and it is obvious that (3) = (4).

(4) = (2). First we prove that each flat )-module is singly projective. By
Proposition [43] it follows that each flat @Q-module is content. We deduce that @
is perfect by Theorem We conclude that @ is artinian since @ is a valuation
ring. (I

5. STRONGLY COHERENCE OR m-COHERENCE OF VALUATION RINGS.

In this section we study the valuation rings, with non-zero zero-divisors, for which
any product of content (respectively singly, finitely, locally projective) modules is
content (respectively singly, finitely, locally projective) too.
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Theorem 5.1. Let R be a valuation ring such that Z # 0. Then the following
conditions are equivalent:

(1) Each product of content modules is content;

(2) R is a content module;

(3) For each ideal A there exists a € R such that either A = Ra or A = Pa;

(4) Each ideal is countably generated and RY is a content module;

(5) The intersection of any non-empty family of principal ideals is finitely gen-
erated.

3
4
5

Proof. The conditions (1), (2) and (5) are equivalent by [11, Theorem 5.15].
By [, Lemma 29] (3) < (5).

(2) = (4). Tt is obvious that RY is a content module. Since (2) < (3) then P is
the only prime ideal. We conclude by [4, Corollary 36].

(4) = (3). Let A be a non-finitely generated ideal. Let {a, | n € N} be a
spanning set of A. Then x = (a,)neny € RY. It follows that © = ay for some
a € c¢(xr) and y € RY, and c¢(z) = Ra . So, if y = (b,)nen, we easily check that P is
generated by {b, | n € N}. Hence A = aP. O

By Proposition [[LI] each valuation domain R verifies the first two conditions of
the next theorem.

Theorem 5.2. Let R be a valuation ring such that Z # 0. Then the following
conditions are equivalent:

(1) Each product of singly projective modules is singly projective.

(0: A) is finitely generated for each proper ideal A;

P is principal or faithful and for each ideal A there exists a € R such that
either A = Ra or A = Pa;

(6) Each ideal is countably generated and R" is singly projective;

(7) Each product of flat content modules is flat content;

(8) R is a flat content module;
(9)
10)

)
) C* is a finitely generated module for each cyclic module C;
)
)

Each ideal is countably generated and RN is a flat content module;
P is principal or faithful and the intersection of any non-empty family of
principal ideals is finitely generated.

Proof. It is obvious that (1) = (2) and (7) = (8).

(3) & (4) because (0: A) = (R/A)*.

(2) = (4). Let A be a proper ideal. Then R is singly projective too and
z = (a)qea is an element of R4. Therefore  belongs to a cyclic free submodule
of R4 by Lemma Bl Since R is flat, R is coherent by [10, Theorem IV.2.8].
Consequently (0: A) = (0: z) is finitely generated.

(4) = (5). Then R is coherent because R is a valuation ring. Since Z # 0, Z = P
by [4, Theorem 10]. If P is not finitely generated then P cannot be an annihilator.
So P is faithful. By [12, Lemma 3] and [I7, Proposition 1.3], if A is a proper ideal
then either A =(0:(0: A)) or A= P(0:(0: A)). By (4), (0: (0: A)) = Ra for
some a € P.

(5) = (1). Let (M;)icr be a family of singly projective modules. Let z = (z;)ier
be an element of Il;c;M;. Since M; is singly projective for each i € I there exist
a; € R and y; € M; such that x; = a;y; and (0 : y;) = 0. We have either
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> icr Rai = Ra or ), ; Ra; = Pa for some a € R. Then, Vi € I, 3b; € R such
that a; = ab;. Therefore either 3¢ € I such that b; is a unit, or P = Eiel Rb;. Tt
follows that = ay where y = (b;y; )icr. Now it is easy to check that (0:y) = 0.

(6) = (4). Since each ideal is countably generated then so is each submodule of
a finitely generated free module. So, the flatness of RY implies that R is coherent.
Let A be a proper ideal generated by {a, | » € N}. Then x = (ap)nen is an
element of RY. Therefore  belongs to a cyclic free submodule of RY by Lemma E.11
Consequently (0: A) = (0 : z) is finitely generated because R is coherent.

(5) = (9). By Theorem EY((3) < (4)) it remains to show that RY is flat. This
is true because (5) = (1).

(1) & (7). Since (1) = (2) or (7) = (8), R is coherent. From Z # 0 and [4,
Theorem 10] it follows that Z = P. Now we use Proposition 3] to conclude.

(2) < (8). Since R is flat, R is coherent. We do as above to conclude.

(6) < (9). Since each submodule of a free module of finite rank is countably
generated, then the flatness of RY implies that R is coherent. So we conclude as
above.

(5) < (10) by Theorem BEIK(3) < (5)).

The last assertion is already shown. So, the proof is complete. O

Remark 5.3. When R is a valuation domain, the conditions (5), (7), (8), (9) and
(10) are equivalent by [16, Theorem 4] and [4, Corollary 36].

Remark 5.4. If R satisfies the conditions of Theorem [B.1] and if P is not faithful
and not finitely generated then R is not coherent and doesn’t satisfy the conditions
of Theorem

By [8, Corollary 3.5] or [16, Theorem 3], a valuation domain R is strongly co-
herent if and only if either its order group is Z or if R is maximal and its order
group is R. It is easy to check that each Priifer domain is m-coherent because it
satisfies the fourth condition of the next theorem. When R is a valuation ring with
non-zero zero-divisors we get:

Theorem 5.5. Let R be a valuation ring such that Z # 0. Then the following
conditions are equivalent:

(1) R is strongly coherent;

(2) R is w-coherent;

(3) R is singly projective and separable;

(4) C* is a finitely generated module for each finitely generated module C;

(5) (0: A) is finitely generated for each proper ideal A and R is self injective;
(6) R is mazimal, P is principal or faithful and for each ideal A there exists
a € R such that either A = Ra or A = Pa;

Each ideal is countably generated and RY is singly projective and separable;
RFE is a separable flat content module;

7)
8)
9) Each ideal is countably generated and RY is a separable flat content module;
0)

(

(

(

(10) Each product of separable flat content modules is a separable flat content
module;

(11) R is mazximal, P is principal or faithful and the intersection of any non-

empty family of principal ideals is finitely generated.
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Proof. By Theorem[ZT](1) = (2). It is obvious that (10) = (8). By [3, Theorem
1] (2) & (4). By Theorem [5.2] Theorem [£.9 and [I7, Theorem 2.3] (5) < (6) and
(6) = (7) . By Theorem [5.2] (6) < (11), (7) < (9) and (3) < (8).

(4) = (6). By Theorem R is coherent and self FP-injective and it remains
to prove that R is maximal if P is not principal. Let E be the injective hull of R.
If R# Elet x € E\ R. Since R is an essential submodule of E, (R : ) = rP
for some r € R. Then (R : rxz) = P. Let M be the submodule of E generated by
1 and rz. We put N = M/R. Then N = R/P. We get that N* = 0 and M* is
isomorphic to a principal ideal of R. Moreover, since (R : rz) = P, for each t € P
the multiplication by ¢ in M is a non-zero element of M*. Since P is faithful we get
that M* =2 R. Let g € M* such that the restriction of ¢ to R is the identity. For
each p € P we have pg(rz) = prz. So (0: g(rz)—rz) = P. Since P is faithful, there
is no simple submodule in E. Hence g(rz) = rz but this is not possible because
g(rz) € R and rz ¢ R. Consequently R is self-injective and maximal.

(2) = (1). Since (2) = (6) R is self injective. We conclude by proposition [[3l

(3) = (1). Since R® is singly projective, by Theorem [5.2] R is coherent and self
FP-injective. So, if U is a uniserial summand of RF, then U is singly projective
and consequently U # PU. Let x € U \ PU. It is easy to check that U = Rx and
that (0 : z) = 0. Hence R¥ is locally projective and R is strongly coherent.

(7) = (4). Let Fy — Fy — C — 0 be a free presentation of a finitely generated
module C, where Fj is finitely generated. It follows that Fj is countably generated.
As above we prove that R is locally projective. By Theorem [5.2] R is coherent and
consequently each finitely generated submodule of RN is finitely presented. Since
F} = RN we easily deduce that C* is finitely generated.

(1) = (10). Since (1) = (6), R is maximal. We use Theorem to conclude.
The proof is now complete. ([l
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