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Gravitational arcs as a perturbation of the perfect ring.

C. Alard

Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris.

alard@iap.fr

ABSTRACT

The image of a point situated at the center of a circularly symmetric potential

is a perfect circle. The perturbative effect of non-symmetrical potential terms

is to displace and break the perfect circle. These 2 effects, displacement and

breaking are directly related to the Taylor expansion of the perturbation at first

order on the circle. The numerical accuracy of this perturbative approach is

tested in the case of an elliptical potential with a core radius. The contour

of the images and the caustics lines are well re-produced by the perturbative

approach. These results suggests that the modeling of arcs, and in particular of

tangential arcs may be simplified by using a general perturbative representation

on the circle. An interesting feature of the perturbative approach, is that the

equation of the caustic line depends only on the values on the circle of the lens

displacement field along the θ direction.

Subject headings: gravitational lensing:strong lensing

1. Introduction.

Since the discovery of gravitational arcs in clusters of galaxies by Linds & Petrosian

(1986) and subsequently by Soucail et al. (1987), the observation and study of arcs has

developed considerably, and is now becoming an essential tool in astrophysics. Arcs provides

a wealth of information about the mass distribution in clusters of galaxies (see for instance:

Comerford et al. 2006, & Broadhurst el al. 2006). However, the mass distribution of the

astrophysical lenses is complex and involves a large parameter space which is difficult to

explore. Thus, the derivation of a simplified perturbative theory that is able to re-produce

the general features of gravitational arcs is an interesting tool to help understanding complex

gravitational lenses.

http://arxiv.org/abs/0706.0215v1
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2. Basic ideas

Let’s assume that the projected density of the lens ρs is circularly symmetric and cen-

tered at the origin. Let’s also assume that the lens is dense enough to reach critical density

at a given radius RE . Under such hypothesis, the image by the lens of a point source placed

at the origin will be a perfect ring. We are now interested in small perturbations of this

perfect ring. There are two type of perturbations to the point source perfectly aligned in a

circularly symmetric potential: first the source may not be perfectly at the center, and sec-

ond the potential may not be perfectly circular. Let’s be more specific, in polar coordinates,

the lens equation writes:

rS =

(

r−
∂φ

∂r

)

ur −
(

1

r

∂φ

∂θ

)

uθ (1)

In the unperturbed case, the equation reads:

r −
dφ0

dr
= 0 (2)

Where φ0 is a function of r only. Let’s now perturb this equation by introducing a small

displacement of the source from the origin: rs, and a non-circular perturbation to the po-

tential, ψ. Note that the perturbation on rS and the perturbation on φ are assumed to be

of the same order. The perturbation may be described by the following formula:

{

rS = ǫ rs

φ = φ0 + ǫ ψ
(3)

Here ǫ is a small number: ǫ << 1. Given a position (rs) for the source, the image posi-

tions (r, θ), can be obtained by solving equation (1). However solving directly may prove

impossible in the general case. It is easier to find a perturbative solution by inserting Eq.

(3) in Eq. (1). Assuming that ǫ is small, the perturbation will introduce a deviation from

the perfect circle that will be of order ǫ. An interesting feature of the un-perturbed solution

is that the image of a single point at the origin is a full circle, which covers all range in

θ. Thus whatever the position θ of the perturbed solution, there is always a point at the

same θ in the un-perturbed solution. However, the point in the un-perturbed solution will

be located at a slightly different radius r. The response to the perturbation on r may be

written, r = RE + ǫ dr. For convenience, it is always possible to re-scale the coordinate

system, so that the Einstein radius is exactly equal to unity, in this case, the perturbation

on r is:

r = 1 + ǫ dr (4)

To summarize, we must solve perturbatively Eq. (1), by expanding around the un-perturbed

solution (1, θ) for small values of ǫ. Note that this requires to expand the potential at r = 1.
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Using Eq. (3), the Taylor expansion of φ may be written:

φ = φ0 + ǫψ =
∞
∑

n=0

[Cn + ǫ fn(θ)] (r − 1)n (5)

Where we define,

Cn =
1

n!

[

dnφ0

dnr

]

(r=1)

(6)

And:

fn(θ) =
1

n!

[

∂nψ

∂nr

]

(r=1)

(7)

It is now possible to expand each side of Eq. (1) in series of ǫ, in the vicinity of the un-

perturbed solution. By inserting Eq. (5), and Eq. (4) in Eq. (1), the response dr to the

perturbation defined in Eq. (3) can be estimated to the first order in ǫ.

ǫ rs = (1 + ǫ dr − C1 − ǫ 2 C2 dr − ǫ f1) ur − ǫ
∂f0
∂θ

uθ

Note that Eq. (2) implies that C1 = 1, consequently:

rs = (κ dr − f1) ur −
∂f0
∂θ

uθ (8)

With: κ = 1− 2 C2.

3. Reconstruction of images.

3.1. Circular source contours.

Let’s consider a circular contour on a source with center r0 radius, R0. The equation

for this contour is:

(rs − r0)
2 = R2

0 (9)

Note that effect of the translation by the vector r0 = (x0, y0) can be taken into account by

re-defining f0, and f1 in Eq. (12):
{

rs =
(

κ dr − f̄1
)

ur − ∂f̄0
∂θ

uθ

f̄i = fi + x0 cos θ + y0 sin θ i = 0, 1
(10)

The image by the lens of this contour can be obtained using Eq’s. (9) and (10):

R2
0 =

(

κ dr − f̄1
)2

+

(

∂f̄0
∂θ

)2

(11)
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Solving Eq. (11), the 2 following solutions for dr can be obtained:

dr =
1

κ



f̄1 ±

√

R2
0 −

(

∂f̄0
∂θ

)2


 (12)

In the above equation the condition for image formation is: ∆ = R2
0 −

(

∂f̄0
∂θ

)2

> 0. The

mean position of the 2 contour lines is f̄1
κ
, and the image width along the radial direction is

2 ∆
κ
.

3.2. Elliptical source contours.

Using Eq. (10) the source Cartesian coordinates writes:
{

xs =
(

κ dr − f̄1
)

cos θ + df̄0
dθ

sin θ

ys =
(

κ dr − f̄1
)

sin θ − df̄0
dθ

cos θ
(13)

The equation for an elliptical contour aligned with its main axis aligned with the coordinate

system is:

(1− η) x2s + (1 + η) y2s = R2
0 (14)

Using Eq.’s (14) and (13) one obtains:














dr = 1
κ



f1 +
η sin 2θ

S

df0
dθ

±

r

R2

0
S−(1−η2) ( df0

dθ )
2

S





S = 1− η cos 2θ

(15)

3.3. Numerical testing

The accuracy of Eq. (12) has been tested for a source with a circular contour by

direct comparison with numerical integration of the lens equation using ray-tracing. For this

application, the potential proposed by Blandford & Kochanek (1987) (hereafter, BK1987)

was chosen. The asymptotic isothermal form of the potential was selected. The potential

reads:

φ = s
√
s2 + 1

[
√

1 +
r2 (1− η cos 2θ)

s2
− 1

]

(16)

The ellipticity of the potential is controlled by the parameter η, BK1987 conclude that for

physical reasons η must be less than 0.2. The circular, unperturbed potential φ0 corresponds
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to η = 0, in this case, at r = 1, ∂φ

∂r
= 1 which implies that RE = 1. According to Eq’s. (6)

and (7) the parameters of the perturbative expansion are:



















df0
dθ

=
√
s2+1 η sin 2θ√
s2+1−η cos 2θ

f1 =
√
s2+1(1−η cos 2θ)√
s2+1−η cos 2θ

− 1

κ = 1
1+s2

(17)

Using equations (12) combined with Eq. (17) it is possible to trace the 2 lines that describe

the image contour. The 2 solutions for dr join at the contour edges. The result is visible in

Fig. (1). Note that the large tangential arc is well reproduced by the approximation while

there is some offset in the position of the inner image. The problem of the inner image

can be corrected using an iterative approach: the perturbative method gives a first guess

of the image position, at this initial position one may carry a local Taylor expansion of the

potential in order to find a better solution, and the procedure may be iterated again.

3.4. Inverse modelling

Given a system of arcs or arclets it is possible to re-construct the perturbation field.

Let’s define the arc system to reconstruct as a set of contours, with one contour per image.

For each contour a radial line of direction θ intersect the contour in 2 points, r1 and r2
(provided that θ is in a suitable range). It is simple to relate these 2 functionals to the fields,

f1 and f0 of the perturbative approach, in the case of a source with circular contour (Eq.

(12)):






f̄1 =
κ
2
(r1 + r2) + C

df̄0
dθ

=
√

R2
0 − κ2

4
(r2 − r1)2

(18)

Where C is a constant term. Note that κ is unknown, actually there is a fundamental

degeneracy in κ, only f1/κ, f0/κ, and R0/κ may be determined. By using inner of radial

image in the iterative approach mentioned in Sec. (3.3), in some case it might be possible to

break the degeneracy on κ. It is clear also that instead of circular contours, one could have

considered elliptical one, and Eq. (15) may have been used. In such case, it is just a matter

of where to put the complexity, either in the source or the lens, and obviously the judging

criteria should be that as a whole the complexity is minimal.
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4. Caustics in the perturbative approach.

Caustics are singularities, which are defined by the simple property that the determinant

of the Jacobian Matrix J is zero on the caustic lines.

J =
∂xs
∂r

∂ys
∂θ

−
∂xs
∂θ

∂ys
∂r

= 0

The calculation of the Jacobian is straightforward from Eq. (13), it follows that:

dr =
1

κ

[

f1 +
∂2f0
∂2θ

]

(19)

Note that in this case a shift by a vector r0 does not have to intorduced thus, f0 = f̄0, and

f1 = f̄1. Eq. (19) defines the critical lines. The caustics in the source plane can be obtained

by inserting Eq. (19) in Eq. (13):

{

xs =
d2f0
d2θ

cos θ + df0
dθ

sin θ

ys =
d2f0
d2θ

sin θ − df0
dθ

cos θ
(20)

Not that Eq. (20) line depends only on f0, which is directly related to the multipole expansion

of the potential on the circle. The multipole expansion has also the advantage to relate

directly f0 to the density by the means of the coefficients of the multipole expansion at

r = 1. Turing now to a numerical application, by inserting the expression of f0 given in Eq.

(17) in Eq. (20) a parametric equation of the caustic line is obtained, the result is presented

in Fig. (2). The perturbative calculation of the caustic curve is accurate, this suggest that

this approximation may be used to derive general results on caustics. A simple result is that:

r2s =

(

df0
dθ

)2

+
d2f0
d2θ

(21)

Eq. (21) may be integrated other θ, the second term d2f0
d2θ

due to periodicity, it follows that the

typical size of the caustics is directly related to the variance of df0
dθ
. This result demonstrates

that the caustics cross-section, are closely related to the deviations of the potential to circular

symmetry, which is confirmed by the numerical analysis of Meneghetti et al. (2007).

The author would like to thank J.P. Beaulieu and S. Colombi for reading this paper.
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Fig. 1.— A circular source of radius R0 =
√
2/20 RE is placed at [x0 = RE

5
, y0 = 0] from

the potential center along the X axis. The core radius of the potential is s = RE

2
, and

the ellipticity is η = 2
10
. The dark areas corresponds to the numerical solution obtained

by ray tracing. The outer contour of the source is reconstructed using Eq’s (12) and (17)

and super-imposed (as a red line) on the ray tracing solution. The red contour is close to

the outer contour of the ray-tracing solution for the tangential image. Due to the strong

non-linearity of the potential near the center, the approximation is not as good for the inner

image, although as mentioned in Sec. (3.3) this may be corrected using an iterative approach.
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Fig. 2.— Caustics of the BK1987 potential, the perturbative solution is plotted in black

next to the numerical solution of the system of equations without approximations. Note the

closeness of the 2 solutions.
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