
ar
X

iv
:0

70
6.

02
19

v2
 [

m
at

h.
PR

]
 1

7
D

ec
 2

00
7 Random spatial growth

with paralyzing obstacles

J. van den Berg∗, Y. Peres†, V. Sidoravicius‡ and M.E. Vares §

CWI and VUA, Microsoft and UC Berkeley, IMPA and CBPF

email: J.van.den.Berg@cwi.nl; peres@stat.berkeley.edu; vladas@impa.br; eulalia@cbpf.br

Abstract

We study models of spatial growth processes where initially there
are sources of growth (indicated by the colour green) and sources of a
growth-stopping (paralyzing) substance (indicated by red). The green
sources expand and may merge with others (there is no ‘inter-green’
competition). The red substance remains passive as long as it is iso-
lated. However, when a green cluster comes in touch with the red
substance, it is immediately invaded by the latter, stops growing and
starts to act as red substance itself. In our main model space is rep-
resented by a graph, of which initially each vertex is randomly green,
red or white (vacant), and the growth of the green clusters is similar
to that in first-passage percolation. The main issues we investigate
are whether the model is well-defined on an infinite graph (e.g. the
d-dimensional cubic lattice), and what can be said about the distribu-
tion of the size of a green cluster just before it is paralyzed. We show
that, if the initial density of red vertices is positive, and that of white
vertices is sufficiently small, the model is indeed well-defined and the
above distribution has an exponential tail. In fact, we believe this to
be true whenever the initial density of red is positive.
This research also led to a relation between invasion percolation and
critical Bernoulli percolation which seems to be of independent inter-
est.

∗Research funded in part by the Dutch BSIK/BRICKS project.
†Research supported in part by NSF grant DMS-0605166.
‡Partially supported by CNPq, Brazil
§Partially supported by CNPq, Brazil

1

http://arxiv.org/abs/0706.0219v2

2000 MSC: primary 60K35, secondary 60K37, 82B43.
Key words and phrases: Growth process, percolation, invasion percolation.

1 Introduction

1.1 Description of the model and the main problems

Consider the following model where different ‘objects’ (or ‘populations’) grow
simultaneously until they hit a paralyzing substance, in which case they stop
growing and become paralyzing themselves: Each vertex of a connected,
finite (or countably infinite, locally finite) graph G = (V,E) is initially,
independently of the other vertices, white, red or green with probabilities pw,
pr and pg respectively. Each edge of G is initially closed. By a green cluster
we will mean a maximal connected subgraph of G of which all vertices are
green and all edges are open. We denote the green cluster containing v at
time t by Cg(v, t). (If v is not green at time t, then Cg(v, t) is empty). It
is clear from the above that initially the only green clusters are single green
vertices. These green clusters can grow, merge with other green clusters and
finally become paralyzed (red) as follows.
Whenever an edge e = 〈v, w〉 is closed and has at least one green end-vertex,
say v, it becomes open at rate 1. Moreover, immediately after it gets open
the following action takes place instantaneously: If exactly one end-vertex,
say v, is green and the other, w, is white, w becomes green (and we say,
informally, that the green cluster of v grows by absorbing w). If w is red,
then each vertex in the green cluster of v becomes red (and we say that the
green cluster of v becomes paralyzed). Finally, if both vertices are green, no
extra action takes place. (Note that in this case the two vertices may have
been in two different green clusters right before the opening of e, but are now
in the same green cluster).

Note that once an edge is open it remains open, that once a vertex is
green it never turns white (but may become red), and once a vertex is red it
remains red.

Let us first consider the case where the graph G is finite. In that case
the above process is clearly well-defined and has some obvious properties,
which we will state after introducing the following terminology. By a con-
figuration (or ‘site-bond configuration’) we mean an element of {0, 1}E ×
{ green, red, white }V , where 0 and 1 denote ‘open’ and ‘closed’ respectively.

2

An ‘open-bond cluster’ (with respect to a configuration) is a maximal con-
nected subgraph of G of which all edges are open (for that configuration).
We say that it is non-trivial if it has at least one edge. Note that the earlier
defined ‘green cluster’ is an open-bond cluster of which each vertex is green.
A ‘red cluster’ is defined similarly. We call a configuration admissible if each
non-trivial open-bond cluster is either a red cluster or a green cluster. Now
we are ready to state the announced simple properties and observations: If
G is finite, the process is a Markov chain on the set of admissible config-
urations. The admissible configurations where no vertices are green or all
vertices are green are absorbing, and the chain will with probability 1 end in
one of those configurations. In particular, if initially there was at least one
red vertex, then every green vertex will eventually become red. Moreover
(because initially all edges were closed) at any time, every non-empty red
cluster C contains exactly one vertex v that was originally red. We say that
this vertex v is ‘responsible for’ the other vertices in C becoming red (or, that
the vertices in C became red ‘due to’ v).

If G is infinite, for instance the d-dimensional cubic lattice, the situation is
much more problematic, due to the fact that the range of the interaction
is not bounded: an entire cluster, no matter how large, can change colour
instantaneously. The main questions we address in this paper concerning the
above process, and some other related models, are:

• 1. Does the dynamics exist? This is a nontrivial issue for such in-
teracting processes on infinite graphs: See for instance, Aldous’ frozen
percolation process ([A]), which was shown by Benjamini and Schramm
(1999, private communication) not to exist in Z

2. For related matters
on the non-existence of that process, see also Remark (i) in Section 3
of [BeT] and the example due to Antal Járai (1999, private communi-
cation) which follows it. A crucial difference between Aldous’ model
and ours is that in Aldous’ model, clusters freeze only when they are
infinite, while we believe that in our model, due to the positive density
of initially red vertices, the green clusters do not become infinite (see
the next item). A model which has more in common with ours is the
forest-fire model studied in [D]. But again there is a major difference:
in that model there is a uniform lower bound for the probability that
a cluster of interest is ‘destroyed’ before growing further, and this uni-
form bound is a crucial ingredient in the existence proof in [D]. In our
model there seems to be no analog of such a property.

3

• 2. Is a green cluster always finite at the moment it becomes red? Does
the distribution of its radius (and of its volume) have an exponential
tail?

• 3. Let w be an originally red vertex. Is the set of originally green
vertices v with the property that w is responsible for v becoming red,
finite? Does the distribution of its volume have an exponential tail?

The organization of the paper is as follows. In Subsection 1.2 we give
a partial answer to the questions listed above. In particular, Theorem 1.1
states that, for G = Z

d and pw sufficiently small, the answers to the above
questions are positive. Our research also led to a new result for invasion
percolation (see Theorem 1.2 and Proposition 1.3). In Subsection 1.3 we
explain the notion of ‘autonomous region’ which plays an important role in
this paper. In subsection 1.4 we briefly discuss some alternative versions of
the model. In section 2 we give a proof of the main result for the special case
where pw = 0. It turns out that that case can be dealt with in a very elegant
and transparent way. It serves as an introduction to the proof of the more
complicated case where pw is small but positive, which is given in Section 3.
At the end of Section 3 we come briefly back to the alternative versions of
the model discussed in Subsection 1.4.

1.2 Statement of the main results

Let G be a connected, countably infinite graph of bounded degree, and con-
sider the model presented in Subsection 1.1, with parameters pw, pg and pr.
Our main result, Theorem 1.1 below, states, among other things, that under
certain conditions the dynamics is well-defined. The formulation of the con-
dition requires some additional notation and terminology: By the distance
d(v, w) between two vertices v and w of G we mean the length (i.e. number
of edges) of the shortest path from v to w. The diameter of a set of vertices
W of G is defined as maxv,w∈W d(v, w), and ∂W will denote the set of all
vertices that are not in W but have an edge with some vertex in W . The
number of elements of a set W will be denoted by |W |. For a finite graph
H , denote by |H| the number of vertices in H . Let D denote the maximal
degree in G.

For each vertex v of G and p ∈ (0, 1), let ξv(p) denote the expectation
of the volume (i.e. number of vertices) of the occupied cluster of v in site

4

percolation on G with parameter p. Further, define

ξ(p) = sup
v

ξv(p).

Recall the definition of Cg(v, t) in Subsection 1.1. We are now ready to state
our main results.

Theorem 1.1. Suppose that

(D − 1)ξ(pw) < pr . (1)

We have

(a) The dynamics on G is well-defined. With probability 1, at any time, each
red cluster has a unique initially red vertex.

(b) For any originally green vertex v, let Cg(v) = ∪t≥0Cg(v, t) be the green
cluster of v just before it becomes red. Let |Cg(v)| be the number of vertices of
Cg(v). Then, with probability 1, |Cg(v)| is finite for each such v. Moreover,
the distribution of |Cg(v)| has an exponential tail.

(c) If G is a Cayley graph and w is an originally red vertex in G, then the
set D(w) consisting of all green vertices that become red due to w is finite;
moreover, the diameter of D(w) has an exponential tail. (Here, extending
the definition given before in the case of finite G, if v is an originally green
vertex and w is the (unique a.s.) originally red vertex in the red clusters that
eventually contain v, we say that v becomes red due to w.)

(d) If G is the d-dimensional cubic lattice, then the distribution of |D(w)|
also has an exponential tail.

Note that in the case pw = 0, condition (1) of Theorem 1.1 is satisfied
for every positive pr. For this case we have, in addition to Theorem 1.1,
considerably stronger results. In particular, the following theorem holds,
where we fix pw = 0 and then vary the parameter pr. In this theorem and
its proof, Pp denotes the ordinary (Bernoulli) bond percolation measure with
parameter p and Pcr stands for Ppc, where pc denotes the critical probability
for this percolation model. By B(n) we denote the set of all vertices at
(graph) distance ≤ n from some specified vertex O. The event that there
is an open path from O to ∂B(n) is denoted by {O ↔ ∂B(n)}. Further,
the symbol ≈ denotes logarithmic equivalence, i.e., we say for two positive
functions g(n) and h(n) that g(n) ≈ h(n) as n → ∞, if

5

log h(n)

log g(n)
→ 1, n → ∞.

Let W be a set of vertices in a graph G with a distinguished vertex O. By
the radius of W we mean the maximal distance from O to a vertex of W .
We are now ready to state the following theorem.

Theorem 1.2. Let Cg(·) be as in part (b) of Theorem 1.1. If G is the square
lattice in two dimensions (or the triangular or the hexagonal lattice), and
pw = 0, then

P (The radius of Cg(O) is at least n) ↑ f(n), as pr ↓ 0,

where f is a function satisfying

f(n) ≈ Pcr(O ↔ ∂B(n)).

Theorem 1.2 follows easily from the following Proposition concerning inva-
sion percolation on the lattices considered in the theorem. Before we state it,
we briefly recall the invasion percolation model (on these lattices) and some
of its basic properties. (Invasion percolation was introduced by Wilkinson
and Willemsen, see [WW]. For a detailed study of this process see [LPS], or
the earlier works [CCN], [ALE] and [J2]). To each edge e we assign, indepen-
dent of the other edges, a random variable τe, uniformly distributed in the
interval (0, 1). We construct, recursively, a growing tree. Initially the tree
consists only of one vertex, say O. At each step we consider all edges that
have exactly one endpoint in the tree that has been created so far. From
these edges we select the one with smallest τ value and add it (and its ‘exter-
nal’ endpoint) to the tree. Let τ(n) be the τ value of the nth edge invaded
by this procedure. For any infinite transitive graph G, it is proved in [HPS]
that

lim sup
n→∞

τ(n) = pc, (2)

where pc is the critical probability for bond percolation. Further, note that,
if all τ(n) < pc, then O belongs to an infinite cluster on which all τ values
are smaller than pc. For the graphs in the statement of Theorem 1.2 this
latter event has probability 0. (See [G] for this classical result and refer-
ences). Hence, for these lattices, (a.s.) there is an n with τ(n) > pc. This,
together with (2), implies that (a.s.) τ(n) achieves its maximum (and that

6

this maximum is larger than pc). The following proposition is about the
invaded region at the step where this maximum is achieved. Although this
and related regions have been under consideration before in the literature
(see the subsection ‘Ponds and outlets’ in Stein and Newman (1995)), this
result is, as far as we know, new.
Remark: The invasion basin of O is defined similarly to the invasion tree,
except that at every step, the edge of minimal τ -value among the edges out-
side the current invasion basin that have at least one endpoint in the basin
is added to the basin. The invasion basin is typically not a tree. It is easy to
see that each edge e in the invasion tree is in the invasion basin, and the set
of sites in the invasion basin immediately before such an edge e is added to
it is the same as the set of vertices in the invasion tree immediately before e
is added.

Proposition 1.3. Consider invasion percolation on the square lattice (or
the triangular or the hexagonal lattice) with edge values τe. Let ê be the edge
with maximal τ value in the invasion basin (as explained above). Let R̂ be the
radius of the region that has been invaded up to the step where ê is invaded.
We have:

(a)
P (R̂ > n) ≥ Pcr(O ↔ ∂B(n));

(b)
P (R̂ > n) ≈ Pcr(O ↔ ∂B(n)), n → ∞. (3)

Remarks:

(a) Proposition 1.3 has triggered further research on the comparison of ponds
and critical percolation clusters: see recent refinements and generalizations
in [BJV].
(b) The value R̂ above can also be described in the following, somewhat
informal, way. Suppose each edge e is closed at time 0 and becomes open at
time τe (after which it remains open). The open cluster of O grows in time.
Up to time pc it is finite, but at some time larger than pc it will become
infinite (a.s). The radius of this cluster just before it becomes infinite is R̂.

7

1.3 Description of the model in terms of passage times.

Autonomous regions

Consider the description of the dynamics in the beginning of this section,
and assume for the moment that the graph is finite. Recall that an open
edge remains open and that a closed edge with at least one green end-vertex
becomes open at rate 1. This means that if we assign to each edge e an
exponentially distributed (mean 1) random variable τ(e), independent of the
other edges (and of the initial colours of the vertices), the time evolution of
the process can be completely described in terms of the initial colours of the
vertices and the τ− variables of the edges: Each edge e remains closed until
the time t at which Lt(e) (defined below) has Lebesgue measure τe. (If no
such time exists, the edge remains closed forever). Here Lt is defined by

Lt(e) = {s < t : e has at least one green end-vertex at time s}. (4)

(Since, once a vertex is green it can change colour only one more time, Lt(e) is
clearly an interval or union of two intervals). When e becomes open and one
of its end-vertices is white or red, the appropriate action in the description
in Section 1.1 is carried out instantaneously.

In the following this equivalent description of the process turns out to be
very convenient. To illustrate it and to emphasize the difference with one
of the modified models that will be discussed in Subsection 1.4, we give the
following example:

Example 1.4. Consider the graph with vertices denoted by {1, 2, 3, 4, 5} and
edges 〈i, i + 1〉, 1 ≤ i ≤ 4. Suppose that the initial colours of the vertices
1, · · · , 5 are red, green, white, green, red respectively, and that the τ values
of the edges 〈1, 2〉, · · · 〈4, 5〉 are 6, 3, 4 and 2 respectively. As one can check
by following the above description, the initially green vertex 2 becomes red at
time 5 due to vertex 5.

Now suppose some finite, but possibly large, graph G is given, together with
initial colours c(v), v ∈ V and ‘opening times’ τ(e), e ∈ E. Further suppose
we are only interested in the time evolution in a small subgraph of G, for
instance just one initially green vertex v. Do we need to ‘follow’ the process
in the whole graph to reconstruct what happens at v? Often this is not the
case. An instructive example is when v is incident to three edges, e, e′ and
e′′ with the properties that τ(e) is smaller than τ(e′) and τ(e′′), and that the

8

other end-vertex of e, which we denote by w, is red. In that case we know
that v is green until time τ(e) and from then on is red (which would also
happen in the ‘isolated’ graph consisting only of the vertices v and w and
the edge e). This holds no matter what the initial colours of the vertices in
V \ {v, w} and the τ -values of the edges in E \ {e, e′, e′′} are. Note that this
still holds when we extend G to a bigger graph (with c and τ -variables) as
long as we don’t add extra edges to v.

This brings us to the notion of autonomous set: Let H = (V (H), E(H))
be a finite sub-graph of a graph G, and let Ē be a finite set of external edges
of H , i.e. edges in G, which have exactly one vertex in V (H). Assume that
we have given an initial colour assignment c(v) to all v ∈ V (H) and opening
times τ(e) to all e ∈ E(H) ∪ Ē. Let H̄ be the minimal graph containing
H as subgraph and Ē ⊂ E(H̄). We say that (H, Ē) is autonomous (with
respect to τ and c), if for every finite subgraph G0 of G which has H̄ as
a subgraph, the growth process on G0 starting with a colour pattern and
opening times extending the above given c’s and τ ’s has, restricted to H ,
always the same time evolution, i.e. the same evolution as it would have
with G0 = H̄, and which does not depend on colours at the vertices in H̄
not in H . In the simple example considered in the previous paragraph, the
graph with vertices v and w, and edge e, together with the set of external
edges Ē = {e′, e′′}, is autonomous.

Often, when the identity of Ē is obvious and the choice of c- and τ -
variables is considered to be known, we simply say thatH is autonomous. For
this reason we might refer to the autonomous set as “autonomous subgraph”.

Now suppose we have an infinite graph G with given τ - and c- variables. If
every vertex (and every edge) is contained in a finite autonomous subgraph of
G, the infinite-volume time evolution on G can be defined in an obvious way.
The key of the proof of Theorem 1.1 is to show that, under the condition in
the theorem, these autonomous subgraphs exist with probability 1. That is,
for almost-all initial colour patterns, and almost-all τ -values each vertex and
edge is contained in a finite autonomous region.

1.4 Some alternative versions of the model

There are many modifications or generalizations of our model (which we will
sometimes call the basic model to distinguish it from these modified versions).
Below we mention four of them.

9

(i) In the basic model the τ variables are exponentially distributed. It is
easy to see that if the initial colours of the vertices are given, and none
of them is white, the time evolution is essentially determined by the order
statistics of the τ variables. It is also easy to see that in that case each edge
e becomes open at time τe or remains closed forever. From such observations
it easily follows that, if pw = 0, replacing the exponential distribution of
the τ variables by some other continuous distribution, leaves the law of the
process unchanged, apart from an obvious time change. This is not true if
pw > 0. However, as one can easily see from its proof, Theorem 1.1 remains
valid under such replacement of distribution.

(ii) Recall that in our basic model an edge e becomes open at the smallest
time t with the property that the subset of times s < t at which e has at least
one green end-vertex, has Lebesgue measure τe. A natural modification of
this rule is the one where e = 〈v, w〉 becomes open at the smallest time t with
the property that v is green throughout the interval [t − τe, t) or w is green
throughout the interval [t − τe, t). To illustrate the difference between the
rules, consider again the graph with τ values and initial colours in Example
1.4. As can be easily checked, under the modified rule the vertex 2 will no
longer become red due to vertex 5 but due to vertex 1 (and at time 6 instead
of 5). It turns out that Theorem 1.1 remains valid for this modified model
and that its proof only needs some small modifications.

(iii) The third modification is the following model in continuous space. Con-
sider two homogeneous Poisson point processes ζG, ζR on R

d, with intensities
λG = 1, λR ≡ λ ∈ (0,+∞) respectively. The points of ζG (green) are inter-
preted as sources of growth, and those of ζR (red) as sources of “paralyzing
poison”. All other elements of Rd are uncoloured. From each source in ζG
at time zero a green Euclidean sphere begins to grow with constant speed 1
(of its radius). When two or more green spheres intersect, they keep grow-
ing in the same manner, but we say that they have become connected (are
in the same connected green component). If a growing green sphere hits a
red region, its entire connected green component (note that this is a union of
spheres) instantaneously gets red and stops growing. Analogs of the questions
for our basic model in Subsection 1.1, in particular the existence question,
arise naturally, but so far we have made very little progress. Although at
first sight there is some resemblance with the model studied in [HaM], the
arguments used there seem not to work here.

(iv) Consider the following change of rule of the previous model (model (iii)

10

above): When a green sphere hits a red region, only the centers of all the
spheres of its connected green component become red; the remaining parts
of the spheres disappear (become uncoloured). This change makes the model
much easier to handle (using an invasion procedure resembling the one we will
use in Section 2 for the case pw = 0 of our basic model), but also considerably
less natural, and we will not discuss it in more detail.

2 Proofs for the case pw = 0

2.1 General properties for the case pw = 0

The case where pw = 0 is considerably easier than the general case and
serves as a good introduction to the latter. We start with some deterministic
observations and claims. Let us first restrict to a finite graph G, with given
τ -values and c-values. We assume that at least one vertex has initial colour
red, at least one vertex has initial colour green, and no vertex has initial
colour white. Let x be a vertex with initial colour green, and let t(x) denote
the time at which x becomes red. Let Π denote the set of all paths of which
the starting point is x and the end-vertex has initial colour red. It is easy to
see that

t(x) ≥ min
π∈Π

max
e∈π

τ(e). (5)

Indeed, for each t smaller than the r.h.s. of (5) there is a ‘cut set’ of edges
that are still closed at time t and ‘shield’ x from all initially red vertices. It is
also quite easy to see that equality holds in (5). The algorithmic (and induc-
tive) argument below is not the most direct one but has the advantage that
it gives more, namely an elegant and suitable construction of an autonomous
region. This particular construction will almost immediately lead to a proof
of parts (a) and (b) of Theorem 1.1 for the case pw = 0. The ‘algorithm’ is
a modification (‘stopped’ version) of the standard invasion percolation pro-
cedure (starting at x) described a few lines above Proposition 1.3. At each
stage of the procedure we have a tree which is a subgraph of G. Initially this
tree consists only of the vertex x. At each step we consider all edges that
have exactly one end-vertex in the tree, also called the external edges of the
tree. Among these edges we select the one with minimal τ -value and add it
(and its external end-vertex) to the tree. The procedure is stopped as soon
as an initially red vertex is added to the tree. Let us denote this vertex by

11

R, and the final tree given by this procedure by T (x). Let τ ∗ be the maximal
τ value on this tree, and e∗ the edge where this maximum is attained. Re-
moving this edge from the tree T (x) ‘splits’ the tree in two parts. Let T ∗

1 (x)
denote the part containing x.

Claim 2.1. (i) The vertex R is responsible for x becoming red.
(ii) x becomes red at time τ ∗. That is, t(x) = τ ∗. Moreover, Cg(x) (defined
in part (b) of the Theorem) is the set of vertices of T ∗

1 (x).
(iii). Let Ē denote the set of all edges of which one end-vertex is a vertex

of T (x), different from R, and one end-vertex is not in T (x). Let T̂ (x) be
the graph with the same vertices as T (x) and with all edges that have both

end-vertices in T (x). Then (T̂ (x), Ē) is autonomous (with respect to this
coloring).

Proof. (of Claim) The proof of the Claim is by induction on the number of
steps in the above invasion procedure. If the number of steps is 1 we are in
the situation that the edge incident to x with minimal τ - value has a red end-
vertex, and the above Claim follows easily. (Note that this case corresponds
with the example in the second paragraph of Subsection 1.3). Now suppose
the number of steps is larger than 1. Consider the edge e∗ defined above.
Let E∗ denote the set of external edges, except e∗ itself, at the stage of the
procedure immediately before e∗ was added. From the definition of invasion
percolation, all edges in E∗ have τ -value larger than τ ∗. On the other hand,
all edges that were added after that step have, by definition, τ -value smaller
than τ ∗. Therefore the edges in E∗ were never added to the tree. Hence,
since R was added after e∗ (and was the first red point added to the tree), it
follows that every path in G from x to a red point contains e∗ or an edge in
E∗. Therefore, by (5) we get that

t(x) ≥ τ ∗.

To get the reversed inequality, note the following. Let y denote the ex-
ternal end-vertex of e∗ when e∗ was added to the tree. We already remarked
that removing e∗ from T (x) ‘splits’ T (x) in two separate trees, and we de-
noted the part containing x by T ∗

1 (x). Let T ∗
2 (x) denote the other part. It

follows from the above that T ∗
2 (x) contains y and R. We will assume that

the initial colour of y is green (otherwise the Claim follows easily). It is

12

easy to see from the above that a similar invasion procedure as before, but
now starting at y instead of x, has as its final tree the tree T ∗

2 (x). By the
induction hypothesis we have that y becomes red at the time which is equal
to the maximal edge value in T ∗

2 (x) and hence before time τ ∗, and that R is
responsible for y becoming red. Also note that, from the earlier observations,
just before time τ ∗ there is an open path from x to the end-vertex 6= y of
e∗. Since e∗ becomes open at time τ ∗ it follows that x becomes red at time
τ ∗. Moreover, since R is responsible for y becoming red, it is also responsible
for x becoming red. This (and the earlier made observation that all external
edges 6= e∗ of T ∗

1 (x) have τ value larger than τ ∗)) completes part (i) and (ii)
of the proof of Claim 2.1. Similar arguments show part (iii).

Now we are ready to handle the case where G is infinite. If G is infinite and
pr > 0, it is not a priori clear that the process described in Subsection 1.1 is
well-defined. However, the above invasion procedure and the corresponding
Claim now give us the instrument to define it and to give a proof of Theorem
1.1 in this particular case.

2.2 Proof of Theorem 1.1 for the case pw = 0

For each green vertex x simply run the invasion procedure starting from x.
Since the initial colours and the τ variables are independent, we have, at each
step in the invasion from x, probability pr of hitting a red vertex (indepen-
dently of the previous steps in this invasion). Hence the invasion procedure
starting at x stops with probability 1, and (by part (iii) of Claim 2.1) yields
an autonomous region containing x. Since the graph has countably many
vertices, this yields a construction of the process on G and completes the
proof of part (a) of the theorem. Moreover it shows that Claim 2.1 also
holds (a.s.) for G. Further, the number of steps in the invasion procedure
from an initially green vertex clearly has a geometric distribution: the prob-
ability that it is larger than n is (1 − pr)

n. Since (by part (ii) of Claim 2.1)
|Cg(v)| is at most the number of steps in the invasion procedure, part (b) of
the theorem follows.
Proof of part (c): For each pair of vertices x, y, let I(x, y) denote the event
that x is initially green and that y is initially red and responsible for x be-
coming red. It follows immediately from the above that for all vertices x and

13

all m ∑

y:d(x,y)≥m

P (I(x, y)) = P (d(x,R(x)) ≥ m) ≤ (1− pr)
m. (6)

Further, using that G is a Cayley graph, the ‘mass transport principle’ (see
e.g. Section 7.1 in [LyP] or [HPS]) gives:

P (D(w)has radius ≥ m) ≤
∑

v : d(v,w)≥m

P (I(v, w)) =
∑

v : d(v,w)≥m

P (I(w, v)),

which by (6) is at most (1 − pr)
m. This completes the proof of part (c) of

the theorem.

Proof of part (d). As we will see, this follows from earlier observations,
together with a block argument which is quite similar to one in percolation
theory, due to Kesten (see [K]). Below we denote the d−dimensional cubic
lattice simply by Z

d.
Let, as before, T (x) denote the tree produced by the invasion procedure

starting at x. We want to prove exponential decay for P (|D(v)| > n), where
v is an initially red point. Without loss of generality we take v = 0. We say
that a finite set W of vertices containing 0 is a lattice animal (abbreviated
as l.a.) if for all w ∈ W there is a path in Z

d from 0 to w of which every
vertex is in W . From the definitions (and since, as we saw in (c), D(0) is a.s.
finite), it is clear that D(0) is a lattice animal. Let L be an even integer and
consider the partition of Zd into cubes QL(x) := [−L/2, L/2)d +Lx, x ∈ Z

d.
We say that x ∈ Z

d is fine if QL(x) ∩ D(0) 6= ∅. Let VF denote the set of
all vertices that are fine. Since D(0) is a lattice animal, VF is also a lattice
animal. Further, we say that x ∈ Z

d is proper if QL(x) contains a vertex
y with |T (y)| > L/4, and write I(x is proper) for the indicator function of
the corresponding event. (Here T (·) is as defined in the invasion procedure
earlier in this Section). Finally, a subset of Zd is proper if every element
in the set is proper. It is clear that for every x 6= 0, if x is fine, then x is
proper. It is also clear that if D(0) contains vertices outside QL(0), then
0 is also proper. Recall from Claim 2.1(iii) that for each tree T in Z

d and
each vertex y, the event {T (y) = T} depends only on the c values of the
vertices of T and the τ values of the edges that have at least one end-vertex
in T . From this it easily follows that the process

(
I(x is proper), x ∈ Z

d
)

is 2-dependent (see e.g. [G] for this notion). Let ε = ε(L) = ε(L, d) be the
probability that a given vertex is proper. Since, for each y, the distribution

14

of |T (y)| is geometric (and |QL(y)| is polynomially bounded in L) it is clear
that for fixed d

ε(L, d) → 0 as L → ∞.

The above mentioned 2-dependence gives that there is a constant C1 = C1(d)
such that for every set W ⊂ Z

d

P (W is proper) ≤ ε
|W |
C1 . (7)

Finally, we use that there is a constant C2 = C2(d) such that the number
of lattice animals of size m is at most Cm

2 , see [G]. Together, the above gives
that (noting that each l.a. of size ≥ m contains a l.a. of size m) that for n
large enough (depending on L),

P (|D(0)| > n) ≤ P

(
∃ a proper l.a. of size ⌈

n

|QL|
⌉

)
(8)

≤ C
n

|QL|
+1

2 ε(L)
n

|QL|C1

= C2

[(
C2 ε(L)

1

C1

)1/QL

]n
.

Taking L so large that C2 ε(L)(1/C1) < 1 completes the proof of part (d).
This completes the proof of Theorem 1.1 for the special case where pw = 0.

2.3 Proof of Proposition 1.3 and Theorem 1.2

We first prove Proposition 1.3. We say that an edge is p-open if τe < p.
Define p-open paths and p-open clusters in the obvious way. To prove the
Proposition we will derive suitable lower and upper bounds for the l.h.s. of
(3) in terms of an expression of the form of its r.h.s.
The lower bound is very easy: Since τê > pc (see the paragraph below (2)),
it follows immediately that (a.s) the region which is already invaded at the
step where ê is invaded, contains all the vertices of the pc-open cluster of O.
Hence the l.h.s of (3) is larger than or equal to the r.h.s.
The upper bound is more complicated. We use the standard percolation
notation θ(p) for the probability that O is in an infinite p-open cluster.
Define, for each p and n, the following two events:

An,p = {∃ a p-closed circuit with diameter ≥ n in the dual lattice

that contains O in its interior}.

15

Dp = {O belongs to an infinite p-open cluster }.

Note that P (Dp) = θ(p) and that if p1 < p2, then Dp1 ⊂ Dp2 and An,p2 ⊂
An,p1.

Let τ̂ = τê. Let p′ be some number between pc and 1. The following
observation is straightforward.

Observation
(a) If τ̂ > p′ and R̂ ≥ n, then there is a p > p′ such that the event An,p

occurs.
(b) If τ̂ < p′, then there is a p < p′ such that Dp occurs.

Let, for p > pc, L(p) be the correlation length (=L(p, ε0)) as defined in
Section 1 in the paper by Kesten (1987) on scaling relations. (See [K2]).
That is, L(p) is the smallest n such that the probability that there is a p–
open horizontal crossing of a given n× n box is larger than 1 − ε0. Here ε0
is an appropriately (sufficiently small) chosen positive constant. (From this
definition it is clear that L(p) is non-increasing in p on the interval (pc, 1]). It
is well-known (see (2.25) in [K2] and the references preceding that equation)
that there are constants C1 > 0 and C2 > 0 such that for all p > pc and all
n,

Pp(An,p) ≤ C1 exp

(
−
C2n

L(p)

)
. (9)

Further, Theorem 2 in [K2] says that there is a constant C3 > 0 such
that, for all p > pc,

θ(p) ≤ C3Pcr (O ↔ ∂B(L(p))) . (10)

Now take, for p′, the supremum of those p for which L(p) > n/(C4 logn),
where C4 is a positive constant that will be appropriately chosen later. Ob-
viously,

P (R̂ ≥ n) ≤ P (R̂ ≥ n, τ̂ > p′) + P (τ̂ < p′). (11)

The first term in the r.h.s of (11) is, by Observation (a) above and the ‘nest-
ing’ property of the events An,p (stated in the sentence below the definition
of these events), smaller than or equal to

lim
p↓p′

P (An,p) ≤ lim sup
p↓p′

C1 exp(−
C2n

L(p)
) ≤ C1 exp(−C2C4 log n), (12)

16

where the first inequality follows from (9) and the second inequality from the
definition of p′.

The second term of (11) is, by Observation (b) and the ‘nesting’ property
of the events Dp, smaller than or equal to

lim
p↑p′

θ(p) ≤ lim sup
p↑p′

C3Pcr (O ↔ ∂B(L(p))) ≤ C3Pcr

(
O ↔ ∂B(

n

C4 logn
)

)
,

(13)
where the first inequality follows from (10) and the second follows by (again)
using the definition of p′. Putting (11), (12) and (13) together we have

P (R̂ ≥ n) ≤ C3Pcr

(
O ↔ ∂B(

n

C4 log n
)

)
+ C1 exp(−C2C4 log n). (14)

It is believed that Pcr(O ↔ ∂B(n)) has a power law behaviour. This
has only been proved for site percolation on the triangular lattice. How-
ever, for the percolation models we are considering, we do know that this
function of n has power-law lower and upper bounds. As a consequence we
can choose C4 so large that the second term in the r.h.s. of (14) is (for
all large enough n) smaller than the first term. Finally, it follows quite
easily from RSW arguments (see e.g. Sections 11.7 and 11.8 in [G]) that
Pcr (O ↔ ∂B(n/C4 logn)) ≈ Pcr (O ↔ ∂B(n)). This completes the proof of
Proposition 1.3. �

Now we are ready to prove Theorem 1.2. The invasion procedure in Sub-
section 2.1, which was used in the proof of Theorem 1.1, differs from the
‘ordinary’ invasion percolation model (described in the paragraphs preced-
ing Proposition 1.3, in that is stops as soon as the growing tree ‘hits’ a red
vertex. There is strictly speaking another difference: the τ values in the
former case were exponentially distributed and those in the latter case were
uniformly distributed on (0, 1). However, that difference clearly doesn’t mat-
ter, and in the rest of this proof we assume the τ variables to be uniformly
distributed on (0, 1). Let us call the former procedure a ‘stopped’ invasion
procedure (with parameter pr), and the latter an ordinary invasion proce-
dure. All these procedures (the stopped procedures with pr varying between
0 and 1, and the ordinary procedure) can be coupled in the following natural
way: Assign to each vertex v, independent of the others, (and of the τ vari-
ables) a random variable ρ(v), uniformly distributed on the interval (0, 1).
When we now do invasion percolation (w.r.t. the τ variables) and stop when

17

we hit a vertex with ρ value smaller than pr, this corresponds exactly with
the above mentioned stopped invasion with parameter pr. In this coupled
setting, the set Cg(O) for the stopped model with parameter pr is clearly
non-increasing in pr, and the union of these sets over all the values pr > 0
is exactly the region mentioned in Proposition 1.3. Theorem 1.2 now follows
from this proposition. �

3 Proof for the case pw > 0

In this section we prove Theorem 1.1 for the case pw > 0. Recall that
in the special case where there are no white vertices (see Section 2) there
was an elegant invasion procedure which produced, with probability 1, a
finite autonomous set containing a given vertex or edge. This is much more
complicated in the general case, when there are white vertices. We still
have a procedure which, if it stops, gives an autonomous set containing, say,
a given vertex x. This algorithm starts as before, with one invasion tree,
which initially consists only of the vertex x, and which grows by invading the
edge with minimal τ value. However, when we hit a ‘fresh’ white vertex y
we have to investigate the ‘space-time paths from outside’ that have possibly
influenced y. This is done by starting new invasion trees in the green vertices
on the boundary of the white cluster of y. As before, an invasion tree stops
when it invades a red vertex. In the situation in the previous Section this also
marked the end of the algorithm. But in the current situation it only marks
the end of one invasion tree, while the others keep growing and creating new
invasion trees. In this way the algorithm might go on forever. However,
we show that under the condition in Theorem 1.1 the algorithm, which is
described more precisely below, does end.

The input is a connected graph G = (V,E), the initial colours c(v), v ∈ V
and the opening times τ(e), e ∈ E, and the vertex x or edge e for which we
want to find an autonomous region. Here we only handle the case concerning
a vertex x and we assume that x is green; the other cases can be done in a
very similar way. For the moment it suffices to restrict to finite graphs. The
algorithm will produce an autonomous subgraph H and, for some vertices
v of H , non-negative numbers tg(v) and tr(v), and for some edges e of H a
positive number t(e). Here tg(v) and tr(v) will denote the time at which v
becomes green and red, respectively. The value t(e) will be the time when
e becomes open. It will be clear from the description below that, at each

18

stage of the algorithm the edges to which a t-value has been assigned form
a collection of disjoint trees. Each tree in this collection has one of two
labels: ‘active’ or ‘paralyzing’. How these labels are assigned is described in
Subsection 3.1 below. The collection of active trees is denoted by Ta and the
collection of paralyzing trees by Tp. As we will see, new active or paralyzing
trees are ‘created’ during the algorithm, and active trees can merge with each
other or with a paralyzing tree. In the former case the new tree is active, in
the latter case it is paralyzing.

The set of edges which have at least one end-vertex in an active tree (and
not both end-vertices in the same active tree) is denoted by E . With some
abuse of terminology we say that a vertex is in Ta if it is a vertex of some
tree in Ta. A similar remark holds w.r.t. Tp.

Apart from the above, we need the following auxiliary variables and struc-
tures, which will be assigned during the algorithm.

The first auxiliary structure we mention here is a set S, which can be
interpreted as the set of all initially white vertices that ‘have been seen until
the current stage’ in the algorithm. We say that a vertex ‘is registered’ if it
is in Tp, Ta or S. Further, to each edge e ∈ E (as introduced above) a value
t1(e) will be assigned, which can be interpreted as a tentative, possible value
for t(e).

Finally, the following definition will be important: The white cluster
Cw(v) of a vertex v is defined as the maximal connected subset of G of
which all vertices y have initial colour c(y) = white. (Note that this notion,
in contrast with the notion of green clusters (defined in Section 1) does not
involve the state (open/closed) of the edges. The boundary of the white clus-
ter of v, denoted by ∂Cw(v), is the set of all vertices that are not in Cw(v)
but have an edge to some vertex in Cw(v). If c(v) is not white, then Cw(v)
and ∂Cw(v) are empty.

3.1 Description of the algorithm

Using the notions above we are now ready to describe the algorithm. It starts
with action 1 below, followed by an iteration of (some of) the other actions.
Recall that c(x) is green.

1. Initialization of some of the variables and structures.

Set Tp = ∅, Ta = {{x}}, and S = ∅.
Set tg(x) = 0, E as the set of all edges incident to x, and t1(e) = τ(e) for all

19

edges e ∈ E .

2. Selection of minimal external edge.

Remove from E all edges of which both endpoints are in the same tree of Ta.
Comment: such edges can have resulted from some af the actions below
If E = ∅, stop. Otherwise, let e be the edge in E with minimal t1-value.
Write e = 〈v, y〉 with v in Ta. (This way of writing is of course not unique if
both end-vertices of e are in Ta but that doesn’t matter). Let T denote the
tree in Ta of which v is a vertex.
If y is not in Ta, Tp or S (that is, y is ‘fresh’) go to 2a, else go to 2b.

2a. Fresh vertex.

Determine c(y).
If c(y) = red, set t(e) = t1(e) and go to 3a.
If c(y) = green, set t(e) = t1(e) and go to 4.
If c(y) = white, go to 6.

2b. Registered vertex.

Set t(e) = t1(e).
If y is in Tp go to 3b.
If y is in Ta go to 5.
Else go to 7.

3a. Fresh red.

Comment: This case can be handled in almost the same way as 3b below
and therefore, with an ‘administrative trick’, we simply turn it into the latter
case:
Set tr(y) = 0. Add to Tp the tree which consists only of the vertex y.
Go to 3b.

3b. Active tree T becomes paralyzed. Set tr(z) = t(e) for all vertices z
of T .
Remove from E all edges of which one end-vertex is in T and the other end-
vertex is not in Ta. Let T

′ be the tree in Tp of which y is a vertex. Replace,
in Tp, the tree T ′ by that obtained from ‘glueing together’ T and T ′ via the
edge e. Remove T from Ta.
Go to 2.

4. Fresh green.

Set tg(y) = 0. For each edge e′ incident to y that was not yet in E : add e′ to
E and set t1(e

′) = τ(e′). Replace, in Ta, the tree T by a new tree obtained
from glueing y to T by the edge e.

20

Go to 2.

5. Two active trees join.

Let T ′ ∈ Ta be the active tree of which y is a vertex. Replace, in Ta, the trees
T and T ′ by a new tree obtained from ‘glueing together’ T and T ′ with the
edge e.
Go to 2.

6. Fresh white.

Add every vertex of Cw(y) to S.
For each vertex z in ∂Cw(y) that has c(z) = green and is not in Ta or Tp, do
the following:
Set tg(z) = 0; add the tree {z} to Ta; add to E each edge e′ incident to z
that is not yet in E , and set t1(e

′) = τ(e′).

For each vertex z in ∂Cw(y) that has c(z) = red and is not in Tp, set tr(z) = 0
and add the tree {z} to Tp.
Go to 2.

7. Registered white.

Set tg(y) = t(e). Replace, in Ta, the tree T by the tree obtained from T by
‘glueing’ the vertex y to it by the edge e. For each edge e′ = 〈y, z〉 of y that
is not in E , add it to E and set t1(e

′) as follows:
If z is in Tp but c(z) 6= red, set

t1(e
′) = t(e) + τ(e′)− (tr(z)− tg(z)), (15)

else set
t1(e

′) = t(e) + τ(e′).

Comment: The subtracted term in (15) accounts for the time that e′ already
had a green end-vertex. See also the Remark at the end of Subsection 3.2
Go to 2.

Remark:

Note that initially there is only one active tree and that new active trees are
only formed in part 6 of the algorithm. Also note that initially there are no
paralyzing trees; these can be formed in part 6 and in part 3a. Moreover, 3a
always leads, via 3b, to the elimination of an active tree. Now consider the
case that G has no vertices with initial colour white. Then the algorithm
never enters part 6 (neither part 7) so that throughout the algorithm there
is one active tree until a red vertex is ‘hit’. From such considerations it is
easily seen that in this case the algorithm reduces to the one described in
Section 2.

21

3.2 Correctness of the algorithm

If G is finite the above algorithm will clearly stop. Moreover, we claim that
if G has at least one vertex with initial colour red, we have the following
situation at the end of the algorithm: The set of active trees Ta is empty.
The set Tp contains one or more trees, and the vertex x is in one of them.
Each of these trees has exactly one vertex with initial colour red, and this
vertex is ‘responsible’ for the other vertices in that tree to become red. The
following pair, (H, Ē), is autonomous: The vertices of H are the vertices in
Tp together with all vertices in S. The edges of H are all edges of which both
end-vertices are in the above set. The set Ē is the set of all edges of which
one end-vertex is a vertex v of H with c(v) 6= red, and the other end-vertex
is not in H . Further, each initially green vertex v of H becomes red at time
tr(v).

The ‘correctness’ of the above algorithm (that is, the above claim) can,
in principle, be proved by induction, e.g. on the number of edges. Instead
of giving a full proof (which would be extremely tedious) we present the key
ideas/observations ((a) - (d) below) to be used in such proof.

(a) As in many induction proofs it is useful, or even necessary, (for carry-
ing out the induction step) to generalize the statement one wants to prove.
In the current situation this generalization is as follows: In the above algo-
rithm, information is stored in the administration when the vertices involved
are ‘encoutered’ by the algorithm. In particular, in action 6 a white cluster
and its boundary are ‘stored’ because a vertex of the white cluster had been
encountered (as endpoint of the edge selected in action 2). The same algo-
rithm still works if at one or more stages of the algorithm such information
about a white cluster (and its boundary) is stored ‘spontaneously’ (that is,
without this cluster having been encoutered in the sense above).

(b) The main observation for doing induction on the number of edges is the
following: Let, among all edges with at least one initially green endpoint, ê
be the one with minimal τ value. Let x̂ and ŷ denote its endpoints. We may
assume that x̂ is initially green. It is clear that the first thing that happens
in the ‘real’ growth process is the opening of ê (namely, at time τ(ê)). It is
alo clear that from that moment on the growth process behaves as if starting
on a graph with one vertex less, namely the graph obtained by ‘identifying’
(or glueing together) x̂ and ŷ (with an obviously assigned colour: green if
c(y) is white or green; red if c(y) is red).

(c) To carry out the induction step it has to be shown that the algorithm

22

has a property analogous to that for the real process described in (b) above.
That this is indeed the case, can be seen as follows: As long as x̂ and ŷ
are not ‘registered’ in the algorithm, the algorithm behaves the same as it
would behave for the graph obtained after the identification described in
(b). Moreover, one can easily see from the description of the algorithm that
immediately after one of these vertices is registered, the other one also is,
and that they are immediately ‘attached to each other’ (by the edge ê) in
the same tree.

(d) The following side remark must be added to (c) above: Suppose that
ŷ ∈ Cw(y) in action 6 at some stage of the algorithm. This cluster Cw(y)
could be larger than that in the graph obtained by identifying ŷ and x̂. This
means that in that step ‘more information is collected’ than in the situation
where x̂ and ŷ would be identified from the beginning. It is exactly for this
issue that the generalized algorithm (and claim) in (a) was given.

3.3 Proof of Theorem 1.1

Proof. It follows, in the same way as in the case pw = 0, that on an infinite
graph the dynamics is well-defined provided the algorithm stops with prob-
ability 1. We will show that, under the condition (1) in the statement of the
Theorem, the algorithm indeed stops. In fact, the arguments we use will give
something stronger, namely Proposition 3.1 below, from which not only part
(a) of Theorem 1.1 follows, but which we will also use to prove part (b), (c)
and (d).

Proposition 3.1. Under the condition of Theorem 1.1, we have that, for
each x, the above mentioned algorithm stops, and, moreover, the distribu-
tions of the volume and the diameter of the graph H defined above have an
exponential tail.

Proof. By the kth step of the algorithm we mean everything done by the
algorithm between the kth and k + 1th time the algorithm ‘enters’ part 2a
in the description in Subsection 3.1. Recall that we say that a vertex is
registered if it is in Ta, Tp or S. Let νk be the number of registered vertices
at the beginning of step k. (In particular, ν1 = 1.) If the algorithm is already
terminated during step j for some j < k, we set νk equal to the number of
registered vertices at the moment of termination. Further, let yk denote the
‘fresh’ vertex (i.e. the vertex y in part 2a of the description in Subsection

23

3.1) treated in step k of the algorithm. (In particular, y1 is the end-vertex of
the edge incident to x with minimal τ value). Let ηk = νk+1 − νk. Further,
let αk denote the net increase of the number of active trees during step k of
the algorithm. If the algorithm is terminated during step k, we set αk = −1.
(This choice is somewhat arbitrary; it is simply a suitable choice to ensure
that certain statements below hold for all k).

Note that the initial colours of the vertices are independent random vari-
ables, each being white, red or green with probability pw, pr and pg respec-
tively. It is clear from the algorithm that we may consider the colour of a
vertex as ‘hidden’ until the moment the vertex becomes registered. Let Fk

be all information obtained by the algorithm until the beginning of step k
(including the identity but not the colour of yk).
Let N = min{n : 1 +

∑n
k=1 αk = 0}. It is easy to see that if N is finite the

algorithm stops during or before step N , and the number of vertices in the
above defined graph H is

1 +

N∑

k=1

ηk. (16)

Note that if c(yk) is white, the procedure is sent to part 6, and the newly
registered vertices in step k of the algorithm are exactly the vertices of Cw(yk)
and the not yet registered vertices of ∂Cw(yk); moreover, |Ta| increases during
this step by at most the number of green vertices in ∂Cw(yk). We write
at most, because during the remainder of step k no new active trees are
created but already present active trees may disappear (which happens if the
algorithm enters part 3b before it enters part 2a again.

Similarly, if c(yk) is red or green, then the only newly registered vertex
is yk itself; moreover, in the former case |Ta| goes down during step k by at
least 1, while in the latter case it goes down or doesn’t change.
For every connected set W of vertices with |W | ≥ 2, the number of vertices
in the boundary of W is at most (D − 1)|W |; hence, we have

ηk ≤ D|Cw(yk)|+ I
{c(yk) not white}. (17)

αk ≤ (D − 1)|Cw(yk)| − I
{c(yk) is red}

. (18)

Note that (since yk is ‘fresh’) the conditional probability that c(yk) is red,
white or green, given Fk, is pr, pw and pg respectively. Also note that, by
the condition in the Theorem, pw < 1/(D − 1) and hence (as is well-known
and easy to check) there is a q < 1 such that for all n and all vertices v,

24

P (|Cw(v)| ≥ n) ≤ qn. (19)

Moreover, it is easy to see that conditioned on Fk, which includes the
information that yk is a specific vertex, say y, the cluster size |Cw(yk)| is
stochastically smaller than |Cw(y)|. Hence the bound (19) also holds (a.s)
if we replace its l.h.s. by P (|Cw(yk)| ≥ n|Fk). This, combined with (17)
immediately gives that there is a γ < 1 such that for all k and n,

P (ηk ≥ n|Fk) ≤ γn. (20)

As to the α’s, define (compare (18)), for every vertex v,

α(v) = (D − 1)|Cw(v)| − I
{c(v) is red}

. (21)

Let α′(v), v ∈ V be independent copies of the α(v), v ∈ V . By a similar
stochastic domination argument that led to (20), we have for all vertices v,
and all positive integers k and n,

P (αk ≥ n|Fk, yk = v) ≤ P (α(v) ≥ n) = P (α′(v) ≥ n). (22)

And, again by (19), there is a λ < 1 such that for all n and v

P (α′(v) ≥ n) = P (α(v) ≥ n) ≤ λn. (23)

Further note that, for each vertex v, we have E(|Cw(v)|) = ξv(pw). Hence,
condition (1) in Theorem 1.1 says that there is an ε > 0 such that for all
vertices v we have

E(α′(v)) = E(α(v)) < −ε. (24)

From (22) and the definition of the random variables α′(v), v ∈ V , it follows
(from stochastic domination) that, for all positive integers K,

P

(
K∑

k=1

αk ≥ 0

)
≤

∗
supP

(
K∑

k=1

α′(vk) ≥ 0

)
, (25)

where we use ’*’ to indicate that the supremum is taken over all tuples of K
distinct vertices v1, v2, ..., vK .
From (23) and (24) it follows (by standard large-deviation upper bounds for
independent random variables) that there is a β < 1 such that for all K and
all distinct vertices v1, v2, ..., vk,

25

P (
K∑

k=1

α′(vk) ≥ 0) ≤ βK .

From this and (25) it follows that the distribution of N has an exponential
tail.

Putting this together with (20) and (16) we that the number of vertices in
H has an exponential tail. Indeed the event that 1+

∑N
k=1 ηk ≥ n is contained

in the union of the events N ≥ an and
∑an

k=1 ηk ≥ n; the probabilities of these
events decay exponentially in n for suitable a.

This completes the proof of Proposition 3.1. (Note that the diameter of
H is at most its volume, since H is a connected graph).

Parts (a) and (b) of Theorem 1.1 follow immediately from Proposition 3.1
(noting that the vertices of Cg(x) belong to H).
Using Proposition 3.1, Parts (c) and (d) of the Theorem 1.1 can now be
derived in the same way as in the special case pw = 0 in Section 2. This
completes the proof of Theorem 1.1.

Remark: For the alternative model (i) in Subsection 1.4, the proof of The-
orem (1.1) is exactly the same. Note that the proof doesn’t use that the τ ′s
are exponentially distributed, it applies in the same manner to any continu-
ous distribution.
For the alternative model (ii) the algorithm in Subsection 3.1 needs a few
small adaptations. Apart from this the proof remains practically the same.

Acknowledgments. Two of the authors (V.S. and M.E.V.) learned
about the continuum model from E.J. Neves. We thank Antal Járai for
comments on Proposition 1.3 and Chuck Newman for drawing our attention
to the article [StN]. We also thank Ron Peled and the referees for corrections
in the first manuscript.

References

[A] D.J. Aldous. The percolation process on a tree where infinite clusters are
frozen. Proc. Camb. Phil. Soc. 128, 465–477 (2000).

[ALE] K.S. Alexander. Percolation and minimal spanning forests in infinite
graphs. Ann. Probab. 23, 87–104 (1995).

26

[BeS] I. Benjamini and O. Schramm. Private Communication (1999).

[BeT] J. van den Berg and B. Tóth. A signal-recovery system: asymptotic
properties, and construction of an infinite-volume process. Stoch. Proc.
Appl. 96, 177–190 (2001).

[BJV] J. van den Berg, A. Járai and B. Vágvölgyi. The size of a pond in
2D invasion percolation. Electr. Comm. Probab. 12, Paper 39, 411–420
(2007).

[CCN] J.T. Chayes, L. Chayes, and C.M. Newman. Bernoulli percolation
above threshold: an invasion percolation analysis. Ann. Probab. 15,
1272–1287 (1987).

[D] M. Dürre. Existence of multi-dimensional infinite volume self-organized
critical forest-fire models. Electronic J. Probab. 11, paper 22 (2006).

[G] G.R. Grimmett. Percolation, second edition, Springer (1999).

[HaM] O. Häggström and R. Meester. Nearest Neighbor and Hard Sphere
Models in Continuum Percolation. Random Structures and Algorithms
9, 295–315 (1996).

[HPS] O. Häggström, Y. Peres and R. Schonmann. Percolation on transitive
graphs as a coalescent process: Relentless merging followed by simulta-
neous uniqueness. In Perplexing Problems in Probability (M. Bramson
and R. Durrett, eds.) 69–90. Birkhäuser, Boston.

[J] A. Járai. Private communication (1999).

[J2] A. Járai. Invasion percolation and the incipient infinite cluster in 2D.
Commun. Math. Phys. 236, 311–334 (2003).

[K] H. Kesten. Analyticity properties and power law estimates in percolation
theory. Journal of Statistical Physics 25, 717–756 (1981).

[K2] H. Kesten. Scaling relations for 2D percolation. Commun. Math. Phys.
109, 109–156 (1987).

[LyP] R. Lyons, Y. Peres. Probability on trees and networks. Available at
http://mypage.iu.edu/∼rdlyons/.

27

http://mypage.iu.edu/~rdlyons/

[LPS] R. Lyons, Y. Peres, Y. and O. Schramm. Minimal spanning forests.
Ann. Probab. 34, 1665–1692 (2006).

[StN] D.L. Stein and C.M. Newman. Broken ergodicity and the geometry of
rugged landscapes. Phys. Rev. E 51, 5228–5238.

[WW] D. Wilkinson and J. F. Willemsen. Invasion percolation: a new form
of percolation theory. J. Phys. A, 3365-3376, 1983.

28

	Introduction
	Description of the model and the main problems
	Statement of the main results
	Description of the model in terms of passage times. Autonomous regions
	Some alternative versions of the model

	Proofs for the case pw = 0
	General properties for the case pw = 0
	Proof of Theorem ?? for the case pw = 0
	Proof of Proposition ?? and Theorem ??

	Proof for the case pw > 0
	Description of the algorithm
	Correctness of the algorithm
	Proof of Theorem ??

