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Abstract. We present a simple heuristic model to demonstrate how feedback related

to the galaxy formation process can result in a scale-dependent bias of mass versus

light, even on very large scales. The model invokes the idea that galaxies form initially

in locations determined by the local density field, but the subsequent formation of

galaxies is also influenced by the presence of nearby galaxies that have already formed.

The form of bias that results possesses some features that are usually described in

terms of stochastic effects, but our model is entirely deterministic once the density

field is specified. Features in the large-scale galaxy power spectrum (such as wiggles

that might in an extreme case mimic the effect of baryons on the primordial transfer

function) could, at least in principle, arise from spatial modulations of the galaxy

formation process that arise naturally in our model. We also show how this fully

deterministic model gives rise to apparently stochasticity in the galaxy distribution.

1. Introduction

Thanks to large-scale spectroscopic surveys such as the Anglo-Australian 2dF Galaxy

Redshift Survey (2dFGRS: Norberg et al. 2001; Wild et al. 2004; Conway et al. 2005)

and the Sloan Digital Sky Survey (Zehavi et al. 2002; Tegmark et al. 2004; Swanson et

al. 2007) it is now well established that the clustering of galaxies depends subtly on their

internal properties. Since galaxies of different types display different spatial distributions

it follows that not all galaxies can trace the distribution of underlying dark matter. In

other words galaxies are biased tracers of the cosmological mass distribution. Theories of

cosmological structure formation must explain the relationship between galaxies and the

distribution of gravitating matter which probably yields important clues to the process

by which they were assembled.

Galaxy formation involves complex hydrodynamical and radiative processes

alongside the merging and disruption of dark matter haloes. This entails a huge range

of physical scales that poses extreme challenges even for the largest supercomputers.

The usual approach is therefore to encode the non-gravitational physics into a series of

simplified rules to be incorporated in a code which evolves the dark matter distribution

according to Newtonian gravity (e.g. Benson et al. 2000). This “semi-analytic”
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approach has many strengths, including the ability to make detailed models for direct

testing against observations, but it difficult to use it to make models with which one

can make inferences from data. For this reason, simplified analytical models of bias are

still extremely useful if one hopes to proceed from observations to theory rather than

vice-versa.

In the new era of “precision cosmology” the presence of bias is more an obstacle than

a key to understanding (Zheng & Weinberg 2007). Attempts to infer parameter values

from cosmological observations are hampered by the unknown relationship between

visible objects and the underlying mass fluctuations they trace. For example, the

relatively weak residual baryon acoustic oscillations (BAO) one expects to be present

in the matter power spectrum (Pen 1998; Meiksin, White & Peacock 1999; Blake &

Glazebrook 2003; Eisenstein et al. 2005; Seo & Eisenstein 2005; Wang 2006) are

potentially extremely important diagnostics of the presence of dark energy if they can

be observed at high redshift. However, when matter fluctuations are inferred from

galaxy statistics, the form and evolution of bias must be understood and controlled if

the required level of accuracy is to be reached. Here again simplified anaytical models

have an important role to play.

In this paper we introduce a simple yet general theoretical model which can describe

various aspects of galaxy bias is a unified way. We describe biasing models in general in

the next section. In Section 3 we present our model and in Sections 4 and 5 we describe

a couple of applications. We discuss the results in Section 6.

2. From Local Bias to the Halo Model

The idea that galaxy formation might be biased goes back to the realization by Kaiser

(1984) that the reason Abell clusters display stronger correlations than galaxies at a

given separation is that these objects are selected to be particularly dense concentrations

of matter. As such, they are very rare events, occurring in the tail of the distribution

function of density fluctuations. Under such conditions a “high-peak” bias prevails: rare

high peaks are much more strongly clustered than more typical fluctuations (Bardeen

et al. 1986). More generally, in local bias models, the propensity of a galaxy to form at

a point where the total (local) density of matter is ρ is taken to be some function f(ρ)

(Coles 1993; Fry & Gaztanaga 1993).

It is possible to place stringent constraints on the effect this kind of bias can have on

galaxy clustering statistics without making any particular assumption about the form

of f . In particular, it can be shown that the large-scale two–point correlation function

of galaxies typically tends to a constant multiple of the mass autocorrelation function

in these models. Coles (1993) proved that under weak conditions on the form of f(ρ)

as discussed in the introduction, the large-scale biased correlation function of galaxies

would generally have a leading-order term proportional to ξm(r). In other words, one

cannot change the large-scale slope of the correlation function of locally-biased galaxies

with respect to that of the mass. This was a serious problem for the standard cold
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dark matter model of times past (which had Ω0 = 1 and Λ = 0) because there is

insufficient power in the matter spectrum in this model to match observations unless

one incorporates a strongly scale dependent bias (Bower et al. 1993).

The local bias “theorem” was initially proved for biasing applied to Gaussian

fluctuations only and did not necessary apply to galaxy clustering where, even on large

scales, deviations from Gaussian behaviour are significant. Steps towards the plugging

of this gap began with Fry & Gaztanaga (1993) who used an expansion of f in powers of

the dimensionless density contract δ and weakly non-linear (perturbative) calculations

of ξm(r) to explore the statistical consequences of biasing in more realistic (i.e. non-

Gaussian) fields. Based largely on these arguments, Scherrer & Weinberg (1998) showed

explicitly that non-linear evolution always guarantees the existence of a linear leading-

order term regardless of the form of f , thus strengthening the original argument of

Coles (1993) at the same time as confirming the validity of the theorem in the non-

linear regime. A similar result holds under the hierarchical ansatz, as discussed by

Coles et al. (1999).

It is worth noting that the original form of the local bias theorem has a minor

loophole: for certain peculiar forms of f the leading order term is proportional to

[ξm(r)]
2 (Coles 1993). However, ξm(r) must be a convex function of r because its Fourier

transform, the power spectrum, is non-negative definite (i.e. it can be positive or exactly

zero). Higher order terms in ξnm therefore fall off more sharply than ξ(r) on large scales so

this loophole does not have any serious practical consequences for large-scale structure.

Such results greatly simplify attempts to determine cosmological parameters using

galaxy clustering surveys, as well as facilitating the interpretation of any specific features

in large-scale clustering statistics because they require the galaxy spectrum to have the

same shape as the underlying mass spectrum. This reduces the possible effect of bias

to a single parameter which can be estimated and removed by marginalisation. On the

other hand, it results in a drastic truncation of the level of complexity in the assumed

relationship between galaxies and dark matter.

In hierarchical models, galaxy formation involves the formation of a dark matter

halo, the settling of gas into the halo potential, and the cooling and fragmentation of

this gas into stars. This all happens within a population of haloes which is undergoing

continuous merging and disruption. Rather than attempting to model these stages

in one go by a simple function f of the underlying density field it is better to study

the dependence of the resulting statistical properties on the various ingredients of this

process. Bardeen et al. (1986), following Kaiser (1984), pioneered this approach by

calculating detailed statistical properties of high-density regions in Gaussian fluctuations

fields. Mo & White (1996) and Mo et al. (1997) went further along this road by using an

extension of the Press-Shechter (1974) theory to calculate the correlation bias of halos,

this making an attempt to correct for the dynamical evolution absent in the Bardeen

et al. approach. The extended Press-Schechter theory forms the basis of many models

for halo bias in the subsequent literature (e.g. Matarrese et al. 1997; Moscardini et al.

1998; Tegmark & Peebles 1998).
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It is worth stressing that by “local bias” we mean some form of coarse–graining

to select objects on a galaxy scale. In the earlier models described above, galaxy

correlations arise because the underlying matter field is correlated but the process of

galaxy formation does not itself influence the formation of structure on scales larger than

this resolution scale. More recent developments involve the Halo Model (Seljak 2000;

Peacock & Smith 2000; Cooray & Sheth 2002; Neyrinck & Hamilton 2005; Blanton et

al. 2006; Schulz & White 2006; Smith, Scoccimarro & Sheth 2006, 2007). This model

generally assumes that galaxy properties are derived from the underlying mass or halo

field. Some degree of scale–dependence then arises because galaxies interact on the scale

of an individual halo to provide some degree of self-organisation within the resolution

scale. This model has scored some notable successes at explaining features in observed

galaxy correlations.

It has also been suggested that bias might not be a deterministic function of ρ, and

that consequently there is a stochastic element in the relationship between mass and

light (Dekel & Lahav 1999).

In the following sections we present a model that extends a number of these different

lines of thought. In particular we consider the possibility that large-scale interactions

between galaxies or proto-galaxies might induce a significant scale dependent bias that

is qualitatively different from that which arises even in the halo model.

3. Self-interacting Galaxy Formation

As described in the previous section, the idea of local bias models is that the density of

matter at a given spatial position x is responsible for generating the propensity that a

galaxy will form there (after suitable coarse-graining of the density field). In its simplest

terms we can represent this idea in terms of a galaxy fluctuation field

δg(x) ≡
n(x)

n̄
− 1, (1)

where n(x) is the number density of galaxies at x and n̄ is the mean number density

of galaxies. The simplest way to account for discreteness is to use the Poisson cluster

model of Layzer (1956) in which galaxies form with a probability proportional to δg.

If there are interactions within the resolution scale then the Poisson model does not

necessarily hold (Coles 1993). In order to keep the presentation of our model as simple

as possible we ignore discreteness effects and restrict ourselves to large scale clustering

properties. In local bias theories the galaxy field is a deterministic function of the local

matter density field at the same point x.

Our model for scale–dependent bias has the form:

δg(x) = δs(x) + α
∫

h(x− x′)δg(x
′)dx′ (2)

In this equation the field δs(x) represents a “seed” field and the second term models the

interactions. In a realistic situation the parameter α might well be stochastic, varying

in a complicated way from galaxy to galaxy, but for simplicity we will assume it to
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be a constant in this paper. In principle a galaxy may either enhance or suppress the

formation of others around it so α may be either positive or negative. In the absence

of interactions (i.e. taking α = 0), the model reduces to a standard biasing picture

where the clustering of galaxies is, at some level, reducible directly to the clustering

ot the mass. In the “no-bias” case the seed field will simply be the underlying density

fluctuation field, i.e. δs = δm. Galaxies could then form as a Poisson sampling of the

mass field as suggested by Layzer (1956). For linear bias models, we would take δs = bδm.

In such cases the resulting galaxy spectrum Pg(k) = b2Pm(k) for all k. In general local

bias models we might take the seed field to be some local function f(δm), as described

in the previous section. In these cases Pg(k) ≃ b2Pm(k) for small k via the local bias

theorems. More realistically perhaps, δs could be the “halo field”. Explicitly in this

case, and indeed implicitly in the other cases discussed above, δs does possess a filtering

scale of its own, with the width of the smoothing kernel representing the characteristic

size of a galaxy halo.

If the seed field is simply the halo field, the galaxies do not form a Poisson sample;

the distribution of galaxies within a given halo is a degree of freedom within the halo

model which must be fixed by reference to observations (Seljak 2000; Peacock & Smith

2000; Cooray & Sheth 2002). The seed field might also include stochastic terms (Dekel &

Lahav 1999; Blanton et al. 1999; Matsubara 1999), i.e. terms which can not be expressed

as any function of ρm but which might instead be modelled as random variables. The

first term on the right hand side of equation (2) therefore includes the traditional bias

models discussed in the previous section. If α = 0 we recover models in which the

clustering of galaxies is, at some level, reducible directly to the clustering of the mass.

In such cases if the seed field were uncorrelated then all these models would produce

uncorrelated galaxies.

If α = 0 and the seed field is uncorrelated then all these models would produce

uncorrelated galaxies. If α 6= 0, however, then we have a qualitatively different form

of bias. The galaxy field then not only depends on the seed field, but also on the

galaxy field itself. This “bootstrap” effect allows a greater degree of flexibility in

modelling galaxy correlations. In particular, even if the seed field were completely

uncorrelated, interactions could produce a non-zero galaxy-galaxy correlation function

in the bootstrap model. This can not happen in local bias models. In this respect our

model is similar to the autoregressive (AR) models used to simulate time series: these

are correlated processes that are seeded by random (uncorrelated) noise. More relevantly

for cosmology, as we shall see shortly, the bootstrap model allows us to generate scale-

dependent bias that violates the theorems referred to in Section 2. The initial seed field

δs(x) plays the same role as the “innovation” in autoregressive time series models.

The presence of the kernel in equation (2) gives the model the ability to generate

non-local interactions if it extends over a relatively large scale. The kernel h(y)

determines the size of the zone of influence of one galaxy on the formation of others in

its neighbourhood; we denote this scale by Rh. Just as with the parameter α, we take

this scale to be constant for simplicity. Note, however, that since both the scale and
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level of feedback may be difficult to predict given only the ambient density field, it may

be more realistic to model the kernel scale as stochastic variable.

The filter should be defined in such a way that it preserves the statistical

homogeneity of the density field and does not lead to diverging moments. For sensible

filters h will have the following properties: h = constant ≃ R−3
h if |x−x′| ≪ Rh, h ≃ 0

if |x − x′| ≫ Rh,
∫

h(y;Rh)dy = 1. We discuss a couple of specific examples in the

subsequent sections of this paper.

The integral on the right hand side of equation (2) represents the galaxy fluctuation

field convolved with a low pass filter. One can write (2) in the form

δg(x) = δs(x) + αδg(x;Rh). (3)

The filtered field, δg(x;Rh), may be obtained by convolution of the “raw” galaxy density

field with some function h having a characteristic scale Rh:

δg(x;Rh) =
∫

δg(x
′)h(|x− x′|;Rh)dx

′. (4)

To recover the local bias model with α 6= 0 we simply take h(x − x′) = δD(x − x′)

in which case δg = δs/(1 − α) = bδs. Scale independence and linearity of the bias are

therefore both recovered in this limit.

Equation (2) is a Fredholm integral equation of the second type. Assuming that

the interaction kernel h is well-behaved we can solve it quite straightforwardly. Defining

the Fourier transform of δs(x) to be δ̃m(k) etc and using the convolution theorem, the

k-space version of the equation (2) is seen to be

δ̃g(k) = δ̃s(k) + αh̃(k)δ̃g(k), (5)

which gives a solution for δ̃g(k):

δ̃g(k) =
δ̃s(k)

1− αh̃(k)
. (6)

The power spectrum of the filtered field is given by

P (k;Rh) = h̃2(k;Rh)Pg(k), (7)

where Pg(k) is the power spectrum of the galaxy field. Assuming that h(y) is isotropic,

the galaxy-galaxy power spectrum can be expressed as

Pg(k) =
Ps(k)

|1− αh̃(k)|2
, (8)

where k = |k|. It is clear that the kernel can imprint features into the power spectrum

through the dependence on h̃(k), even in the case where Ps(k) is completely flat. This

means it is considerably more general than the simpler models discussed above. It

possesses some features that resemble the cooperative galaxy formation model of Bower

et al. (1993) but with significantly more generality. We shall illustrate some of its

properties in the following sections.
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4. Bogus Baryon Wiggles?

In this section we present an extreme example of scale–dependent bias which is based

on the idea that some violent astrophysical process connected with galaxy formation

(such as the ionizing radiation produced by quasar activity) could seriously influence

the propensiy of galaxies to form in the neighbourhood of a given object. This concept

is not new (Rees 1988; Babul & White 1991), and has been recently revived in a milder

form (Pritchard, Furlanetto & Kamionkowski 2006).

To give an illustration of the extreme effects that could arise in the galaxy power

spectrum, consider the extreme example where the zone of influence of a galaxy (or

quasar) has a sharp edge similar to an HII region. We can use our model to describe

this situation if we adopt a kernel which has the form of a “top hat’ filter, with a sharp

cut off, defined by the relation

hT(|x− x′|;Rh) =
3

4πR3
h

Θ
(

1−
|x− x′|

Rh

)

, (9)

where Θ is the Heaviside step function: Θ(y) = 0 for y ≤ 0 and Θ(y) = 1 for y > 0.

The form of the kernel in Fourier space is then

h̃T(k;Rh) =
3(sin kRh − kRh cos kRh)

(kRh)3
. (10)

Oscillatory features can be generated in the galaxy power spectrum by this form of

interaction and with a suitable choice of scale Rh they could even mimic the BAOs

mentioned in the Introduction.

To establish the required parameters we refer to the 2dFGRS redshift-space power

spectrum data given in Table 2 of Cole et al. (2005) for the 2dFGRS. We do not attempt

to fit the small-scale clustering in this data set. This could be done by fiddling with

the form of δs, but our interest lies here in illustrating the large–scale behaviour only.

We also ignore redshift–space distortions. In Cole et al. (2005), the error bars on the

spectrum are derived from the diagonal elements of the covariance matrix calculated

from model lognormal density fields. The model power spectrum for these lognormal

fields has Ωmh = 0.168, Ωb/Ωm = 0.17 and σg
8 = 0.89 and agrees very well with the

best fit model for the overall 2dFGRS power spectrum. This model, convolved with

the 2dFGRS survey window function, is also given in Table 2 of Cole et al. (2005) and

plotted in Figure 1 (solid line) & Figure 2. Using the full covariance matrix, Cole et

al (2005) find χ2/d.o.f = 37/33 for k < 0.2 hMpc−1. As this analysis is for illustrative

purposes only , we do not perform a full likelihood analysis, rather we calculate the χ2

for the same model using only the error bars. In this case the fit is characterized by

χ2/d.o.f = 12/33. As discussed in Section 5 of Cole et al (2005), since the convolution

with the survey window function causes the errors to be correlated, resulting in a very

low value of χ2. The goodness of fit does however provide a useful benchmark for our

alternative explanation of the wiggles seen in P (k).

In order to explain the shape of the galaxy spectrum using only galaxy interactions

and without the baryon oscillations, we use a top-hat kernel for our biasing model and
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fit it to the same data using the Eisenstein & Hu (1998) transfer functions and assuming

ns = 1, h = 0.72 and Ωb = 0. In other words we use an underlying cosmology without

baryon oscillations and seek to explain the shape of the galaxy spectrum using only

galaxy interactions. Our best fit cosmological parameters are Ωm = 0.23, σg
8 = 0.85 and

for the bias model we get α = 0.25 and Rh = 114Mpc. This model has χ2/d.o.f = 9/33.

The value of χ2 is again very low due to correlations between the data points, but a

comparison with the result of the previous paragraph for which the same problem also

holds, demonstrates that the fit is if anything marginally better for our model than for

the reference model used by Cole et al. (2005).

Figure 1. The black filled circles and the associated error bars are the 2dFGRS

power-spectrum data given in Table 2 of Cole et al. (2005). The black solid lines in

both plots denote the reference power spectrum convolved with the window function

also given in Table 2, with Ωmh = 0.168, Ωb/Ωm = 0.17 and σgal
8 = 0.89. The dashed

lines are for the best fit model with biasing but no baryons.

Of course one does not know for sure whether and how ionization influences galaxy

formation, but this example illustrates that in principle the observed wiggles in the

galaxy power spectrum could have an astrophysical rather than cosmological origin.

This would pose problems for their use as cosmological probes. On the other hand,

the scale required is very large. Rees (1988) pointed out that a quasar of luminosity

Luv lasting for a time tQ produces sufficient energetic photons to ionize all the baryons
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Figure 2. As Figure 1, but with the data and the curves divided by a model with

b = 1, Ωm = 0.23 and Ωb = 0.

within a radius

Rh ≃ 67

(

Luv

1046 erg s−1

)1/3 (
tQ

2× 109 yrs

)1/3

Mpc. (11)

In order to be able to contribute at a redshift z, the ionizing photons must have been

emitted in less than the lifetime of the Universe at that redshift, t(z). This places a

minimal requirement that tQ < t(z). In the concordance cosmology, t(z = 3) ≃ 2.2

Gyrs, t(z = 6) ≃ 0.95 Gyr and t(z = 10) = 0.48 Gyr. The actual lifetime of quasars

may well depend on their mass, but recent estimates suggest tQ ≃ 108 yrs is more likely

than 109 yrs (Mclure & Dunlop 2004). If this is the case then equation (11) implies that

the corresponding value is more like Rh ≃ 25 Mpc by equation (11); for this value of tQ
the required ionization could easily have been achieved early, but the scale of resulting

wiggles would be relatively small. For R ≃ 100 Mpc one needs to push the parameters

excessively hard: a high value of tQ > 2×109 and a redshift of reionization z < 3 would

be necessary. This seems to be at odds with the general consensus that reionization of

the Universe happened relatively early (Becker et al. 2001; Fan et al. 2002).

There are other problems with this model. Quasars have a range of lifetimes and

luminosities. Their radiation may also be beamed rather than isotropic. And in any case

it is not known to what extent the galaxy formation process is sensitive to this form
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of feedback anyway. Moreover, the baryon acoustic oscillations inferred from galaxy

clustering have the same characteristic scale as that derived from cosmic microwave

background observations. This would be a sheer coincidence in our model.

This model is therefore unlikely to be the correct interpretation of observed wiggles,

but it does at least demonstrate that large-scale interactions can have a significant

impact on the shape of the clustering power spectrum. Notice also that even if the scale

Rh is not sufficiently large to match the observed oscillations, any non-zero astrophysical

effect could seriously degrade the ability to recover cosmological information from galaxy

surveys. Mass tracers selected in some way other than counting galaxies may well display

clustering that is less susceptible to this type of feedback bias. Galaxy clusters may be

detected not only detected through X-ray emission or Sunyaev-Zel’dovich measurements,

both of which are sensitive to the properties of the extremely hot gas the clusters contain.

If these properties vary systematically on large scales then scale-dependent bias may also

apply to such objects. However, the strong non-linear merging and heating processes

that create this intracluster gas are likely to swamp any primordial effects generated on

smaller scales. One would therefore expect cluster correlations to be less vulnerable to

astrophysical modulation than galaxy correlations; complementary observations on the

same length scales could be be used to identify and eliminate this source of uncertainty.

5. Scale-dependence versus Stochasticity

Even if the scale and form of the interaction kernel do not produce very large scale

features in the galaxy correlation function or power spectrum, it is still possible for

scale–dependence to manifest itself in more subtle ways. In particular, it is possible

for scale-dependence to appear as a form of stochastic bias (Dekel & Lahav 1999) even

though the relationship (2) is entirely deterministic once the density field is specified.

To see how this happens consider a simplified version of our general model in which

the seed field δs is simply the matter density field δm. Let us assume explicitly that the

fields were are considering are filtered on a scale R0 to represent the selection of galaxy

sized objects. Let the scale of feedback–induced interactions be RF, so that

δm(R0) = δg(R0)− αδg(RF). (12)

It is straightforward to see that

〈δmδg〉 = 〈δg(R0)
2〉 − α〈δg(RF)δg(R0)〉

= 〈δ2g〉

(

1− α
〈δg(RF)δg(R0)〉

〈δg(R0)2〉

)

(13)

and

〈δ2m〉 = 〈δg(R0)
2〉+ α2〈δg(RF)

2〉 − 2α〈δg(R0)δg(RF)〉

= 〈δ2g〉

{

1 + α2 〈δg(RF)
2〉

〈δg(R0)2〉
− 2α

〈δg(R0)δg(RF)〉

〈δg(R0)2〉

}

, (14)
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where we have dropped the dependence on R0 in the terms outside the curly brackets.

It is useful to define the quantities

γ ≡
〈δg(RF)δg(R0)〉

〈δg(R0)2〉
(15)

and

ω2 ≡
〈δg(RF)

2〉

〈δ2g(R0)〉
, (16)

so that the cross-correlation coefficient between the mass and galaxy fluctuation fields

is

r ≡
〈δmδg〉

〈δ2g〉
1/2〈δ2m〉

1/2
=

1− αγ

(1 + α2ω2 − 2αγ)1/2
. (17)

To provide a simple illustrative model we assume a Gaussian filter:

hG(|x− x′|;RF) =
1

(2πR2
F)

3/2
exp

(

−
|x− x′|2

2R2
F

)

, (18)

for which the appropriate window function is

h̃G(kRF) = exp
[

−
(kRF)

2

2

]

. (19)

We then need to tackle quantities of the form

〈δg(R1)δg(R2)〉 =
1

2π2

∫

dkk2Pg(k) exp[−k2(R2
1 +R2

2)], (20)

which can be evaluated straightforwardly if we assume, for simplicity, that the

(unsmoothed) galaxy power spectrum is a power-law: Pg(k) ∝ kn. In this case we

find that

〈δg(R0)δg(RF)〉 = σ2

(

2R2
0

R2
0 +R2

F

)n+3/2

, (21)

where σ2 is the variance of the unsmoothed density field. This gives

γ =

(

2R2
0

R2
0 +R2

F

)n+3/2

(22)

and

ω2 =
(

R0

RF

)(n+3)

. (23)

Note that if R0 = RF so that the feedback scale is no larger than a galaxy scale then

ω = 1, γ = 1 and consequently r = 1. If, however, RF > R0 then γ < 1. However, it

is always true that ω2 > γ so that (1 − αγ)2 < 1 + α2ω2 − 2αγ and consequently that

r < 1. The larger the value of RF compared to R0 the smaller the resulting value of r.

Assuming the fields δm and δg are jointly Gaussian one can express the conditional

distribution of one given a specific value of the other. Suppose the (unconditional)

variance of δg is σ2 then the variance after conditioning on δm = a, say, reduces to

σ2(1 − r2). Only if |r| = 1 is there no scatter in the relationship. For this reason a

value of r < 1 is usually taken to indicate the presence of stochastic bias (e.g. Tegmark



Scale–dependent Galaxy Bias 12

& Bromley 1999), but in this case the scatter in the relationship between δm and δg
arises from non-locality in a fully deterministic way. This suggests that considerable

care needs to be exercised in the interpretation of measured values of r : they may be

indicative of scale–dependence rather than stochastic effects.

If we instead look at the galaxy and matter fields (assuming δs = δm) in Fourier

space the situation is quite different. In this case, by equation (8) we get

Pg(k) = b2(k)Pm(k) (24)

with b(k) = 1 − αh̃(k). The cross-spectrum in Fourier space is usually defined to be

Pmg = r(k)b(k)Pm (Tegmark & Bromley 1998) for stochastic bias, with r(k) playing a

role analogous to the correlation coefficient discussed above. In this case, however, it

reduces to Pmg = b(k)Pm indicating a complete absence of stochasticity. The apparent

stochasticity in real space is actually due to non-locality, but the model is local (and

linear) in Fourier space so no stochasticity appears in this representation. This is an

example of a phenomenon noted by Matsubara (1999).

6. Discussion and Conclusions

In this paper we have presented a new model for scale-dependent astrophysical bias.

Although it is inspired to some extent by Bower et al. (1993), this model is considerably

more general and easier to use. In the absence of any more complete theory of galaxy

formation we hope it will provide a useful way to parametrise the possible level and

scale of interactions so that they can be determined from observations and eliminated

from cosmological considerations.

We illustrated the generality of this model by pushing it to an extreme and

showing that it can produce features that mimic baryon oscillations. Although the

required effect is quite small in amplitude it does require astrophysical processes to

be coordinated over very large scales. This, together with the concordance between

clustering observations and the cosmic microwave background, suggests that the

observed wiggles have a primordial origin. Nevertheless, in the precision era, any

scale dependence in clustering bias could seriously degrade the business of cosmological

parameter estimation. However, as we have argued in Section 4, different forms of

mass tracer are unlikely to suffer from this bias to the same extent as galaxies. Using

complementary observations should provide sufficient data to estimate the parameters in

our bias model. This will not only allow us to learn whether there is significant evidence

for scale-dependent bias at all but also, by marginalization, provide a way to remove

this uncertainty from cosmological studies. Some of the observations will go towards

estimating and eliminating a nuisance parameter rather than reducing the statistical

uncertainty in interesting ones so the existence of scale-dependent bias will degrade the

cosmological value of surveys to some extent even if it can be modelled satisfactorily.

As a second, less extreme example of our approach we showed how non–locality

in the feedback relationship described by equation (2) bears many of the hallmarks of
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stochastic bias. In particular, although our model is deterministic once the density

field is specified, it is characterized by an imperfect correlation between galaxy and

mass fluctuations. The difference between our model and a truly stochastic one is

that in our case the residuals are not random but correlated through the interaction

terms. One might learn more from observations by looking for correlated scatter than

by giving up and treating them as completely stochastic. In any case the model we have

presented shows up a terminological deficiency: stochasticity and non-locality can be

easily confused.
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