
ar
X

iv
:0

70
6.

09
50

v2
  [

as
tr

o-
ph

] 
 1

5 
Ju

l 2
00

7

Mon. Not. R. Astron. Soc. 000, 1–6 (2007) Printed 20 November 2021 (MN LATEX style file v2.2)

The origin of the Arches stellar cluster mass function

Sami Dib1⋆, Jongsoo Kim1, and Mohsen Shadmehri2,3
1Korea Astronomy and Space Science Institute, 61-1, Hwaam-dong, Yuseong-gu, Daejeon 305-348, Korea
2School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
3Department of Physics, School of Science, Ferdowsi University, Mashad, Iran

20 November 2021

ABSTRACT

We investigate the time evolution of the mass distribution of pre-stellar cores (PSCs)
and their transition to the initial stellar mass function (IMF) in the central parts of a
molecular cloud (MC) under the assumption that the coalescence of cores is important.
Our aim is to explain the observed shallow IMF in dense stellar clusters such as the
Arches cluster. The initial distributions of PSCs at various distances from the MC
center are those of gravitationally unstable cores resulting from the gravo-turbulent
fragmentation of the MC. As time evolves, there is a competition between the PSCs
rates of coalescence and collapse. Whenever the local rate of collapse is larger than the
rate of coalescence in a given mass bin, cores are collapsed into stars. With appropriate
parameters, we find that the coalescence-collapse model reproduces very well all the
observed characteristics of the Arches stellar cluster IMF; Namely, the slopes at high
and low mass ends and the peculiar bump observed at ∼ 5−6 M⊙. Our results suggest
that today’s IMF of the Arches cluster is very similar to the primordial one and is
prior to the dynamical effects of mass segregation becoming important.

Key words: galaxies: star clusters - Galaxy: centre - Turbulence - ISM: clouds -
open clusters and associations:individual: Arches

1 MOTIVATION

Understanding the origin of the initial stellar mass function
(IMF) remains one of the most challenging issues in mod-
ern astrophysics. When averaged over the total volume of
galaxies or whole stellar clusters, the IMF is observed to
follow a nearly uniform behavior which consists in an in-
creased number of stars counted when going from the most
massive stars up to ∼ 0.5 M⊙, followed by a shallower in-
crease between ∼ 0.5 and ∼ 0.1 M⊙ and a decline in the
number of stars at masses . 0.1 M⊙. This standard IMF
has been described, with continuous refinements, by several
analytical functions (e.g., Salpeter 1955; Miller-Scalo 1979;
Kroupa 2002; Chabrier 2003). Yet, deviations from the stan-
dard IMF at low and high mass ends have been reported in
many observations (see review in Elmegreen 2004). At high
mass, the IMF is observed to be generally top-heavy in dense
cluster cores such as in the Arches cluster (e.g., Stolte et al.
2005; Kim et al. 2006) and stars appear to be, preferentially
located in the central parts of the clusters (e.g., Hillenbrand
& Hartmann 1998; Figer et al. 1999; Stolte 2002; Gouliermis
et al. 2004). Star-bursts regions are also observed to possess
a top-heavy IMF, either in the form of a shallow slope at
high mass (e.g., Einsenhauer et al. 1998; Sternberg 1998) or

⋆ E-mail: dib@kasi.re.kr

by having a value of the high mass-low mass turnover of a
few to several M⊙ which is substantially larger than that
of the standard IMF (e.g., Rieke 1993). The IMF of dense
clusters seems also to be truncated at the very high mass
end (e.g., Stolte 2005).

The mass truncation can be attributed to the short life-
times of the most massive stars. Ideas that have been pro-
posed to explain the shallowness of the slope at the high
mass end include a) a model based on the coalescence of
pre-stellar cores (PSCs) and their subsequent gravitational
collapse to produce stars (e.g., Nakano 1966; Silk & Taka-
hashi 1979; Elmegreen & Shadmehri 2003; Elmegreen 2004;
Shadmehri 2004), b) the mass segregation of stars in the
cluster (e.g., Vesperini & Heggie 1997; Kroupa 2002; Mouri
& Taniguchi 2002), and c) A renewed episode of gas accre-
tion by the cluster under favorable conditions, which leads
to the formation of a new generation of massive stars (e.g.,
Lin & Murray 2007). This latter idea is somehow inconsis-
tent with the fact that a cluster such as the Arches cluster
is overall very young (i.e, age ∼ 2± 1 Myrs) and may apply
only to older clusters. Concerning mass segregation, whereas
there is little doubt that the enhancement in the numbers of
massive stars in the inner parts of the cluster by dynamical
processes will lead to a shallower IMF, this does not consti-
tute a direct proof that the primordial IMF of stars in those
regions was not shallower than a Salpeter IMF initially. The
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latter is commonly used as an initial input for the stellar
distribution functions at all cluster radii in N-Body models
(e.g., Portegies Zwart et al. 2007). Furthermore, the IMF of
the Arches cluster is characterized by a peculiar bump at
∼ 6 M⊙ which is not, to date, well reproduced by the effect
of mass segregation in N-body simulations (e.g., Kim et al.
2006, Portegies Zwart et al. 2007).

In this letter, we propose a coalescence model in which
the local initial PSCs populations are those resulting from
the local gravo-turbulent fragmentation of the protocluster
cloud. We follow the time evolution of the mass function of
PSCs and the transition to the IMF under the assumption
that the coalescence of PSCs is important. This is very likely
to be the case for the PSCs located in the central parts of
the protocluster cloud.

2 THE COALESCENCE MODEL

We consider PSCs (e.g., André et al. 2000) embedded in an
isothermal MC (at a temperature of T = 10 K), at different
locations r from the cloud’s center. We assume that both
the PSCs and the MC are axisymmetric (PSCs are initially
spherical but are likely to quickly flatten as time evolves).
The radial density profile of the MC is given by:

ρc(r) =
ρc0

1 + (r/Rc0)2
, (1)

where ρc0 and Rc0 are the cloud’s central density and
core radius, respectively. The central density, ρc0, is given
by:

ρc0 =
Mc

4πR3
c0[(Rc/Rc0)− arctan(Rc/Rc0)]

, (2)

whereMc is the mass of the cloud and Rc its radius. The
density profiles of PSCs are assumed to follow the formula
given by Whitworth & Ward-Thompson (2001):

ρp(rp) =
ρp0

[1 + (rp/Rp0)2]2
, (3)

where ρp0 and Rp0 are the central density and core ra-
dius of the PSC, respectively. The radius Rp of the the PSC
depends both on its mass and on its position within the
MC. The dependence of Rp on r requires that the density at
the edges of the PSC equals the ambient cloud density, i.e.,
ρp(Rp) = ρc(r). This would result in smaller radii for PSCs
of a given mass when they are located in their inner parts
of the cloud. The density contrast between the edge of the
PSC and its center is given by

C(r) = ρp0
ρc(r)

=
ρp0
ρc0

„

1 +
r2

R2
c0

«

. (4)

Depending on its position r in the cloud, the radius
of the PSC of mass Mp, Rp, can be calculated as being
Rp(r,Mp) = a(r)Rp0(r,Mp), where:

Rp0(r,Mp) =

„

Mp

2πρp0

«1/3 „

arctan[a(r)]− a(r)

1 + a(r)2

«−1/3

, (5)

and with a(r) = (C(r)1/2 − 1)1/2. With our set of pa-
rameters, the quantity C1/2 − 1 is always guaranteed to be
positive. The value Rp(r,M) can be considered as being the
radius of the PSC at the moment of its formation. However,
the radius of the PSC will decrease as time advances due to

gravitational contraction. The PSC contracts on a timescale,
tcont,p which is equal to a few times its free fall timescale,
and can be parametrized as:

tcont,p(r,M) = ν tff (r,M) = ν

„

3π

32 Gρ̄p(r,M)

«1/2

, (6)

where ν > 1 and ρ̄p is the radially averaged density of
the PSC of mass Mp, located at position r in the cloud, and
which is calculated as being:

ρ̄p(r,Mp) =
1

Rp(r,Mp)

Z Rp(r,Mp)

0

ρp0
[1 + (rp/Rp0)2]2

drp, (7)

Thus, the time evolution of the radius of the PSC can
be described by the following equation:

Rp(r,M, t) = Rp(r,M) e−(t/tcont,p). (8)

Once the instantaneous radius of a PSC of mass Mp,
located at position r form the cloud’s center is defined, it
becomes possible to calculate its cross section for collision
with PSCs of different masses. The cross section for the col-
lision of a PSC of mass Mi and radius Ri with another of
mass Mj and radius Rj and which accounts for the effect of
gravitational focusing is given by:

σ(Mi,Mj , r, t) = π [Rp,i(r,Mi, t) +Rp,j(r,Mj , t)]
2

×
»

1 +
2G(Mi +Mj)

2v2(Rp,i(r,Mi, t) +Rp,j(r,Mj , t))

–

. (9)

Elmegreen & Shadmehri (2003) and Shadmehri (2004)
assumed that the collision velocity between PSCs is equal to
the virialized velocity dispersion inside the MC. This might
be a plausible hypothesis if MCs were indeed the dissipa-
tive structures of turbulence in the interstellar medium. It
is however unlikely to be the case. Numerical simulations
(e.g., Dib et al. 2007) show that clumps and cores in MCs
are not in virial equilibrium. In this work, we assume that
the relative collision velocity between the PSCs follows the
local gas dynamics at their position in the cloud (this re-
mains a simplification as in reality PSCs motions can be
decoupled from that of the local ambient gas) according to
a Larson type relation v(r) = v0r

α (Larson 1981; v0 = 1.1
km s−1), with a lower limit being the local thermal sound
speed, which is uniform across the isothermal MC.

3 INITIAL CONDITIONS

As initial conditions for the PSCs mass distribution at dif-
ferent cloud radii, we adopt distributions that are the result
of the gravo-turbulent fragmentation of the cloud, following
the formulation given in Padoan et al. (1997) and Padoan
& Nordlund (2002). In these models, the probability func-
tion of the density field is well represented by a log-normal
function:

P (ln x)d ln x =
1√
2πσd

exp

"

−1

2

„

ln x− ¯ln x

σd

«2
#

d ln x, (10)

where x is the number density normalized by the aver-
age number density, x = n/n̄. The standard deviation of the
density distribution σd and the mean value ¯ln x are func-
tions of the thermal rms Mach number, M: ¯lnx = −σ2

d/2
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and σ2
d = ln(1 + M2γ2). Padoan & Nordlund (2002) sug-

gest a value of γ ∼ 0.5. A second step in this approach is
to determine the mass distribution of dense cores. Padoan
& Nordlund (2002) showed that by making the assumptions
that: (a) the power spectrum of turbulence is a power law
and, (b) the typical size of a dense core scales as the thick-
ness of the postschock gas layer, the cores mass spectrum is
given by:

N(M) d log M ∝M−3/(4−β)d log M, (11)

where β is the exponent of the kinetic energy power
spectrum, Ek ∝ k−β , and is related to the exponent α of the
size-velocity dispersion relation in the cloud with β = 2α+1.
However, Eq. 11 can not be directly used to estimate the
number of cores that are prone to star formation. It must
be multiplied by the local distribution of Jeans masses. At
constant temperature, this distribution can be written as:

P (MJ) dMJ =
2 M2

J0
p

2πσ2
d

M−3
J exp

"

−1

2

„

ln MJ − A

σd

«2
#

dMJ , (12)

where MJ0 is the Jeans mass at the mean density n̄.
Thus, Eq. 11 becomes, locally:

N(r,M) d log M = f0(r)M
−3/(4−β)

»

Z m

0

P (MJ)dMJ

–

d log M.(13)

The local normalization coefficient f0(r) is obtained by

requiring that
R Mmax

Mmin
N(r,M) dM = 1 in the shell of width

dr located at distance r from the cloud’s center. Then, the
local distribution of cores at time t = 0, N(r,M, 0), is ob-
tained by multiplying the local normalized function N(r,M)
by the local rate of fragmentation such that:

N(r,M, 0) =
ǫc(r)ρc(r)

< M > (r) tcont,p(r,M)
N(r,M), (14)

where < M > is the average core mass in the
local distribution and is calculated by < M >=
R Mmax

Mmin
M N(r,M) dM and ǫc is a parameter smaller than

unity which describes the local mass fraction of gas that
is present in the dense PSCs. In principle, ǫc will have a
radial and probably outwardly decreasing dependence. For
simplicity we shall assume ǫc to be a constant independent
of radius. As our comparisons with the observations will be
focused on the inner parts of the protocluster cloud which
will be transformed into a stellar cluster (i.e., the Arches
cluster), it is likely that these regions will be characterized
by a uniform mass fraction of the dense gas.

Fig. 1 displays the local mass spectrum of Jeans unsta-
ble PSCs in rings of width 0.025 pc, obtained with Eq. 14,
located at different distances from the cloud’s center (top),
as well as the cumulative number of PSCs in each mass bin
in regions of the protocluster cloud located between [0, Rc0],
[0, 2 Rc0], and [Rc0, 2 Rc0].

4 FROM THE PRE-STELLAR CORES MASS

FUNCTION TO THE PRIMORDIAL IMF

With the initial conditions described in §. 3, we follow the
time evolution of the PSCs mass spectrum by solving the
following integro-differential equation of N(r,M, t):

Figure 1. Top: Mass spectrum of Jeans unstable pre-stellar cores
in shells of width 0.025 pc located at different distances from the
cloud center (at 0, 1, 2, 5, and 10 Rc0), where β is the exponent of
the kinetic energy power spectrum. Bottom: Cumulative number
of cores in the regions between [0,Rc0], [0, 2 Rc0], and [Rc0, 2 Rc0].

dN(r,M, t)

dt
= 0.5× η(r)×

Z ∆M

Mmin

N(r,m, t) N(r,M −m, t) σ(m,M −m, r, t) v(r) dm

−η(r)N(r,M, t)

Z Mmax

Mmin

N(r,m, t)σ(m,M, r, t)v(r) dm (15)

where the first and second terms in the right hand side
of Eq. 15 correspond to the rate of creation and destruction
of a PSC of mass M , at location r, respectively (Nakano
1966; Shadmehri 2004). In Eq. 15, ∆M = M −Mmin, and
η(r) is a coefficient which represents the coalescence effi-
ciency, with η 6 1. This efficiency can be the result of var-
ious physical processes which can affect the coalescence of
PSCs, such as if the merger of cores occurs preferentially
parallel or perpendicular to the local magnetic field lines,
and is likely to have a radial dependence. For simplicity, we
shall assume that η is independent of position. In order to
evaluate the transition from PSCs to stars, we compare, at
each timestep, the local coalescence timescale to the local
contraction timescale for PSCs of a given mass. The local
coalescence timescale is tcoal(r,M) = 1/wcoal(r,M) where
wcoal is the coalescence rate (Elmegreen & Shadmehri 2003):

wcoal(r,M) =
21/2v(r)

Vshell(r)

mbin
X

j=1

(Ri+Rj)
2

»

1 +
2G(Mi +Mj)

2v2(Ri +Rj)

–

, (16)

where mbin is the number of mass bins, and Vshell is
the volume of the shell of width dr located at distance r
from the MC’s center. The contraction timescale is given by
Eq. 8. Whenever the local contraction timescale is shorter

c© 2007 RAS, MNRAS 000, 1–6
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Figure 2. Time evolution of the pre-stellar core mass function (left), and stellar mass function (right) in the region of the cloud between
[Rc0, 2 Rc0]. The stellar mass function is compared to that of the Arches stellar cluster mass function (Kim et al. 2006). Fits to the
simulated IMF (bottom right figure) yield slopes of −2.04 ± 0.02 and −1.72 ± 0.01 in the mass ranges of [1 − 3] M⊙ and > 15 M⊙,
respectively, in very good agreement with the observations. Fits are over-plotted to the data shifted up by 1 dex for the sake of clarity.

than the local coalescence timescale, PSCs are collapsed into
stars. When a PSC collapses to form a star, we assume that
a fraction of its mass is re-injected into the protocluster
cloud in the form of an outflow. We account for this mass
loss in a purely phenomenological way by assuming that the
mass of a star which is formed out of a PSC of mass Mp

is given by M⋆=ψ Mp, where ψ 6 1. Matzner & McKee
(2000) showed that ψ can vary between 0.25 − 0.7 for stars
in the mass range 0.5 − 2 M⊙. There is no evidence so far,
for or against, whether this result holds at higher masses.
However, the similarity between the IMF and the dense cores
mass function observed by Alves et al. (2007) in the Pipe
Nebula might be an indication of a constant ψ across the
mass spectrum (i.e., in their case it is ψ ∼ 1/3). Here also,
we shall assume that a similar fraction of the mass of a PSC
is lost in the outflow independent of its mass.

The algorithm was tested by performing runs with η = 0
(i.e., no-coalescence) and η = 0.001 (i.e., inefficient coales-
cence) and with the other parameters fixed at Mc = 5× 105

M⊙, Rc = 5 pc, Rc0 = 0.2 pc, ρp0 = 107 cm−3, ǫ = 0.5,
α = 0.37, ν = 10, and ψ = 0.58. As expected, for η = 0,
the resulting stellar mass spectrum after the PSCs collapse
into stars is similar to the initial cumulative PSCs spectrum,
and only slightly modified for η = 0.001. Models were per-

formed with permutations over the parameters η and ν fixing
the other parameters to the above stated values. It should
be stressed at this stage that our semi-analytical modeling
is not aimed at recovering the initial characteristics of the
Arches protocluster cloud, but rather at showing whether or
not, the Archer cluster IMF can be generated by the coales-
cence of PSCs and their subsequent collapse into stars.

Fig. 2 displays the time evolution of the cumulative
PSCs populations in the region [Rc0 − 2 Rc0]=[0.2-0.4] pc,
which corresponds to the annulus between ∼ 1-2 core radii
of the Arches cluster for a model with η = 0.5 and ν = 10. In
the initial stages, the most massive PSCs, who have a larger
cross section, coalesce faster than the less massive ones, es-
sentially by capturing the numerous intermediate mass PSCs
and causing a rapid flattening of the spectrum at the high
mass end. By t ∼ 0.07 tff,c (tff,c = (3π/32Gρ̄c)

1/2 ∼ 3×104

yr is the MC free fall timescale), a first generation of the
smallest PSCs collapses to form stars. As time advances,
more massive stars are formed in the shell (massive cores
collapse later because of their lower average density) and in
parallel the PSCs population decreases. By t ∼ 0.1 tff,c the
intermediate mass PSCs which constitutes the largest mass
reservoir for coalescence collapse into stars. At this time, the
turnover in the PSCs mass spectrum is located at ∼ 8− 10

c© 2007 RAS, MNRAS 000, 1–6
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M⊙. Since the reservoir of intermediate mass objects is de-
pleted, the remaining massive PSCs coalesce at a slower pace
before they collapse. By t ∼ 0.25 tff,c, all PSCs of different
masses in the shell have collapsed and formed stars. Because
of mass loss, the stellar IMF is shifted to lower masses (bump
shifted to ∼ 5−6M⊙). In summary, the resulting IMF is not
very different from the PSCs mass spectrum after the ini-
tial and rapid stage of strong coalescence until t ∼ 0.01 tff,c.
This is due to the fact that low and intermediate mass PSCs
collapse at early stages, thus depleting the reservoir of ob-
jects with which the massive PSCs can continue to coalesce,
in addition to their own contraction. Both effects reduce the
massive PSCs ulterior merger rate. Overall, the stellar mass
spectrum is formed very quickly, on a timescale which is of
the order of the contraction timescale of the most massive
cores i.e., ∼ 0.25 tff,c.

In Fig. 2, over-plotted to our result is the cumulative
mass spectrum of the Arches cluster in the annulus of [0.2-
0.4] pc (Kim et al. 2006). The coalescence-collapse model
agrees better with the observations than models based on
mass segregation by dynamical friction. In particular, the
bump at ∼ 5 − 6 M⊙ is reproduced. A fit to the stellar
spectrum yields slopes of −2.04 ± 0.02 and −1.72 ± 0.01 in
the mass ranges of [1 − 3] M⊙ and > 15 M⊙, respectively,
in very good agreement with observational values.

We also performed additional runs where the maximum
mass in the PSC spectrum was set to 250M⊙ (instead of 100
M⊙). In this case, the resulting slope of the IMF in the low
and high mass regimes are shallower than the Salpeter IMF,
yet shallower than those of the Arches IMF. The reason is
that PSCs with masses larger than 100M⊙ will form quickly
from the coalescence of lower mass ones, and the number
of PSCs of masses & 100 M⊙ will grow at an even faster
pace as their cross sections are very large. The mismatch in
this case with the Arches IMF might be an indication that
PSCs with masses > 100 M⊙, if they form, might undergo
a certain amount of sub-fragmentation.

5 SUMMARY

In this work, we use semi-analytical modeling to study the
evolution of the pre-stellar cores (PSCs) mass spectrum and
its transition to the stellar initial mass function (IMF) at
different locations in a molecular cloud (MC) under the as-
sumption that the coalescence of PSCs is important. The
aim is to reproduce the observed IMF in the inner regions
of dense stellar clusters such as the Arches cluster (Kim et
al. 2006). The initial conditions for the local populations of
PSCs are those of Jeans unstable cores resulting from the
gravo-turbulent fragmentation of the MC. PSCs of a given
mass are transformed into stars whenever their local rate
of contraction is higher than their rate of coalescence. With
appropriate, yet very realistic parameters, we are able to
reproduce all of the observed characteristics of the IMF of
the Arches cluster. Namely, the slopes at the high and low
mass ends, and the peculiar bump observed at ∼ 5− 6 M⊙.
Our results suggest that today’s IMF of the Arches cluster is
primordial. This might be a common property of young and
dense stellar clusters (e.g., Chen et al. 2007). Another con-
sequence of the coalescence-collapse model is that it might
help explain the formation of intermediate-mass black holes

(MBH & 100 M⊙) in the central regions of dense stellar
clusters, either by the direct gravitational collapse of mas-
sive PSCs or by the runaway collisions of massive stars (e.g.,
Bonnell et al. 1998; Freitag et al. 2006) which would be fos-
tered if the primordial IMF is top-heavy.
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