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Abstract

We study the modes and stability of non - isothermal coronal loop models with different intensity

values of the equilibrium magnetic field. We use an energy principle obtained via non - equilibrium

thermodynamic arguments. The principle is expressed in terms of Hermitian operators and allow

to consider together the coupled system of equations: the balance of energy equation and the

equation of motion. We determine modes characterized as long - wavelength disturbances that are

present in inhomogeneous media. This character of the system introduces additional difficulties for

the stability analysis because the inhomogeneous nature of the medium determines the structure of

the disturbance, which is no longer sinusoidal. Moreover, another complication is that we obtain a

continuous spectrum of stable modes in addition to the discrete one. We obtain a unique unstable

mode with a characteristic time that is comparable with the characteristic life–time observed for

loops. The feasibility of wave–based and flow–based models is examined.
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I. INTRODUCTION

A. Variational principles

Stability is a crucial requirement for a model to produce realistic descriptions. Thus, dif-

ferent stability analyzed of solar structures can be found in the literature, generally restricted

to special types of perturbations and specific equilibrium models. These includes, models

that consider adiabatic configuration such as the ones analyzed via the classical criterion

of Bernstein et al. [1958] or those that presuppose static equilibrium and analyze thermal

stability. In the application of Bernstein’s criterion, the adiabatic assumption implies that

the energy balance equation is not required and thus dissipation is impossible. Also the

assumption of static models is a strong, and often unjustified, restriction for open systems.

Thus, a crucial question for any theoretical model is whether the much more common far–

from–equilibrium states are stable, where the consideration of both thermal and mechanical

coupled equations must be included.

A more realistic analysis of the stability of configurations represented by non-conservative

equations was presented by Lerche and Low [1981]. They proposed a Lagrangian principle

in order to analyze quiescent prominences that can undergo thermal instabilities. However

the non–self–adjoint character of the operators involved in the obtained principle makes the

physical interpretation difficult.

In this paper we apply an energy principle to analyze the stability of solar coronal loops.

The principle was obtained in a previous paper (Paper I: Costa et al. [2004]; see also Sicardi

et al. [2004], see also Sicardi et al. [1985, 1991, 1989a, 1989b]) using a general procedure

of irreversible thermodynamics -based on firmly established thermodynamic laws- that can

be understood as an extension of Bernstein’s MHD principle to situations far from ther-

modynamic equilibrium. This fact has the advantage that many known results obtained by

simpler criteria can be re–examined by a direct comparison with our criterion, and that, as it

is obtained via a thermodynamic approach, allows a straightforward physical interpretation.

The principle associates stability with the sign of a quadratic form avoiding non–self–adjoint

operators. Obtaining a self–adjoint operator is a requirement for our principle to hold. When

this is accomplished the calculus is simplified. The self–adjoint character of an operator im-

plies that the eigenvalues ω2 are real. Hence stability transitions always occur when ω2
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crosses zero, rather than at particular points of the real axis where the real part of the

eigenvalue is different from zero, i.e. Re(ω) 6= 0, leading to an efficient formulation to test

stability. Thus, the symmetry considerations of the self–adjoint operators, the fact that

there is a diagonal form associated with these operators, and that the Rayleigh–Ritz theo-

rem states the existence of a minimum eigenvalue, are important reasons to try to maintain

self–adjointness in the consideration of stability.

1. Solar coronal loops

The theoretical modeling and the interpretation of observations of coronal loop systems

deal, among others, with the discussion whether the propagating observed disturbances in

loops and post–flare loops are waves or plasma flow.

Dynamical features of brightening coronal loops have been traditionally interpreted as

field–aligned flow of matter generated by asymmetries in the energy input. Most classical

theoretical models have difficulties in determining the physical conditions that make them

compatible with observations. Both static loops and steady state models -for the two classes

of temperatures models: hot (isothermal coronas with T ≈ 106K) and cool (gradually

increasing temperatures up to T ≈ 105K) - fail to provide a satisfactory explanation for

both the emission measure distribution and the Doppler shift observations (Jordan [1980];

Serio [1981]; Craig and McClymont [1978]; Mariska [1984]). Thus, this suggests that in

traditional model scenarios radiative losses cannot be compensated by thermal conduction.

Therefore, other heating mechanisms must be assumed (Aschwanden et al. [1999]; [2000];

Walsh and Galtier [2000]). Also, theoretical time–dependent models of individual loops

where the plasma evolves in response to a cyclical process of heating and cooling of the flow

have difficulties in fitting observations (Klimchuk and Mariska [1988]).

The assumption of propagating disturbances associated with slow magnetoacoustic waves

in high Alfvén speed media is also a field of investigation. Several wave–based models

were developed to explain observations (Nakariakov et al. [2000]; Tsiklauri and Nakariakov

[2001]). These authors suggest that -depending on the relative importance of dissipation

by magnetic resistivity- upwardly propagating waves (of observed periods between 5-20

min) that decay significantly in the vicinity of the loop apex could explain the rarity of

observational detection of downwardly propagating waves. However, upwardly propagating
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disturbances with non-decaying or even growing amplitudes were observed in coronal EIT

plumes. Analytic models have shown that slow magnetoacoustic waves may be trapped and

nonlinearly steepened with height, providing a possible interpretation of the phenomenon

(Ofman et al [1999]).

However, due to the intensity of the flaring, the plasma dynamic of flare loops is generally

associated with flows rather than with waves. In fact, systematic intensity perturbations

in post–flare loops can suggest that they are the result of evaporation–condensation cycles

caused by the efficient heating of the flaring plasma from the chromosphere. Thus, chro-

mospheric evaporation seems to be the main initial matter inflow source for flare loops. De

Groof et al. [2004] analyzed an off–limb half loop structure from an EIT shutterless cam-

paign and gave arguments to reject the slow magnetoacoustic description and to support the

flowing/falling plasma one. Nevertheless, these authors admit that the wave theory cannot

be excluded yet.

Other authors have suggested that a combination of phenomena can be at the basis of a

better interpretation. Alexander et al. [1998] examined 10 flares and concluded that plasma

turbulence could be the source of the observed intensity changes rather than hydrodynamic

flows such as chromospheric evaporation. They pointed out that it cannot be excluded that

there is a degree of ”gentle evaporation” occurring early in the event with associated hard

X–ray emission below their threshold of detection. A series of more recent papers (Tsiklauri

et al. [2004]a; [2004]b; [2004]c) that combine theoretical and observational analysis showed

that oscillations in white, radio and X–ray light curves observed during solar and stellar

flares may be produced by slow standing magnetoacoustic modes of the loops. They found

that a transient heat deposition at the loop bottom -or at the apex- leads to a posterior

up–flow evaporation of material of the order of a few hundreds of km/s−1. During the peak

of the flare, the simulations showed that a combined action of heat input and conductive and

radiate losses could yield an oscillatory pattern with typical amplitudes of up to a few tens

of km/s−1. Then, a cooling phase of plasma draining with velocities of the order of hundreds

of km/s−1 occurs. The numerical quasi–periodic oscillations in all the physical quantities,

that resemble observational features, were interpreted as being produced by standing sound

waves caused by impulsive and localized heating.

In previous papers (Borgazzi and Costa [2004]; Costa and Stenborg [2004]) one of us

developed a diagnostic observational method to describe loop intensity variations, both
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in space and time, along coarse–grain loop structures. We find that none of the arguments

leading to the determination of whether waves or flow models can better fit observations was

conclusive. Some of our results suggested wave–based model interpretations i.e. the periodic

behaviour of the disturbances observed, the almost constant speed of some brightening

features and the fact that the estimated speeds were not higher that the sound speed in the

coronal loops. However, as we mentioned, the period behaviour can also be attributed to

flows (Gómez et al. [1990]; De Groof et al. [2004]). Also, even when the calculated speeds

were not greater than the sound ones, some of the velocity patterns were far from being

constant and their values were comparable to the free-fall case.

Another open question is the relation between the loop’s coronal dynamics and the phys-

ical conditions on the chromospheric bases. Borgazzi and Costa [2004] found a longitude of

chromospheric coherence that characterizes the behaviour of a whole loop–system of evolv-

ing coronal–isolated filaments. This description is in accordance with limit–cycle models

that require that the triggering mechanism of the dynamics is located at the bottom of the

structure giving rise to the observed similar coronal conditions of the isolated filaments. An-

other aspect that deserves attention is whether it is physically possible that the periodicity

observed could be related to, or could be the consequence of propagating magnetoacoustic

modes from the chromosphere that have suffered distortion due to the dispersing media.

Other point that is under debate is the thermal structure of the loops. Loop observations

with TRACE (Transition Region and Coronal Explorer, Handy et al. [1999]) suggest that

hot coronal loops are isothermal and more dense than the predictions of static loop models.

However this scenario is not conclusive and other interpretations are possible. Reale and

Peres [2000] showed that bundles of thin strands, each one behaving as a static loop, with its

characteristic thermal structure, convoluted with the TRACE temperature response could

appear as a single almost isothermal loop. A wide range of configurations can be proposed to

fit observations. The fact that images form a compound of complex integrated time–varying

data that are not easy to resolve is at the basis of this difficulty. The loops under analysis

are surrounded by other structures that usually intersect them along the line of sight and

the change of the brightening of the loops is also affected by background emission. Thus,

efforts are made to produce observational and theoretical results of coronal loop dynamics.

The aim of this paper is to investigate whether the propagating observed disturbances

in loops are waves or plasma flow and their thermal structure. Non–isothermal loops are
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traditional candidates for Hopf instabilities with cycles of flow evaporating and condensing,

thus the analysis of frequencies and mode structures can provide insight into a possible wave

model interpretation of these types of configurations. We consider the stability analysis as

the leading criterion to select possible theoretical wave models. The fact that a number of

non–linear equilibria are possible due to the open character of the systems makes it necessary

to consider both thermal and mechanical stability in a coupled way.

II. THE STABILITY CRITERION

The thermodynamics of irreversible processes is described in terms of phenomenological

relations between conjugate pairs of thermodynamic variables: the flows and the forces that

cause them. The linear thermodynamic approximation treats small deviations from the

equilibrium state by including fluctuations in the neighborhood of this state. It describes

the behaviour of the system around the equilibrium state or around a non–equilibrium

stationary one that is linearly close to it.

If the system is isolated, as is stated by the second law of thermodynamics, the en-

tropy grows exponentially up to its maximum value. That the system is in an open–near–

equilibrium state means that energy and matter is exchanged with the neighbors and the

entropy of the system is not necessarily positive. Even when the entropy produced in the

system’s interior, due to irreversible processes, is never negative, a negative flow of entropy

produced by the exchange of matter and energy can make the system remain indefinitely

in a near–equilibrium state. These states are known as stationary states and a coherent

dynamic of the system could last if sufficient negative entropy flow is provided to it. Thus,

the criterion that states the stability of this stationary state gives insight into the dynamic

structures that can be found in nature. These stationary states are also known as detailed

balanced. As Onsager pointed out [1931], the balance consists of the compensation between

the fluctuations and dissipation produced by the flows and forces that have a microscopic

reversible character near the thermodynamic equilibrium. The empirical relations between

flows and forces are linear and related by the so–called resistance matrix R that is symmetric

and positive definite. Its symmetric character is guaranteed by the principle of microscopic

reversibility and its positive definiteness by the proximity of the reference state to the ther-

modynamic equilibrium, where the entropy has a maximum.
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However, there is no continuity between linear and nonlinear thermodynamical processes.

When the system is beyond the immediate neighborhood of the stationary state the non-

linearities become visible. Instabilities that cause dynamic transitions in open systems

are responsible for the qualitative difference between linear and nonlinear thermodynamics.

Therefore, dynamic cooperative phenomena can only arise in nonlinear thermodynamics.

Thus, nonlinear thermodynamics is related to the stability properties of non–equilibrium

stationary states, where the linear relation between flows and forces can become state de-

pendent (i.e. R is not necessarily a symmetric positive definite matrix), and the problem

of having a thermodynamic theory to provide a general criterion for the stability of the

system -which is not evident through the integration of the variational equations- becomes

a fundamental point. Non–linear thermodynamics is the extension of the linear theory to

situations far from thermodynamic equilibrium where the relaxation of the processes to a

steady state of non-equilibrium (nonlinear state) is not assured and requires a stability anal-

ysis (Glansdorff and Prigogine [1971]; Keizer [1976]; Graham [1978]; Lavenda [1987, 1993]).

In Paper I we showed how to obtain the variational principle from the equations that de-

scribe the dynamics of the system of interest. The method consists of obtaining a Lyapunov

function, also known as generalized potential, that represents the mathematical expression

of the stability conditions. This function is determined by the analysis of the thermody-

namic properties of the system linearized around a non–linear stationary state also called

non–linear equilibrium state. The equations governing the dynamics are written as a system

of two coupled equations: the balance energy equation and the equation of motion. Thus,

the perturbation analysis around a stationary state is performed considering a variable state

vector of four independent components: the three space component displacement and the

temperature variation. Once the linearization is done, the Lyapunov function can be im-

mediately obtained by inspection of the resulting expression written in a compact matrix

form. Each of the matrices of the compact expression are linear operators (that could in-

clude spatial derivatives) and have a clear physical interpretation that is given by its role in

the equation. The matrix that multiplies the second time derivative of the perturbation is

associated with the inertia of the system, the one that multiplies the first time derivative of

the perturbation is associated with dissipation and the one that multiplies the perturbation

itself is associated with potential forces over the system. The principle is subject to phys-

ically reasonable requirements of hermiticity and antihermiticity over the matrices. For a
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more detailed presentation see Paper I and the references presented there.

A. The magnetohydrodynamic expression

The specific model we analyze is taken to be composed of a magnetohydrodynamic ideal

plasma (i.e. with infinite electrical conductivity σ ≫ 1). The fundamental ideal magneto-

hydrodynamic equations to be considered are as follows. The mass conservation equation,

∂ρ

∂t
+∇ · (ρ~v) = 0 (1)

where ρ is the density of the plasma, ~v is the plasma velocity, and t the time. The perfect

gas law or state equation,

p =
kB
m

ρT (2)

kB is the Boltzmann constant, p the pressure, T the temperature and m ≡ mp the proton

mass. For a fully ionized H plasma ρ = µnemp; the solar coronal abundances (H : He =

10 : 1) correspond to a molecular weight µ = 1.27; ne is the number density of electron

particles (Aschwanden [2004]. The induction equation,

∂ ~B

∂t
= ∇× (~v × ~B) (3)

~B is the magnetic field vector. The magnetic diffusivity was discarded. The equation of

motion for the problem is:

ρ
D~v

Dt
= −∇(p) +

1

4πµ
(∇× ~B)× ~B − ρ∇φ (4)

where g = −∇φ is the gravity expression and j = 1/4π∇ × ~B the current density. The

energy balance equation takes the form:

ργ

(γ − 1)

D

Dt
(
p

ργ
) = −L (5)

where γ is the ratio of specific heats and L is the energy loss function:

L = −∇ · ~Fc − Lr +H. (6)
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~Fc is the heat flux due to particle conduction along the loop, Lr is the net radiation flux.

Neither the dominant heating mechanism of coronal loops nor the spatial distribution func-

tion of the energy input is known. So, the heating function is the least known term in the

energy balance equation. Thus, the usual situation is to try reasonable arbitrary mathe-

matical functions which must fit the constraint imposed by the equilibrium conditions. As

our model considers inhomogeneous temperature gradients and isothermality is usually as-

sociated with footpoint heated loops more than with uniformly heated ones we discard the

first case and tried the general expression H = hρ +H0. A time varying dependence of H

was not considered for simplicity. However, it could be a requirement for modeling special

events such as micro–flares or while considering magnetic reconnection phenomena. Eq. 5

expresses the fact that the gain in particle energy (internal plus kinetic) is due to heating

sources, heat flow and radiation losses; ohmic dissipation j2/σ and all other heating sources

were considered as vanishing terms implying that the optically thin assumption holds. Then

Lr = nenHQ(T ); the temperature variation (Q(T ) = χT α) was taken from Priest [1982].

Also Fc = −k∇T and, as conduction across the magnetic field has been discarded, for a

total ionized plasma Fc = −k0T
5

2∇‖T . Finally equation 5 can be written as

ργ

γ − 1

D( p

ργ
)

Dt
= ∇ · (k0T

5

2∇‖T )−
ρ2

m2
χT α +

υ

m2
ρ+H0 (7)

where υ is a constant value to be determined from the equilibrium conditions.

The linearization procedure is performed by replacing ρ = ρ0 + ρ1, T = T0 + T1, B =

B0 + B1 and ~v = ~v0 + ∂~ξ/∂t in the last equations, and assuming hydrostatic conditions

for the equation of motion. Thus, ~v0 = 0 and ~v1 = ∂~ξ/∂t where ξ is the perturbation

around the equilibrium of the equation of motion (the stationary state), also ∂ρ0/∂t = 0

and ∂B0/∂t = 0. Using the relation ∂/∂t ≃ iω in eq. 1 and eq. 3, the corresponding

linearized equations (eq. 8 - 12) are:

ρ1 +∇ · (ρ0~ξ) = 0 (8)

p1 =
kB
m

(ρ0T1 − T0∇ · (ρ0~ξ)) (9)
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~B1 = −∇× ( ~B0 × ~ξ) (10)

ρ0~̈ξ = kB
m
∇(T0∇ · (ρ0~ξ)− ρ0T1)−

− 1

4µ
[(∇×Q)×B0 + (∇× B0)×Q] +▽φ∇ · (ρ0~ξ) (11)

or equivalently ρ0~̈ξ − Fξ + kB
m
∇(ρ0T1) = 0 and

kB
m(γ − 1)

[ρ0Ṫ1 − (γ − 1)T0∇ · (ρ0~̇ξ)]− AT1 +B~ξ = 0 (12)

being

A = −[c∇ · (T
5

2

0 ∇‖(⋆) +
5

2
T

3

2

0 ∇‖(T0))−
ρ20
m2

χαT α−1
0 ]

and

B = {kB
m

β∇•(ρ0 ; ⋆)}; β =
−2(ρ0χT

α
0 − υ/2)

kBm

c =
1.810−10

lnΛ
Wm−1K−1, Q = ~B0 × ~ξ.

The term ∇·(ρ0ξ̇) was discarded because it represents the total net flux of material through

the magnetic tube. The two obtained equations are expressed in terms of the displacement

and temperature perturbed variables ~ξ and T1. ⋆ represents the location of the perturbed

variables when performing the matrix product.

Following Paper I the resulting energy principle is:

δ2S =
1

2

∫

[ ~̇ξ∗βρ0~̇ξd
3x +

+

∫

(~ξ∗βF~ξ + T ∗
1AT1 + T ∗

1B
~ξ − ~ξ∗BT1)]d

3x ≥ 0 (13)

where F is the known Bernstein operator for the system.

For the non-dissipative cases, last expression reduces to the well–known Bernstein MHD

energy principle

δ2S =
1

2

∫

[ ~̇ξ∗βρ0~̇ξd
3x+

∫

~ξ∗βF~ξ]d3x ≥ 0 (14)
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from where the eigenmodes and eigenfrequencies are calculated as

ω2 = −
∫

~ξ∗βF~ξd3x
∫

~ξ∗βρ0~ξd3x
(15)

and the stability criterion is obtained by requiring the positivity of the potential energy of

the perturbation (Galindo Trejo [1987])

δ2Wp(Bernstein) =
1

2

∫

~ξ∗βF~ξd3x (16)

subject to the normalization condition that the total kinetic energy is equal to one. Thus,

the dissipative principle and the new frequencies are respectively:

δ2Wp =
1

2

∫

(~ξ∗βF~ξ + T ∗
1AT1 + T ∗

1B
~ξ − ~ξ∗BT1)d

3x ≥ 0. (17)

ω2 = −
∫

(~ξ∗βF~ξ + T ∗
1AT1 + T ∗

1B
~ξ − ~ξ∗BT ∗

1 )d
3x

∫

(~ξ∗βρ0~ξ)d3x
(18)

with the same normalization condition.

III. APPLICATION TO THE STABILITY OF A CORONAL INHOMOGENEOUS

LOOP MODEL

We are interested in analyzing the stability of non–homogeneous loops. This is, loops

with inhomogeneous distributions of plasma density and temperatures. This character of

the system poses additional difficulties for the stability analysis because the inhomogeneous

nature of the medium determines the structure of the disturbance which is no longer sinu-

soidal, making the traditional normal mode analysis useless for this treatment. Moreover,

there may exist a continuous spectrum of stable modes besides the discrete one. As a first

order approximation we neglect the effect of gravitational stratification and thus confine

the analysis to characteristic spatial scales lower than the pressure scale height in the so-

lar corona. In order to analyze the stability and to obtain the frequencies and modes the

physical quantities in eq. 17 and eq. 18 must be calculated along the loop structure.

A. Mechanical equilibrium

In order to determine an equilibrium configuration we assume force–free equations due

to the fact that in plasma with low β (gas pressure over the magnetic pressure) the pressure
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gradient can be neglected in comparison to the Lorentz force. The coronal arcade is obtain

from the equations

∇×B0 = αB0 = 0 (19)

j×B0 = 0. (20)

Also, B0 ·∇p = 0 and thus the pressure has a constant value along the loop. We assume that

the unperturbed magnetic field is B0 = (B0,x(x, z), 0, B0,z(x, z)) and obtain the equilibrium

field components

B0x = −B00 cos(
π

2L
x)e−

π
2L

z (21)

B0z = B00 sin(
π

2L
x)e−

π
2L

z (22)

with

B0 = B00e
− π

2L
zes. (23)

The relation

z = zt +
2L

π
ln
[

cos(π
x

2L
)
]

(24)

is straightforward. The arc element s (see Figure 1) can be expressed as

ds = dx

√

(

1 +
dz

dx

)2

= dx △ (25)

with ∆ =
√

1 + (z′)2.

B. Thermal equilibrium

The thermal equilibrium is obtained from eq. 7 with L = 0 (in eq. 6). Thus expressions

Fc = −k0T
5

2∇‖T satisfies the two relations

∂Fc

∂T

∂T

∂s
=

−Fc

k0T
5

2

∂Fc

∂T
= − ρ2

m2
Q(T ) +H, (26)
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FIG. 1: Schematic figure of the magnetic arcade with z(x) = zt +
2L
π
ln
[

cos(π x
2L)
]

, x and z the

Cartesian coordinates. et and en the tangential and normal versors respectively. Tb and Tt are the

temperature values at the bottom and top respectively. The same notation is used for the density

ρ.

from where we obtain the two equations

Fc =
−dTk0T

5

2

ds

Fc
2

2
=

∫

T0

T

k0T
′ 5
2

[

ρ2

m2
Q(T ′)−H0

]

dT ′ (27)

where we assume Fc(s = 0) = 0 as dT/ds = 0 at s = 0 and H = H0, so the constant value

of eq. 7 is υ = 0. We then can replace Fc in eqs. 27 and give Q(T ) its explicit expression.

Then integrating between Tt and Tb (the temperatures at the top and the bottom of the

loop respectively) and using (dT/ds)T=Tb
= 0 and Tt ≫ Tb we obtain the constant value of

the heating function H0 = 7p2χT α−2
t /(8k2

B

(

α + 3
2
)
)

. Also, we find

[

dT

ds

]2

=
p2χ

2k2
Bk0(α + 3

2
)
T α− 7

2

[

1− (
T

Tt

)2−α

]

(28)

which is equivalent to the calculus in chapter 6 of Priest [1982]. Our aim is to obtain T

as a function of the line element s. From eq. 28 s = f(T ) given as an integral expression

of the temperature, which has to be inverted. Thus, for calculus purposes, we define v =

1− (T/Tt)
2−α and replace T as a function of v in eq. 28. Then we obtain s = f(v) as

s =
1

ABv(
1

2
, q) (29)

where

Bv(
1

2
, q) =

∫ v

0

tp−1(1− t)q−1dt (30)
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(Arfken and Weber 1995) with

p =
1

2
, q = (

α

2
+

3

4
)(2− α) + 1,

A = (2− α)T
α
2
− 11

4

t ((p2χ)/(2k0(α +
3

2
)k2

B))
1

2 .

Then, T = f−1(s) as

dT

ds
= A

[

dBv

dv

dv

dT

]−1

(31)

C. The perturbation

In order to calculate the stability and structure modes the general perturbation expression

along the equilibrium loop is written

~ξ = [ζ(x)et + η(x)en + ξy(x)ey]e
iky (32)

and

T1 = T1(x)e
iky. (33)

Then, representing the equilibrium functions of the different quantities with a 0 sub-index

and using the loop parameters and the mathematical relations presented in the Appendix,

we obtain the non–dimensional expression for the energy principle (eq. 17)

δ2Wp =
1

2

∫ 1

−1

dx

{[

β
dT0

dx
f

(

(
dρ0
dx

)f + ρ0Dxf − kρ0ξy

)

+

+βT0f

(

d2ρ0
dx2

f + ρ0Dxxf − k
dρ0
dx

ξy − kρ0
dξy
dx

)

−

−kβT0ξy

(

dρ0
dx

f − kρ0ξy

) ]

+

+C1

[

β
d

dx

(

z′

△B0

)(

kB0ξy
△

(−z′

△ ζ +
η

△

)

+
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+

(

k
z′

△B0ξy −
dB0

dx
η −B0

dη

dx

)(

ζ

△ + η
z

△

)

)− β

(

(

k
B0

△

)2

ξ2y+

+

(

d

dx
(
B0

△ )ξy +
B0

△
dξy
dx

)2

+ (
dB0

dx
η +B0

dη

dx
− k

z′

△B0ξy)
2

)]

+

+C2

[

−ζT
3

2

0

1

△2

dT0

dx
T1

dT1

dx
− 2

T
5

2

0

△
d

dx

(

1

△

)

T1
dT1

dx
+

−T
5

2

0

△2
T1

d2T1

dx2
− d

dx

(

5

2
T

3

2

0

1

△2

dT0

dx

)

T 2
1

]

− ρ0T
α−1
0 T 2

1 + β
dρ0
dx

T1f+

+βρ0 (Dxf − kξy) T1+

− β

[

1

△
dρ0
dx

ζT1 +
ρ0
△ζ

dT1

dx
+

z′

△
dρ0
dx

η
dT1

dx
+ kρ0ξyT1

]}

(34)

where the non–dimensional quantity δ2Wp/
(

χT α+1
t ρ2tL/m

2
)

replaces δ2Wp, and C1 =

B2
00kBTtρt/mµ and C2 = c m2T

7

2

t /(L
2Ttαρ

2
t ) were used. From this variational principle

we can then analyze stability and obtain the mode structure and the associated frequencies

for the general mode given by eq. 32.

IV. RESULTS AND DISCUSSION

In order to calculate modes and frequencies we followed the schematic procedure de-

scribed in Paper I and in Galindo Trejo [1987]. We used a symbolic manipulation pro-

gram to integrate the equations. δ2Wp and the perturbations were expanded in a three

dimensional–Fourier basis that adjusts to border conditions. Thus, a quadratic form for

δ2Wp was obtained and was minimized with the Ritz variational procedure. A matrix dis-

crete eigenvalue problem subject to a normalization constraint was obtained. The procedure

is equivalent to solving eq. 18 of our modified principle. Once the modes are obtained, the

stability condition of eq. 17 for the generalized potential energy: δ2Wp ≥ 0 must be corrob-

orated. The following values were used for the numerical calculation of the modes

α = −1

2
→ q =

6

5

s =
1

ABv(
1

2
,
6

5
) → A =

5

2
T 3
t (

p2χ

2k0k2
B

)
1

2 .
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Coronal loop parameters: L = 1010cm (or L = 100Mm), Tb = 104K Tt = 106K ne =

108cm−3 electron number density pt = 2kBTt ; ρt = mpt/kBTt.

Our main concern was to know whether the magnetic configuration of equilibrium could

be stable under linear perturbations. For non homogeneous configurations it is well known

that the stable eigenvalues can have continuous spectra while the unstable ones have a dis-

crete spectrum (see Freidberg [1982] or Priest [1982]). If the resulting mode components have

a characteristic wavelength of the order of the equilibrium structure, the non–homogeneous

character of modes could determine, for the stable modes, a continuous spectrum. Thus, in

this case, the traditional normal mode analysis gives only a rough description because one

of the consequence of the existence of the continuum is that an accumulation of discrete

eigenvalues can take place at either boundary, generally at ω2 = 0 or ω2 = ∞, indicating

the presence of a continuum stable spectrum. Note that as the basis used is discrete, the

spectrum is necessarily discrete. However, the additional evaluation of the generalized po-

tential energy provides the correct unstable modes and gives an approximate value of the

most probable stable period when the smaller ω2 is not located at the boundaries.

We used different values for k: k = 0, k = 0.5 and k = 10 (k is the wavenumber associ-

ated with the perturbation component transverse to the plane that contains the magnetic

configuration). We also calculated the frequencies and modes for two different values of the

magnetic field: B00 = 11G and B00 = 100G.

Table 1 and Table 2 show the eigenvalues (periods) associated with the different modes

for the cases B00 = 11G and B00 = 100G respectively, considering k = 0 and obtained by

solving eq. 18. We obtained 12 eigenfrequencies and 12 eigenmodes for each of the magnetic

field values i.e. we used a three–component expansion and a four–component perturbation

vector. We evaluated the mode behaviour for k 6= 0. For each mode corresponding to a

complex eigenvalue, the perturbation ξy was at least two orders of magnitude smaller that

the parallel ζ component and the normal η components. For the modes with real eigenvalue,

in only one case was ξy comparable to the smaller of the two other spatial perturbations.

Thus, for numerical simplicity, we used k = 0 and we discarded three zero eigenvalues

associated with this choice of k. We then analyzed only the 9 relevant modes. This means

that a two–dimensional analysis of the dynamics of the problem is reasonably able to obtain

the overall behaviour within the approximations we are considering. Thus, we decided to
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FIG. 2: Mode components corresponding to the first mode P1 = 36.3 min for the cases: a) ζ and

B00 = 11G; b) η and B00 = 11G; c) ζ and B00 = 100G; d) η and B00 = 100G.

investigate the unstable modes and to consider the most stable one as a reference value for

stability. The most stable mode is the one that has a real ω value and minimizes δ2Wp (it

is the mode that gives the minimum positive value of the functional δ2Wp) and the most

unstable one is the mode that has a complex ω value with the minimum value of τ ≃ 1/|ω|
(τ the instability time).

From the analysis of the table data we can conclude: 1) for each of the two investigated

magnetic values we have three complex values of ω and six real ones; 2) in the two magnetic

field cases the eigenvalues of the first mode are the same; 3) in all the other cases the eigen-

values with B00 = 100G are almost an order of magnitude smaller than the corresponding

values of B00 = 11G; 4) the series of eigenvalues is such that it could be possible that the

stable periods accumulate at ω = 0, thus the definite stability characterization is subject to

the evaluation of the generalized potential energy of the modes.

We analyzed the structure of the modes with complex values of ω as they are possible

candidates for instability (Freidberg [1982]). We noted that in the two first modes the

component that is tangent to the magnetic field | ζ | is greater than the component | η |
that is normal to it. This can be seen from Figure 2 and Figure 3 where ζ and η are shown

for the cases: B00 = 11G and B00 = 100G respectively, also using k = 0. The third mode

(see Figure 4) has comparable values of | ζ | and | η |.
The fact that for the first mode the two values of B00 give the same time eigenvalue
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FIG. 3: Mode components corresponding to the second modes: a) ζ component of P2 = 6.6 min

with B00 = 11G; b) η component of P2 = 6.6 min with B00 = 11G; c) ζ component of P2 = 0.7 min

with B00 = 11G; d) η component of P2 = 0.7 min with B00 = 100G.

FIG. 4: ζ and η components for the third mode. a) left: P3 = 4.3 min with B00 = 11G and b)

right: P3 = 0.5 min with B00 = 100G. ξy has vanishing values.

P1 = 2 · 60π/ω = 36.3i min indicates independence from the magnetic structure. This

is consistent with the relative values between the two components in the two B00 cases:

| ζ |≫| η | (see Figure 2). Thus, these magnetoacoustic modes are more of the acoustic type

| ζ |≫| η | than of the Alfvén type, i.e. | ζ |≪| η | (see Figure 5). Also, the obtained period

is included in a range (10min < P < 60min) where MHD slow acoustic modes are expected

(Aschwanden [2004]).

Figure 3 shows the second mode for B00 = 11G and B00 = 100G respectively. Also for

both cases the | ζ | perturbation is greater than the normal perturbation | η | by an order

of magnitude.

Figure 4 show the superposition of ζ and η for the third modes corresponding to P =
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FIG. 5: Schematic classification of fast and slow magnetoacoustic waves. θ is the angle between

the mode and the magnetic field: θ = 0 corresponds to large values of ζ and θ = π/2 corresponds

to large values of η.

4.3 min, B00 = 11G and P = 0.5 min, B00 = 100G respectively. Note that in these cases,

when the component η is relevant, resembling an Alfvén wave, the relation between the

eigenvalues (periods) of the different magnetic fields is P11G ≃ 10P100G, in accordance with

the relation between the two values of B00(11G) ≃ 10B00(100G) and with the corresponding

values of the Alfvén velocities of the medium vA = B00/
√
µρ.

Figure 5 gives a schematic classification of fast and slow magnetoacoustic waves from

where we can analyze the behaviour of the modes. The first mode corresponds to θ ≈ 0 and

as its eigenvalue is independent of the magnetic field it gives a slow magnetoacoustic mode.

The third mode corresponds to 0 < θ < π/2 and as P3,11G ≃ 10P3,100G it looks like a fast

magnetoacoustic mode (Priest [1982]).

Then, in order to establish the final unstable modes we integrated eq. 17 for each of the

normal modes, i.e, the integrand is the generalized potential energy density.

Figure 6 shows the generalized potential energy density as a function of the independent

variable x for the three first modes (see Table 1), and for the most stable one which was

P4. We show the case B00 = 11G, the case with B00 = 100G has the same functional

dependence. Table 3 shows the eigenvalues and the potential energy for the modes with

complex eigenvalues and for the most stable one. Note that, even when ω has complex values

for the three first modes, as δ2Wp is positive in the second and third case, the P1 = 36.3 min

mode is the only unstable one. The fact that, on the contrary to what happens with the first

mode, the other modes with complex ω seemed to accumulate at the origin is an indication

of non–real unstable modes.

Figure 7 shows the structure of the components ζ and η for the most stable mode P4
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FIG. 6: Generalized potential energy density as a function of x for the modes a) P1 = 36. min

with δ2Wp = −16.; b) P2 = 6.6 min with δ2Wp = 2.9; c) P3 = 4.3 min with δ2Wp = 6.63; d)

P4 = 3.4 min with δ2Wp = 2143, (B00 = 11G for all the cases).

and for the two cases: B00 = 11G and B00 = 100G. Note that | η |≥| ζ | and that

P4,B(11G) = 3.4 min ≃ 10 · 0.36 min = 10 · P4,B(100G)

The mode structure of the stable eigenvalues can also be compared with recent results

from the literature. Magnetoacoustic oscillations of the fast kink type have been studied

theoretically (Edwin and Roberts [1983]) and directly observed in EUV wavelengths with

TRACE (an updated review of theoretical and observational results in Aschwanden [2004]

and references therein). The observations are usually modeled by cylinders with a surface

boundary representing coronal loops. The dispersion relation is obtained matching the

internal and external MHD solutions via the requirement of continuity of pressure and

perpendicular velocity. As in our model, the observed kink-mode oscillations correspond to

the long-wavelength regime. In coronal conditions the magnetic field is almost equal inside

and outside of the loop and the kink oscillation speed is almost the Alfvén one depending

on the ratio of external and internal density values, i.e., outside and inside the loop. On

the contrary, our model is performed by perturbing a magnetic arcade, without considering
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FIG. 7: components of the most stable periods a) ζ component of P4 = 3.4min with B00 = 11G; b)

η component of P4 = 3.4 min with B00 = 11G; c) ζ component of P4 = 0.36 min with B00 = 100G;

d) η component of P4 = 0.36 min with B00 = 100G.

a cylinder with different inside and outside conditions. In eleven observational kink-mode

oscillations from which the magnetic field of the events can be inferred were obtained by

Aschwanden et al. [2002] and [2003]. The comparison of our stable mode data Pi>1 in the

B00 = 11G case is in good agreement with the kink-mode observational results. The period

range (see Table 1), the magnetic strength (B00 = 11G) and the wave speed (Alfvén speed)

fit the observations for similar loop densities and loop lengths. Also, the stable modes Pi>1

with B00 = 100G (see Table 2) have periods that are comparable with the expected range of

fast sausage-mode periods (P ± 1− 60sec) and wave speeds of the order of the Alfvén speed

(Aschwanden [2004]). However -even when a more precise comparison requires a modeling

that takes into account differences between external and internal conditions- it is worth

investigating whether these type of modes could be associated with more intense magnetic

fields in comparison to the associated kink-mode magnetic fields. This will be attempted in

future work.

A main result regarding stability is that the characteristic time τ = 36 min in which the

instability grows is large enough to guarantee a relative permanence of the structure before it

fades away: τ ≃ tobs; where tobs is the typical characteristic time in which loops seem stable

(see Costa and Stenborg [2004]). Thus, even when the non–linear stationary configuration

of Figure 1 is unstable it lasts long enough for the observations to be made. Moreover, we
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FIG. 8: Thermal perturbation (T1 component) for the cases: a) P = 36 min; B00 = 11G b)

P = 36 min; B00 = 100G

FIG. 9: Schematic description of the unstable mode superimposed on the magnetic structure. At

a definite phase the perturbation is always positive, it grows until it reaches x = ±L/2, then

decreases until it becomes zero at Z = Zt

confirm that the dynamic brightenings usually observed could be due to magnetoacoustic

waves i.e. the perturbations have short periods in comparison with the time that instability

occurs: P4 = 3.4 min and P4 = 0.36 min satisfy P4 ≪ τ .

Thus, even when further calculation is needed in order to adjust the characteristic times,

it seems that wave–based models could be able to describe the scenario of non–isothermal

coronal loops for sufficiently short times comparable with the characteristic time in which

the instability grows and the structure fades away. A more speculative argument about the

relation between wave–based models and flow–based ones is given in the conclusions.
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FIG. 10: The curve formed by the resulting component perturbations in the vector space of per-

turbations for a) B00 = 11G and b) B00 = 100G.

V. CONCLUSIONS

We investigated -via a thermodynamic energy principle- the stability of a coronal inho-

mogeneous loop model in a non–linear equilibrium state, i.e. a given thermal and magnetic

equilibrium configuration. We also obtained the frequencies and their associated modes. The

perturbation chosen was of the general type described by eq. 32 which allowed the study of a

more complex mode structure with coupled thermal and mechanical displacements from the

equilibrium state. We used a three–component Fourier basis expansion on the independent

coordinate x to characterize the unstable modes. We obtained three complex eigenvalues

and six real ones with their corresponding eigenvectors for each of the magnetic field values

B00 analyzed. The other three modes were discarded. The definite stability condition of the

modes is given by integrating the generalized potential energy density of eq. 17, allowing the

interpretation of long–wavelength disturbances that are present in inhomogeneous media.

1. We used different values of k (k = 0, k = 0.5 and k = 10) to calculate the eigenvectors

with complex eigenvalues and for all cases we obtained vanishing values of ξy with re-

spect to the other perturbed quantities. When we repeated the procedure to calculate

the modes with real eigenvectors we obtained small but not vanishing values of ξy in

comparison with the other components. Thus, two dimensional loop coronal models

with a temperature gradient of two orders of magnitude between the bottom and top

are a good approximation to study the whole three dimensional stability.

2. We can classify the structure of the modes obtained as follows: a) those for which

ζ ≫ η and b) those for which η ≥ ζ . In the first case the perturbation v1 = ∂~ξ/∂t is
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almost parallel to the magnetic field and the eigenvalue is relatively independent of its

intensity resembling the acoustic waves where vs is independent of the magnetic field

(see Figure 5). This basic longitudinal mode describes an oscillation between parallel

plasma kinetic energy and plasma internal energy. In the second case v1 = ∂~ξ/∂t

has an important orthogonal component and the eigenvalue varies with the magnetic

field P11G ≃ 10P100G resembling the dependence of the Alfvén waves vA ≃ B00. When

the wave is nearly transverse it describes an oscillation between perpendicular plasma

kinetic energy and the combined magnetic compressional and line bending energies.

Thus, the first case can be thought of as slow magnetoacoustic waves and the second

one as fast magnetoacoustic waves. The period of the slow magnetoacoustic mode is

also in accordance with observational data. Between the fast magnetoacoustic modes

and in the long wavelength regime we distinguish two possible types, depending of the

strength of the magnetic field. For the modes with Pi>1 and B00 = 11G we found that

the period range, the magnetic strength and the speed of the modes resemble a fast

kink–mode. Also, through the consideration of period range values we suggest that

modes with Pi>1 and B00 = 100G could be thought of as sausage modes. However, to

go further with the classification of mode type a modeling that takes into consideration

differences between the inside and outside of the loop is required. Also, the non–

homogeneous character of the problem places serious limitations on conclusions in

relation to stable modes.

3. We found only one unstable mode with characteristic growing time: τu = 36 min. The

approximate and most stable mode is P4 = 3.4 min for B00 = 11G and P4 = 0.36 min

for B00 = 100G. The fact that there is an unstable mode means that the equilibrium

state is unstable and that wave–based models are not adequate to fit observations.

However, as τu > P4 by an order of magnitude or two (depending on the B00 value) the

equilibrium appearance of the loop and the brightening effects of the most stable mode

could be sustained by a characteristic time which is in accordance with observational

data (τu the characteristic time of the instability).

4. A much more speculative argument, which needs further analysis and numerical cal-

culation of the non–linear behaviour of the modes, is as follows: the non–linear growth

of unstable modes influences the stable modes (they are called slaves), the resulting
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behaviour is fundamentally governed by the most unstable modes. As we obtained a

unique unstable mode, of the type of a slow magnetoacoustic wave, this indicates an

overall unstable behaviour governed by the tangential ζ component and the thermal

one. The thermal component of the unstable mode is shown in Figure 8. As a charac-

teristic wavelength of the components ζ and T1 is L/2, it would be worth investigating

whether this instability could be associated with a limit–cycle solution generally char-

acterized as a flow–based model (Gómez et al. [1990]; De Groof et al. [2004]). If this

is the case, τ should be the growth of the instability, before it reaches its non–linear

saturated value, in a new equilibrium state of an oscillatory type in the ζ and T1

components. Thus, both types of models (waves and flow) converge in explaining the

instability of a magnetic structure with long wavelength perturbations of the order of

the magnetic structure. Also, even when the modes were linearly unstable, the fact

that the dominant varying components are T1 and ζ , with the last one parallel to

the magnetic field could imply that the magnetic structure (but not the equilibrium

state) lasts much longer than what is stated by τ . Moreover, this is in accordance

with the energetic description of the type of perturbation. Slow, nearly longitudinal

magnetoacoustic modes describe a basic oscillation between parallel plasma kinetic

energy and plasma internal energy where the magnetic energy plays no relevant role.

This could justify long lasting loop observations with dynamic plasma inside. Figure 9

is a scheme of the unstable mode superimposed on the magnetic structure. In half of

the period the perturbation is always positive and grows until it reaches x = ±L/2,

then decreases until it becomes zero at x = 0 and Z = Zt. The perturbation gives the

tangential velocity v1 = ∂~ξ/∂t of the plasma particles at each point of the magnetic

configuration. Thus, in half of the period, as described in the figure, the plasma is

emerges from the chromosphere i.e., ~ξ = ζen. In the other half, the perturbation is

inverted with respect to the figure, it is always negative, i.e. ~ξ = −ζen, and the plasma

particles fall into the chromosphere. A limit cycle is known to be a closed curve (a

cycle) in the vector space formed by the perturbations. Figure 10 shows the result-

ing curve in the space of perturbations (T1, ζ) for the two magnetic fields studied. It

seems that only for relatively large values of the magnetic field limit cycle are solutions

possible.
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VI. APPENDIX: MATHEMATICAL TOOLS

The following equations and relations are needed in order to obtain eq. 34

ρt =
mp

kBTt

(35)

dρ0
dx

=
dρ0
ds

ds

dx
= △dρ0

ds
→ dT0

dx
= △dT0

ds
(36)

with △ =
√

1 + (z′)2. From Figure 1 it is easy to show

et =
ex

△ +
z′

△ez; en = −ex

△ +
z′

△ez

et · ex =
1

△ ; et · ez =
z′

△ ; en · ex =
z′

△ ; en · ez = − 1

△
and

et × ex = z′△ey; et × ey = en; ez × et =
ey

△ .

Then, the spatial perturbation ξ can be written in the Cartesian system as

~ξ = [f(ζ, η)ex + iξyey + g(ζ, η)ez] e
iky (37)

taking into account

~ξ · ex =

(

ζ(x)

△ +
z′

△η(x)

)

eiky = f(ζ, η)eiky (38)

and

~ξ · ez =
(

ζ(x)z′

△ − 1

△η(x)

)

eiky = g(ζ, η)eiky. (39)

Then,

g(ζ, η) = η(x)(1 + z′2 − f(ζ, η)z′) (40)

and

Dxf =
d

dx

(

1

△

)

ζ(x) +
1

△
dζ(x)

dx
+

d

dx

(

z′

△η(x)
z′

△
d

dx
η(x)

)

(41)
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

36. i 6.6 i 4.3 i 3.4 3.1 1.8 1.4 1.3 1.0 0.0 0.0 0.0

TABLE I: Periods associated with the unstable and stable eigenvalues (minutes) for B00 = 11G.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

36.3 i 0.7 i 0.5 i 0.36 0.33 0.2 0.15 0.14 0.1 0.0 0.0 0.0

TABLE II: Periods associated with the unstable and stable eigenvalues (minutes) for B00 = 100G.

Dxxf =
d2

dx2

(

1

△

)

ζ(x) + 2
d

dx

1

△
dζ(x)

dx
+

1

△
d2

dx2
η(x)+

d2

dx2

(

z′

△

)

η(x) + 2
d

dx

(

z′

△

)

η(x)

dx
+

z′

△
d2

dx2
η(x). (42)

Finally to obtain a non–dimensional equation the following changes were made

ρ → ρ

ρt
; T → T

Tt

; B0 → B0

B00
; x, z → x, z

L
.

The other non–dimensional quantities are obtained immediately from these ones.
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[1990] Gómez, D., Sicardi Schifino, A., Ferro Fontán, C., 1990, Ap.J. 352, 318

[1982] Freidberg, J.P, 1982, Reviews of Modern Physics, 54, 3

[1978] Graham, R., 1978, Lec. Notes in Phys. 84, 83

[1999] Handy, B.N., Acton, L.W., Kankelborg, C.C., 1999, Solar Phys. 184, 229

[1980] Jordan, c., 1980, A&A 86, 355

[1976] Keizer, J., 1976, J. Chem. Phys. 69, 2609

[1988] Klimchuk, J.A., Mariska, J.T., 1988, Ap.J. 328, 324

[1987] Lavenda, B.H., 1985, ”Nonequilibium Statistical Thermodynamics” (Chicehster:Wiley-

Interscience);

J. Keizer, 1987, ”Statistical Thermodynamics of Nonequilibium Processes” (New York:

Springer-Verlag)

[1993] Lavenda, B.H., 1993, ”Thermodynamics of Irreversible Processes” (New York: Dover)

[1981] Lerche, I. and Low, B. C., 1981, Solar Phys. 69, 327L

[1984] Mariska, J.T., 1984, Ap.J. 281, 435

[2000] Nakariakov, V.M., Verwichte, E., Berghmans, D., Robbrecht, E., 2000, A&A 362, 1151

[1999] Ofman, L., Nakariakov, V.M., DeForest, C.E., 1999, Ap.J. 514, 441

28



[1931] Onsager, L., 1931, Phys. Rev. 37, 405

[1982] Priest, E., 1982, ”Solar Magneto-hydrodynamcis” (Boston:Publishing Company)

[2000] Reale, F., Peres, G., 2000, Ap.J.L 528, L45

[1981] Serio, S., Peres, G., Vaiana, G.S., Golub, L. and Rosner, R., Ap.J. 243, 288, 1981

[1991] Sicardi Schifino, A. C., Costa, A. and Ferro Fontán, C., 1991, J. Math. Phys. 32, 1350

[1985] Sicardi Schifino, A. C. and Ferro Fontán, C., 1985, Phys. Lett. 113A, 263

[1989a] Sicardi Schifino, A. C. and Ferro Fontán, C., 1989, Phys. Lett. A 134, 371

[2004] Sicardi Schifino, A. C., Ferro Fontán, C., González, R., Costa, A., 2004, Physica A 334, 201
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