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Abstract

LC-loops, RC-loops and C-loops are collectively called central loops. It is shown
that an LC(RC)-loop is a left(right) universal loop. But an LC(RC)-loop is a universal
loop if and only if it is a right(left) universal loop. It is observed that not all RC-loops
or LC-loops or C-loops are universal loops. But if an RC-loop(LC-loop, C-loop) is
universal, then it is a right Bol loop(left Bol loop, Moufang loop) respectively. If a
loop and its right or left isotope are commutative then the loop is a C-loop if and only
if its right or left isotope is a C-loop. If a C-loop is central square and its right or left
isotope is an alternative central square loop, then the latter is a C-loop. Necessary and
sufficient condition for an LC-loop(RC-loop) to be a left(right)G-loop is established.
Consequently, necessary and sufficient conditions for an LC-loop, and an RC-loop to
be a G-loop are established. A necessary and sufficient condition for a C-loop to be a
G-loop is established.

1 Introduction

LC-loops, RC-loops and C-loops are loops that respectively satisfy the identities

(xx)(yz) = (x(xy))z, (zy)(xx) = z((yx)x) and x(y(yz)) = ((xy)y)z.

These three types of loops will be collectively called central loops. In the theory of loops,
central loops are some of the least studied loops. They have been studied by Phillips and
Vojtěchovský [23, 21, 22], Kinyon et. al. [24, 17, 18], Ramamurthi and Solarin [25], Fenyves
[10] and Beg [4, 5]. The difficulty in studying them is as a result of the nature of the identities
defining them when compared with other Bol-Moufang identities. It can be noticed that in
the aforementioned LC identity, the two x variables are consecutively positioned and neither
y nor z is between them. A similarly observation is true in the other two identities(i.e the
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RC and C identities). But this observation is not true in the identities defining Bol loops,
Moufang loops and extra loops. Fenyves [10] gave three equivalent identities that define
LC-loops, three equivalent identities that define RC-loops and only one identity that defines
C-loops. But recently, Phillips and Vojtěchovský [21, 22] gave four equivalent identities
that define LC-loops and four equivalent identities that define RC-loops. Three of the four
identities given by Phillips and Vojtěchovský are the same as the three already given by
Fenyves and their basic properties are found in [23, 25, 10, 9]. Loops such as Bol loops,
Moufang loops, extra loops are the most popular loops of Bol-Moufang type whose isotopic
invariance have been considered. But for LC-loops, RC-loops and C-loops, up till this
moment, there is no outstanding result on their isotopic invariance.

The left and right translation maps on a loop (L, ·) are the bijections Lx : L → L and
Rx : L → L, respectively defined as yRx = y · x = yx and yLx = x · y = xy for all x, y ∈ L.
The following subloops of a loop are important for this work.

Let (L, ·) be a loop. The left nucleus of L is the set

Nλ(L, ·) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.

The right nucleus of L is the set

Nρ(L, ·) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.

The middle nucleus of L is the set

Nµ(L, ·) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.

The nucleus of L is the set

N(L, ·) = Nλ(L, ·) ∩Nρ(L, ·) ∩Nµ(L, ·).

The centrum of L is the set

C(L, ·) = {a ∈ L : ax = xa ∀ x ∈ L}.

The center of L is the set
Z(L, ·) = N(L, ·) ∩ C(L, ·).

L is said to be a centrum square loop if x2 ∈ C(L, ·) for all x ∈ L. L is said to be a
central square loop if x2 ∈ Z(L, ·) for all x ∈ L. L is said to be left alternative if for all
x, y ∈ L, x · xy = x2y and is said to right alternative if for all x, y ∈ L, yx · x = yx2. Thus,
L is said to be alternative if it is both left and right alternative.

The triple (U, V,W ) such that U, V,W ∈ SYM(L, ·) is called an autotopism of L if and
only if

xU · yV = (x · y)W ∀ x, y ∈ L.

SYM(L, ·) is called the permutation group of the loop (L, ·). The group of autotopisms
of L is denoted by AUT (L, ·). Let (L, ·) and (G, ◦) be two distinct loops. The triple

2



(U, V,W ) : (L, ·) → (G, ◦) such that U, V,W : L → G are bijections is called a loop
isotopism if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ L.

Thus, L and G are called loop isotopes. If the triple (U, V, I) : G = (L, ·) → H = (L, ◦) is an
isotopism, then H is called a principal isotope of G. If U = Rg and V = Lf , then H is called
an f, g-principal isotope of G. The study of f, g-principal isotopes is important because to
every arbitrary isotope J = (G, ∗) of a loop G = (L, ·), there exists an f, g-principal isotope
H = (L, ◦) of G = (L, ·) such that J = (G, ∗) ∼= H = (L, ◦). Hence, to verify the isotopic
invariance(or universality) of a loop property, one simply needs to verify the identity in all
f, g-principal isotopes. Therefore, a loop property or identity is isotopic invariant if and only
if all its f, g-principal isotopes obey that property. A loop that is isomorphic to all its loop
isotopes is called a G-loop. Thus, a loop is a G-loop if and only if it is isomorphic to all its
f, g-principal isotopes. Some popular G-loops are CC-loops(Goodaire and Robinson [12, 13]),
extra loops, K-loops(Basarab [1, 3] but not the K-loops of Kiechle [14]), VD-loops(Basarab
[3]) and Buchsteiner loops(Buchsteiner [6], Basarab [2], Csörgő et. al. [8]). Some conditions
that characterisze a G-loop are highlighted below.

If H is a loop, then the following conditions are equivalent.

1. H is a G-loop.

2. Every element x ∈ H is a companion of some right and some left pseudo-
automorphisms of H . Pflugfelder [16]

3. There exists a permutation θ of H such that (θR−1

x , θL−1

y , θ) is an autotopism of H for
all x, y in H . Chiboka and Solarin [7], Kunen [20]

The study of the f, g-principal isotopes of central loops is not easy because of the nature
of the identities defining them as mentioned earlier. Although its easy to study the f, g-
principal isotopes of some other loops of Bol-Moufang type like Bol loops and Moufang
loops. To salvage the situation, the left and right isotopes of central loops will be studied.
According to Nagy and Strambach [15], the f, e-principal isotopes and e, g-principal isotopes
of a loop with identity element e are respectively called its right and left isotopes. The left
and right isotopes of a loop (Ω, ·) shall be represented by (Ω, e, g) and (Ω, f, e) respectively.

Most of the expressions that will made in this work are dual in nature i.e if we write
’statement or word or symbol A(B)[C] implies a statement or word or symbol A(B)[C]’ then
we mean that ’A implies A’, ’B implies B’ and ’C implies C’.

In this work, it is shown that an LC(RC)-loop is a left(right) universal loop. But an
LC(RC)-loop is a universal loop if and only if it is a right(left) universal loop. It is observed
that not all RC-loops or LC-loops or C-loops are universal loops. But if an RC-loop(LC-loop,
C-loop) is universal, then it is a right Bol loop(left Bol loop, Moufang loop) respectively. If a
loop and its right or left isotope are commutative then the loop is a C-loop if and only if its
right or left isotope is a C-loop. If a C-loop is central square and its right or left isotope is an
alternative central square loop, then the latter is a C-loop. Necessary and sufficient condition
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for an LC-loop(RC-loop) to be a left(right)G-loop is established. Consequently, necessary
and sufficient conditions for an LC-loop, and an RC-loop to be a G-loop are established. A
necessary and sufficient condition for a C-loop to be a G-loop is established.

2 Preliminary

Definition 2.1 Let the triple α = (A,B,C) be an isotopism of the groupoid (G, ·) onto a
groupoid (H, ◦).

(a) If α = (A,B,B), then the triple is called a left isotopism and the groupoids are called
left isotopes.

(b) If α = (A,B,A), then the triple is called a right isotopism and the groupoids are called
right isotopes.

(c) If α = (A, I, I), then the triple is called a left principal isotopism and the groupoids are
called left principal isotopes.

(d) If α = (I, B, I), then the triple is called a right principal isotopism and the groupoids
are called right principal isotopes.

Theorem 2.1 Let (G, ·) and (H, ◦) be two distinct left(right) isotopic loops with the former
having an identity element e. For some g(f) ∈ G, there exists an e, g(f, e)-principal isotope
(G, ∗) of (G, ·) such that (H, ◦) ∼= (G, ∗).

A loop is a left(right) universal ”certain” loop if and only if all its left(right) isotopes
are ”certain” loops. A loop is a universal ”certain” loop if and only if it is both a left and
a right universal ”certain” loop. A loop is called a right G-loop(Gρ-loop) if and only if it is
isomorphic to all its right loop isotopes. A loop is called a left G-loop(Gλ-loop) if and only
if it is isomorphic to all its left loop isotopes. As shown by Wilson [26], a loop is a G-loop
if and only if it is isomorphic to all its right and left isotopes. Thus, a loop is a G-loop if
and only if it is a Gρ-loop and a Gλ-loop. Kunen [19] demonstrated the use of Gρ-loops and
Gλ-loops.

Definition 2.2 ([16], III.3.9 Definition, III.3.10 Definition, III.3.15 Definition)
Let (L, ·) be a loop and U, V,W ∈ SYM(L, ·).

1. If (U, V,W ) ∈ AUT (L, ·) for some V,W , then U is called autotopic,

• the set of autotopic bijections in a loop (L, ·) is represented by Σ(L, ·).

2. If (U, V,W ) ∈ AUT (L, ·) such that W = U, V = I, then U is called λ-regular,

• the set of all λ-regular bijections in a loop (L, ·) is represented by Λ(L, ·).

3. If (U, V,W ) ∈ AUT (L, ·) such that U = I,W = V , then V is called ρ-regular,
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• the set of all ρ-regular bijections in a loop (L, ·) is represented by P (L, ·).

4. If there exists V ∈ SYM(L, ·) such that xU · y = x · yV for all x, y ∈ L, then U is
called µ-regular while U ′ = V is called its adjoint.

• The set of all µ-regular bijections in a loop (L, ·) is denoted by Φ(L, ·), while the
collection of all adjoints in the loop (L, ·) is denoted by Φ∗(L, ·).

Theorem 2.2 ([16], III.3.11 Theorem, III.3.16 Theorem)

The set Λ(Q, ·)
(

P (Q, ·)
)[

Φ(Q, ·)
]

of all λ-regular (ρ-regular)[µ-regular] bijections of a

quasigroup (Q, ·) is a subgroup of the group Σ(Q, ·) of all autotopic bijections of (Q, ·).

Corollary 2.1 ([16], III.3.12 Corollary, III.3.16 Theorem)
If two quasigroups Q and Q′ are isotopic, then the corresponding groups Λ and Λ′(P and

P ′)[Φ and Φ′]{Φ∗ and Φ′∗} are isomorphic.

Throughout this study, the following notations for translations will be adopted; Lx : y 7→
xy and Rx : y 7→ yx for a loop while L′

x : y 7→ xy and R′

x : y 7→ yx for its loop isotope.

Theorem 2.3 A loop L is an LC-loop if and only if (L2

x, I, L
2

x) ∈ AUT (L) for all x ∈ L.

Proof
Let L be an LC-loop ⇔ (x · xy)z = (xx)(yz) ⇔ (x · xy)z = x(x · yz) by [9] ⇔ (L2

x, I, L
2

x) ∈
AUT (L) for all x ∈ L.

Theorem 2.4 A loop L is an RC-loop if and only if (I, R2

x, R
2

x) ∈ AUT (L) forall x ∈ L.

Proof
Let L be an RC-loop, then z(yx · x) = zy · xx ⇔ y(yx ·x) = (zy · x)x by [9] ⇔ (I, R2

x, R
2

x) ∈
AUT (L) ∀ x ∈ L.

Lemma 2.1 A loop is an LC(RC)-loop if and only if L2

x(R
2

x) is λ(ρ)-regular i.e L2

x(R
2

x) ∈
Λ(L)(P (L)).

Proof
Using Theorem 2.3(Theorem 2.4), the rest follows from the definition of λ(ρ)-regular bijec-
tion.

Theorem 2.5 A loop L is a C-loop if and only if R2

x is µ-regular and the adjoint of R2

x,
denoted by (R2

x)
∗ = L2

x i.e R2

x ∈ Φ(L) and L2

x ∈ Φ∗(L).

Proof
Let L be a C-loop then (yx·x)z = y(x·xz) ⇒ yR2

x ·z = y ·zL2

x ⇒ R2

x ∈ Φ(L) and L2

x ∈ Φ∗(L).
Conversely: do the reverse of the above.
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Theorem 2.6 Let G be a loop with identity element e and H a quasigroup such that they
are isotopic under the triple α = (A,B,C).

1. If C = B, then G
A
∼= H if and only if eB ∈ Nρ(H).

2. If C = A, then G
B
∼= H if and only if eA ∈ Nλ(H).

Proof
Here, when Lx and Rx are respectively the left and right translations of the loop G then the
left and right translations of its quasigroup isotope H are denoted by L′

x and R′

x respectively.
Let (G, ·) and (H, ◦) be any two distinct quasigroups. If A,B,C : G → H are permuta-

tions, then the following statements are equivalent :

• the triple α = (A,B,C) is an isotopism of G upon H ,

R′

xB = A−1RxC ∀ x ∈ G (1)

L′

yA = B−1LyC ∀ y ∈ G (2)

1. When α = (A,B,B), R′

eB = A−1B ⇒ B = AR′

eB. So,

α = (A,AR′

eB, AR
′

eB) = (A,A,A)(I, R′

eB, R
′

eB), α : G → H.

If (A,A,A, ) : G → H is an isotopism i.e A is an isomorphism, then
(I, R′

eB, R
′

eB) : H → H is an autotopism if and only if eB ∈ Nρ(H).

2. When α = (A,B,A), L′

eA = B−1A ⇒ A = BL′

eA. So,

α = (BL′

eA, B, BL′

eA) = (B,B,B)(L′

eA, I, L
′

eA), α : G → H.

If (B,B,B, ) : G → H is an isotopism i.e B is an isomorphism, then
(L′

eA, I, L
′

eA) : H → H is an autotopism if and only if eA ∈ Nλ(H).

3 Main Results

Theorem 3.1 Let G = (Ω, ·) be a loop with identity element e such that H = (Ω, ◦) =
(Ω, e, g) is any of its left isotopes. G is an LC-loop if and only if H is an LC-loop. Further-
more, G is a Gλ-loop if and only if e ∈ Nρ(H).

Proof
By Lemma 2.1, G is an LC-loop⇔ L2

x ∈ Λ(G). From Equation 2 in the proof of Theorem 2.6,
L′

xg = Lx for all g, x ∈ G. By Corollary 2.1, there exists isomorphisms Λ(G) → Λ(H). Thus
L′2

y ∈ Λ(H) ⇔ H is an LC-loop. The converse is proved in a similar way.
To prove the last part, we shall use the first part of Theorem 2.6. Thus, G is a Gλ-loop

if and only if e ∈ Nρ(H).
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Corollary 3.1 An LC-loop is a left universal loop.

Proof
This follows from Theorem 3.1.

Corollary 3.2 An LC-loop is a

1. universal loop if and only if it is a right universal loop.

2. G-loop if and only if it is a Gρ-loop and its identity element is in the right nucleus of
all its left isotopes.

Proof
This follows from Theorem 3.1.

Theorem 3.2 Let G = (Ω, ·) be a loop with identity element e such that H = (Ω, ◦) =
(Ω, f, e) is any of its right isotopes. G is an RC-loop if and only if H is an RC-loop.
Furthermore, G is a Gρ-loop if and only if e ∈ Nλ(H).

Proof
By Lemma 2.1, G is an RC-loop⇔ R2

x ∈ P (G). From Equation 1 in the proof of Theorem 2.6,
R′

fx = Rx for all f, x ∈ G. By Corollary 2.1, there exists isomorphisms P (G) → P (H). Thus
R′2

y ∈ P (H) ⇔ H is an RC-loop.
To prove the last part, we shall use the second part of Theorem 2.6. Thus, G is a Gρ-loop

if and only if e ∈ Nλ(H).

Corollary 3.3 An RC-loop is a left universal loop.

Proof
This follows from Theorem 3.2.

Corollary 3.4 An RC-loop is a

1. universal loop if and only if it is a left universal loop.

2. G-loop if and only if it is a Gλ-loop and its identity element is in the left nucleus of
all its right isotopes.

Proof
This follows from Theorem 3.2.

Lemma 3.1 Not all RC-loops or LC-loops or C-loops are universal loops.

Proof
As shown in Theorem II.3.8 and Theorem II.3.9 of [16], a left(right) inverse property loop is
universal if and only if it is a left(right) Bol loop. Not all RC-loops or LC-loops or C-loops
are right Bol loops or left Bol loops or Moufang loops respectively. Hence, the proof follows.
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Lemma 3.2 If an RC-loop(LC-loop, C-loop) is universal, then it is a right Bol loop(left Bol
loop, Moufang loop) respectively.

Proof
This follows from the results in Theorem II.3.8 and Theorem II.3.9 of [16] that a left(right)
inverse property loop is universal if and only if it is a left(right) Bol loop.

Remark 3.1 From Lemma 3.2, it can be inferred that an extra loop is a C-loop and a
Moufang loop.

Theorem 3.3 Let G = (Ω, ·) be a loop with identity element e such that H = (Ω, ◦) =
(Ω, e, g) is any of its left isotopes. If G is a central square C-loop and H is an alternative
central square loop, then H is a C-loop. Furthermore, G is a Gλ-loop if and only if e ∈
Nρ(H).

Proof
G is a C-loop ⇔ R2

x ∈ Φ(G) and (R2

x)
∗ = L2

x ∈ Φ∗(G) for all x ∈ G. From Equation 2 in the
proof of Theorem 2.6, L′

xg = Lx for all g, x ∈ G. So using Corollary 2.1, R′2

y ∈ Φ(H) and
( R′2

y )∗ = L′2

y ∈ Φ∗(H) ⇔ H is a C-loop.
The proof of the last part is similar to the way it was proved in Theorem 3.1.

Theorem 3.4 Let G = (Ω, ·) be a loop with identity element e such that H = (Ω, ◦) =
(Ω, f, e) is any of its right isotopes. If G is a central square C-loop and H is an alternative
central square loop, then H is a C-loop. Furthermore, G is a Gρ-loop if and only if e ∈
Nλ(H).

Proof
G is a C-loop ⇔ R2

x ∈ Φ(G) and (R2

x)
∗ = L2

x ∈ Φ∗(G) for all x ∈ G. From Equation 1 in the
proof of Theorem 2.6, R′

fx = Rx for all f, x ∈ G. So using Corollary 2.1, R′2

y ∈ Φ(H) and
( R′2

y )∗ = L′2

y ∈ Φ∗(H) ⇔ H is a C-loop.
The proof of the last part is similar to the way it was proved in Theorem 3.2.

Theorem 3.5 Let G = (Ω, ·) be a commutative loop with identity element e such that H =
(Ω, ◦) = (Ω, e, g) is any of its commutative left isotopes. G is a C-loop if and only if H is a
C-loop. Furthermore, G is a Gλ-loop if and only if e ∈ Nρ(H).

Proof
The proof is similar to that of Theorem 3.3.

Theorem 3.6 Let G = (Ω, ·) be a commutative loop with identity element e such that H =
(Ω, ◦) = (Ω, f, e) is any of its commutative right isotopes. G is a C-loop if and only if H is
a C-loop. Furthermore, G is a Gρ-loop if and only if e ∈ Nλ(H).

Proof
The proof is similar to that of Theorem 3.3.
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Lemma 3.3 A central loop is a G-loop if and only if its identity element belongs to the
intersection of the left cosets formed by its nucleus.

Proof
Let G be a central loop. Let its left isotopes be denoted by Hi, i ∈ Π and let its right
isotopes be denoted by Hj, j ∈ ∆. By Theorem 2.6, G is a Gλ-loop if and only if e ∈ Nρ(Hi)
for all i ∈ Π. Also, G is a Gρ-loop if and only if e ∈ Nλ(Hj) for all j ∈ ∆. A loop is
a G-loop if and only if it is a Gρ-loop and a Gλ-loop. So G is a G-loop if and only if

e ∈
⋂

i∈Π,j∈∆

(

Nρ(Hi) ∩Nλ(Hj)
)

.

Nρ(Hi) and Nλ(Hj) are subgroups for all i ∈ Π and j ∈ ∆. Let G = (Ω, ·) so that

Hi = (Ω, ◦i) = (Ω, e, gi), i ∈ Π and Hj = (Ω, ◦j) = (Ω, fj , e), j ∈ ∆. Recall that Nρ(G)
Lgi∼=

Nρ(Hi) for all i ∈ Π i.e Nρ(G) ∼= Nρ(Hi)(III.2.6 Theorem [16]) under the mapping Lgi .

Similarly, Nλ(G)
Rfj

∼= Nλ(Hj) for all j ∈ ∆ i.e Nλ(G) ∼= Nλ(Hj)(III.2.6 Theorem [16]) under

the mapping Rfj . Therefore, G is a G-loop if and only if e ∈
⋂

i∈Π,j∈∆

(

giNρ(G)∩Nλ(G)fi

)

.

In the case ofG been a C-loop,N(G) = Nρ(G) = Nλ(G), N(G) ⊳ G and [G : N(G)] 6= 2.

So, G is a G-loop if and only if e ∈
⋂{i∈Π,j∈∆}

g∈{gi,fj}
gN .

Corollary 3.5 Every alternative central square left(right) isotope G of a Cayley loop or
RA-loop or M16(Q8) × E × A where E is an elementary abelian 2-group, A is an abelian
group(all of whose elements have finite odd order) and M16(Q8) is a Cayley loop, is a C-loop.

Proof
From [11], the Cayley loop and ring alternative loops(RA-loops) are all central square. Hence,
by Theorem 3.3 and Theorem 3.4, the claim that G is a C-loop follows.

References

[1] A. S. Basarab (1992), K-loops(Russian), Buletinul AS Rep. Moldova, ser. Matematica
1,7, 28–33.

[2] A. S. Basarab (1994), Osborn’s G-loop, Quasigroups and Related Systems 1, 51–56.

[3] A. S. Basarab (1996), Generalised Moufang G-loops, Quasigroups and Related Systems
3, 1–6.

[4] A. Beg (1977), A theorem on C-loops, Kyungpook Math. J. 17(1), 91–94.

[5] A. Beg (1980), On LC-, RC-, and C-loops, Kyungpook Math. J. 20(2), 211–215.

[6] H. H. Buchsteiner (1976), A certain class of binary loops(Russian), Nets and quasi-
groups, Mat. Issled., vyp. 39, 54–56.

9



[7] V. O. Chiboka and A. R. T. Solarin (1993), Autotopism characterization of G-loops,
Scientific Annals of Al.I.Cuza. Univ. 39, 1, 19–26.
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[9] J. Dénes and A. D. Keedwell (1974), Latin square and their applications, Academic
Press, New York, London.

[10] F. Fenyves (1969), Extra Loops II, Publ. Math. Debrecen 16, 187–192.

[11] E. G. Goodaire, E. Jespers and C. P. Milies (1996), Alternative Loop Rings, NHMS(184)
Elsevier.

[12] E. G. Goodaire and D. A. Robinson (1982), A class of loops which are isomorphic to
all loop isotopes, Can. J. Math. 34, 662–672.

[13] E. G. Goodaire and D. A. Robinson (1990), Some special conjugacy closed loops, Canad.
Math. Bull. 33, 73–78.

[14] H. Kiechle (2002), Theory of K-loops, Springer Verlag, 186pp.

[15] P. T. Nagy and K. Strambach (1994), Loops as invariant sections in groups, and their
geometry, Canad. J. Math. 46, 5, 1027–1056.

[16] H. O. Pflugfelder (1990), Quasigroups and Loops : Introduction, Heldermann Verlag,
Sigma series in Pure Mathematics : 7.

[17] M. K. Kinyon, K. Kunen, J. D. Phillips (2002), A generalization of Moufang and Steiner
loops, Alg. Univer. 48,1, 81–101.

[18] M. K. Kinyon, J. D. Phillips and P. Vojtěchovský (2005), Loops of Bol-Moufang type
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