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LOOP COPRODUCTS IN STRING TOPOLOGY AND

TRIVIALITY OF HIGHER GENUS TQFT OPERATIONS

Hirotaka Tamanoi

University of California, Santa Cruz

Abstract. Cohen and Godin constructed positive boundary topological quantum field theory (TQFT)

structure on the homology of free loop spaces of oriented closed smooth manifolds by associating a

certain operations called string operations to orientable surfaces with parametrized boundaries. We

show that all TQFT string operations associated to surfaces of genus at least one vanish identically.

This is a simple consequence of properties of the loop coproduct which will be discussed in detail. One

interesting property is that the loop coproduct is nontrivial only on the degree d homology group of

the connected component of LM consisting of contractible loops, where d = dimM , with values in the
degree 0 homology group of constant loops. Thus the loop coproduct behaves in a dramatically simpler

way than the loop product.
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§1. Introduction and triviality of higher genus TQFT string operations

Let M be a connected closed orientable smooth manifold of dimension d, and let LM =
Map(S1,M) be its free loop space of continuous maps from the circle S1 to M . Chas and Sullivan
[CS] showed that its homology H∗(LM) = H∗+d(LM) comes equipped with an associative graded
commutative product of degree −d, and a compatible Lie bracket of degree 1. These two products
together with an operator ∆ of degree 1 with ∆2 = 0, coming from the natural S1 action on LM ,
give H∗(LM) the structure of a Batalin-Vilkovisky algebra.

The associative product called the loop product was generalized to so called string operations
by Cohen and Godin [CG]. Let Σ be an orientable connected surface of genus g with p incoming
and q outgoing parametrized boundary circles, where we require that q ≥ 1. To such a surface Σ,
they associated an operator µΣ of the form

µΣ : H∗

(

(LM)p
)

−→ H∗+χ(Σ)d

(

(LM)q
)

,

in such a way that µΣ depends only on the topological type of the surface Σ and µΣ is compatible
with sewing of surfaces along parametrized boundaries. These operations give rise to topological
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2 HIROTAKA TAMANOI

quantum field theory (TQFT) without a counit. When Σ is a pair of pants with either 2 incoming
or 2 outgoing circles, we get a product and and a coproduct:

µ : H∗(LM × LM) −→ H∗−d(LM),

Ψ : H∗(LM) −→ H∗−d(LM × LM),

where the product µ coincides with the loop product of Chas and Sullivan. See formula (2-8)
for a homotopy theoretic definition of the loop product. Since any surface Σ can be decomposed
into pairs of pants and capping discs, we can compute the string operation µΣ by composing loop
products and loop coproducts according to pants decompositions of Σ. In this paper, we study
properties of coproduct in detail, and as a consequence we show that for higher genus surfaces Σ,
the string operations µΣ are always trivial.

Theorem A. Let Σ be an oriented connected compact surface of genus g with p incoming and

q ≥ 1 outgoing parametrized boundary circles. If g ≥ 1 or q ≥ 3, then the associated string

operation µΣ vanishes.

Thus the only nontrivial TQFT string operations correspond to genus 0 surfaces with at most
2 outgoing circles. To elements a1, a2, . . . , ap ∈ H∗(LM), such operations associate either their
loop product a1a2 · · · ap or its loop coproduct Ψ(a1a2 · · · ap). Thus once we understand the loop
coproduct Ψ, we know the behavior of all string operations associated to orientable surfaces with
parametrized boundaries. For a ∈ H∗(LM), let |a| denote its homological degree. Let c0 be the
constant loop at the base point x0 in M , and let [c0] its homology class in H0(LM).

The connected components of LM are parametrized by conjugacy classes of π1(M). Let (LM)[1]
be the component corresponding to the conjugacy class of 1 ∈ π1(M). This is the space of
contractible loops in M .

In addition to the Frobenius compatibility (Theorem 2.2), properties of the loop coproduct are
described in Theorem B, whose part (2) shows dramatic simplicity of the loop coproduct compared
with the loop product. Theorem B is the main result of this paper. Theorem A is only one of the
consequences of Theorem B. We will discuss some of the other consequences in Theorem C.

Theorem B. (1) Let p ≥ 0, and let a1, a2, . . . , ap ∈ H∗(LM) be arbitrary p elements. Then the

image of the loop coproduct Ψ lies in the subset H∗(LM) ⊗ H∗(LM) ⊂ H∗(LM × LM) of cross

products, and for any 0 ≤ ℓ ≤ p it is given by

Ψ(a1 · a2 · · · ap) = χ(M)[c0]a1 · a2 · · · · · aℓ ⊗ [c0]aℓ+1 · · · · · ap ∈ H∗(LM)⊗H∗(LM),

where χ(M) is the Euler characteristic of M .

(2) The loop coproduct Ψ is nontrivial only on Hd

(

(LM)[1]
)

, the degree d homology group of the

component of contractible loops in M . On Hd

(

(LM)[1]
)

, the loop coproduct Ψ has values in the

homology classes of constant loops H0

(

(LM)[1]
)

⊗H0

(

(LM)[1]
)

∼= Z[c0]⊗ [c0].

Theorem B is proved in Theorem 3.1. Note that if M has vanishing Euler characteristic, for
example ifM is odd dimensional, then its loop coproduct is identically 0. Before we prove the above
result in §3, in §2 we will prove various general results on the loop coproduct including Frobenius
compatibility (Theorem 2.2) with precise treatment of signs, and Frobenius compatibility and
coderivation compatibility with respect to cap products (Theorem 2.4).

Since the proof of Theorem A is more or less straightforward, we give its proof below. This
vanishing property is the basis of triviality of stable higher string operations [T2] in the context of
homological conformal field theory in which homology classes of moduli spaces of Riemann surfaces
give rise to string operations [G].
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As a consequence of Theorem B, we obtain the following result on torsion elements proved in §3.
Let ι : ΩM −→ LM be the inclusion map from the based loop space to the free loop space. Recall
that the transfer map ι! : H∗+d(LM) −→ H∗(ΩM) obtained by intersecting cycles with ΩM is an
algebra map with respect to the loop product in H∗(LM) and the Pontrjagin product in H∗(ΩM).

Theorem C. Let M be an even dimensional manifold with χ(M) 6= 0. Consider the following

composition map

ι∗ ◦ ι! : Hp+d(LM)
ι!−→ Hp(ΩM)

ι∗−→ Hp(LM).

If p 6= 0, then the image of ι∗ι! consists of torsion elements of order a divisor of χ(M). Namely,

χ(M)ι∗ι!(a) = χ(M)[c0] · a = 0 if |a| 6= d for a ∈ H∗(LM).

Thus, rationally, the composition is a trivial map if p 6= 0.

See Example 3.6 for explicit examples of this fact when M is S2n or CPn.

Since Theorem A can be quickly proved from Theorem B, we give its proof here in the remainder
of this introduction.

Proof of Theorem A from Theorem B. Let S(p, q) be a genus 0 surface with p incoming and
q outgoing parametrized boundary circles, and let T be a torus with 1 incoming and 1 outgoing
parametrized boundary circles. Then any surface Σ of genus g with p incoming boundary circles and
q outgoing boundary circles can be decomposed as S(p, 1)#T# · · ·#T#S(1, q), where T appears
g times. Correspondingly, the associated string operation µΣ can be decomposed as

µΣ = µS(1,q) ◦ µT ◦ · · · ◦ µT ◦ µS(p,1).

Assume g ≥ 1. We compute µT using a decomposition of T into two pairs of pants corresponding
to the loop coproduct and the loop product. For any a ∈ H∗(LM),

µT (a) = µ ◦Ψ(a) = µ
(

χ(M)[c0]⊗ ([c0] · a)
)

= (−1)dχ(M)([c0] · [c0]) · a.

Since [c0] · [c0] = 0 ∈ H−d(LM) by dimensional reason, we have µT (a) = 0 for all a ∈ H∗(LM). In
view of the above decomposion of µΣ, this proves the vanishing of string operations associated to
surfaces of genus g ≥ 1.

Next we assume q ≥ 3. Then µS(1,q) = (µS(1,q−2) ⊗ 1⊗ 1) ◦ (Ψ⊗ 1) ◦Ψ. For any a ∈ H∗(LM),

(Ψ⊗ 1) ◦Ψ(a) = (Ψ⊗ 1)(χ(M)[c0]⊗ [c0] · a) = χ(M)Ψ([c0])⊗ [c0] · a = 0,

since Ψ([c0]) = 0 ∈ H−d(LM × LM) by dimensional reason. Hence µS(1,q) = 0 for q ≥ 3. Again,
in view of the above decomposition of µΣ, this proves q ≥ 3 case of Theorem A. �

In §2, we discuss general properties of the loop coproduct in detail and prove Frobenius com-
patibility (Theorem 2.2), a symmetry property (Proposition 2.3), and coderivation property of
certain cap products (Theorem 2.4). In §3. we prove Theorem B and related results in Theorem
3.1, and deduce their consequences including Theorem C proved in Corollary 3.3 and Corollary
3.4. We also discuss torsion properties of certin loop bracket elements in Corollary 3.5, and other
miscellaneous properties of image elements of the loop coproduct in Propositions 3.7 and 3.8. All
homology groups in this paper have integer coefficients.
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§2. The loop coproduct and its Frobenius compatibility

As before, let LM be the free loop space of continuous maps from the circle S1 = R/Z to a
connected oriented closed smooth d-manifold M . Cohen and Jones [CJ] gave a homotopy theoretic
description of the loop product. The loop coproduct can be described in a similar way, and we
study its properties in this section. A description of the loop coproduct using transversal chains
is given in [S].

Let p, p′ : LM −→ M be evaluation maps given by p(γ) = γ(0) and p′(γ) = γ(12 ) for γ ∈ LM .

We consider the following diagram where SM = (p, p′)−1
(

φ(M)
)

consists of loops γ such that

γ(0) = γ(1
2
), and q is the restriction of (p, p′) to this subspace. Let ι : SM −→ LM be the inclusion

map and let j : SM −→ LM × LM be given by j(γ) = (γ[0, 1
2
], γ[ 1

2
,1]). The map φ : M −→ M ×M

is the diagonal map.

LM
ι

←−−−− SM
j

−−−−→ LM × LM

(p,p′)





y

q





y

M ×M
φ

←−−−− M

Then the coproduct map Ψ is defined by the following composition of maps:

Ψ = j∗ ◦ ι! : H∗+d(LM)
ι!−→ H∗(LM)

j∗
−→ H∗(LM × LM),

where ι! is the transfer map, also called a push-forward map, defined in the following way. Let
π : ν −→ φ(M) be the normal bundle to φ(M) in M ×M and we orient ν so that we have an
oriented isomorphism ν ⊕ Tφ(M) ∼= T (M ×M)|φ(M). Let N be a closed tubular neighborhood of
φ(M) such that D(ν) ∼= N , where D(ν) is the closed disc bundle. Let c : M ×M −→ N/∂N be the
Thom collapse map. We have the following commutative diagram:

Hd(M ×M,M ×M − φ(M)) −−−−→ H∗(M ×M)

∼=





y
excision c∗

x





Hd(N,N − φ(M))
∼=

−−−−→ Hd(N, ∂N) ∼= H̃d(N/∂N).

Let u′ ∈ H̃(N/∂N) be the Thom class of the normal bundle ν. Let u′′ ∈ Hd
(

M×M,M×M−φ(M)
)

and u ∈ Hd(M ×M) be corresponding Thom classes. The class u is characterized by the property
u ∩ [M ×M ] = φ∗([M ]). Since u comes from u′′, it is represented by a cocycle f which vanish on
simplices in M ×M which do not intersect with φ(M).

Let Ñ = (p, p′)−1(N) be a tubular neighborhood of SM in LM , and let c̃ : LM −→ Ñ/∂Ñ be the

Thom collapse map. Let ũ′ ∈ H̃d(Ñ/∂Ñ ) and ũ ∈ Hd(LM) be pull-backs of corresponding classes.

We have ũ = c̃∗(ũ′). Let π̃ : Ñ −→ SM ⊂ LM ×LM be a projection map corresponding to π, and

is given as follows. Suppose γ ∈ Ñ is such that (p, p′)(γ) = (x1, x2) ∈ N . Let η(t) = (η1(t), η2(t))
be a path in N from (x1, x2) to π(x1, x2) = (y, y) ∈ φ(M) corresponding to the straight ray in the
bundle ν. Then π̃(γ) = (η−1

1 ·γ[0, 1
2
] ·η2) ·(η

−1
2 ·γ[ 1

2
,1] ·η1) ∈ SM . From this description, it is obvious

that π̃ is a deformation retraction. The transfer map ι! is defined by the following composition of
maps:

ι! : H̃∗+d(LM)
c̃∗−→ H̃∗+d(Ñ/∂Ñ )

ũ′∩(·)
−−−−→ H∗(Ñ)

π̃∗−→
∼=

H∗(SM).

Let s : M −→ LM be the constant loop map given by s(x) = cx, where cx is the constant loop at
x ∈M . Since p ◦ s = 1M , we have s∗ ◦ p∗ = 1. The transfer map ι! has the following properties.
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Proposition 2.1. (1) The cohomology class ũ ∈ Hd(LM) is given by ũ = p∗(eM ), where eM ∈
Hd(M) is the Euler class of M .

(2) For any element a ∈ H∗(LM),

(2-1) ι∗ι!(a) = p∗(eM ) ∩ a.

In particular, ι∗ι!(s∗([M ])) = χ(M)[c0], where c0 is the constant loop at the base point x0 in M ,

and χ(M) is the Euler characteristic of M .

(3) For any α ∈ H∗(LM) and b ∈ H∗(LM),

(2-2) ι!(α ∩ b) = (−1)d|α|ι∗(α) ∩ ι!(b).

Proof. (1) Since the map (p, p′) : LM −→M×M can be factored as LM
φ
−→ LM×LM

p×p′

−−−→M×M
and p and p′ are homotopic, we have ũ = (p, p′)∗(u) = φ∗◦(p×p′)∗(u) = φ∗◦(p×p)∗(u) = p∗◦φ∗(u).
Since φ∗(u) is, by definition, (−1)d times the Euler class eM of M and the Euler class is of order
2 when d is odd, we have (−1)deM = eM . So we have ũ = p∗(eM ).

(2) Although we can use a certain commutative diagram for a proof (see below), we first do
a chain argument here in the spirit of [CS] and [S]. By barycentric subdivisions on the cycle
ξ representing a ∈ H∗(LM), we may assume that every simplex of ξ intersecting with SM is

contained in Int (Ñ). Since cohomology classes u ∈ Hd(M ×M) and u′ ∈ H̃d(N/∂N) come from
the class u′′ in Hd

(

M ×M,M ×M −φ(M)
)

, they can be represented by cocycles f and f ′ so that
f vanishes on simplices in M ×M not intersecting φ(M), and f ′ vanishes on simplices in N/∂N

not intersecting φ(M). So the cocycle f̃ ′ = (p, p′)#(f ′) representing ũ′ vanishes on simplices in N

not intersecting with SM . Similarly, the cocycle f̃ = (p, p′)#(f) = c̃#(f̃ ′) representing ũ = c̃∗(ũ′)

vanishes on simplices in LM not intersecting with SM , and has the same values as f̃ ′ on simplices
in Ñ intersecting with SM . Since the cycle ξ is fine enough, the cycles f̃ ∩ ξ and f̃ ′ ∩ c̃#(ξ)
representing ũ ∩ a and ũ′ ∩ c̃∗(a) are in fact identical. Since ι!(a) = π̃∗

(

ũ′ ∩ c̃∗(a)
)

is represented

by a cycle π̃#(f̃ ∩ ξ), and π̃ is a deformation retraction, the two cycles π̃#(f̃ ∩ ξ) and f̃ ∩ ξ are

homologous inside of Int Ñ . Thus, ι∗ι!(a) = [π̃#(f̃ ∩ ξ)] and ũ ∩ a = [f̃ ∩ ξ] represent the same
homology class. Hence ι∗ι!(a) = ũ ∩ a = p∗(eM ) ∩ a, by (1).

We also give a homological proof, using the following commutative diagram.

H∗(LM)
c̃∗−−−−→ H∗(Ñ , ∂Ñ )

ũ′∩( · )
−−−−−→ H∗−d(Ñ)

π̃∗−−−−→
∼=

H∗−d(SM)
∥

∥

∥

(ιN )∗





y

∼= (ιN )∗





y

ι∗





y

H∗(LM)
j∗

−−−−→ H∗(LM,LM − SM)
ũ′′∩( · )
−−−−−→ H∗−d(LM) H∗−d(LM)

where ιN : Ñ −→ LM is an inclusion map. Here, the class ũ′′ is given by ũ′′ = (p, p′)∗(u′′),
and it satisfies ũ′ = ι∗N (ũ′′). Thus, for a ∈ H∗(LM), the commutative diagram shows ι∗ι!(a) =
ũ′′ ∩ j∗(a) = j∗(ũ′′) ∩ a = ũ ∩ a. The above chain argument gives geometric meaning to the
commutative diagram above.

When a = s∗([M ]), we have ι∗ι!
(

s∗([M ])
)

= p∗(eM ) ∩ s∗([M ]) = s∗
(

s∗p∗(eM ) ∩ [M ]
)

. Since

p ◦ s = 1, this is equal to s∗
(

χ(M)[x0]
)

= χ(M)[c0].
(3) We compute. By definition of ι!, we have

ι!(α ∩ b) = π̃∗

(

ũ ∩ c̃∗(α ∩ b)
)

= π̃∗

(

ũ′ ∩ (ι∗N (α) ∩ c̃∗(b)
))

= (−1)|α|dπ̃∗

(

ι∗N (α) ∩
(

ũ′ ∩ c̃∗(b)
))

.
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Since ι∗N (α) = π̃∗ι∗(α), the last formula becomes ι∗(α) ∩ π̃∗

(

ũ′ ∩ c̃∗(b)
)

= ι∗(α) ∩ ι!(b), times the
sign. This completes the proof. �

Next we recall a homotopy theoretic description of the loop product from [CJ]. We consider the
following diagram, where LM ×M LM denotes the set (p × p)−1

(

φ(M)
)

consisting of pairs (γ, η)
of loops such that γ(0) = η(0), and ι(γ, η) denotes the usual loop multiplication γ · η.

LM × LM
j

←−−−− LM ×M LM
ι

−−−−→ LM

p×p





y

q





y

M ×M
φ

←−−−− M

Then for a, b ∈ H∗(LM), the loop product a · b is defined by

a · b = (−1)d(|a|−d)ι∗j!(a× b).

Here, as before, the transfer map j! is defined using the Thom class u′ ∈ H̃d(N/∂N) and its

pull back to the tubular neighborhood Ñ = (p × p)−1(N). The sign (−1)d(|α|−d) is natural since
on the right hand side, the map j!, which represents the content of the loop product, is in front
of a, whereas on the left hand side, the dot representing the loop product is between a and b.
Switching the order of j! and a yields the sign (−1)d|α|. The sign (−1)d comes from our choice
of the orientation of the normal bundle ν so that [M ] ∈ Hd(LM) acts as the unit. Note that the
|a| − d is the degree of a in the loop algebra H∗(LM) = H∗+d(LM).

For further discussion, we need transfer maps defined in the following general context. Let
ι : K −→ M be a smooth embedding of oriented closed smooth manifolds and let ν be its normal
bundle oriented by ν ⊕ ι∗(TK) ∼= TM |ι(K). Let u′ be the Thom class of ν and let u ∈ Hd−k(M)
be the corresponding Thom class for the embedding ι, where d and k are dimensions of M and K.
With the above choice of the orientation on ν, we have u∩ [M ] = ι∗([K]), which characterizes the
class u. Had we oriented ν by ι∗(TK) ⊕ ν ∼= TM |ι(K), then we would have obtained u ∩ [M ] =

(−1)k(d−k)ι∗([K]).
Let p : E −→M be a Hurewicz fibration, and let EK be its pull-back over K via the embedding

ι. Let ι : EK −→ E be the inclusion of fibrations. Proceeding as before, we can define a transfer
map.

ι! : H∗+d(E) −→ H∗+k(EK), such that ι∗ι!(a) = p∗(u) ∩ a for any a ∈ H∗(E).

We remark that with the above choice of the orientation on the normal bundle ν, the transfer
map between base manifolds satisfies ι!([M ]) = [K]. Also, it can be verified that for a composition

of smooth embeddings K
g
−→ L

f
−→ M and the associated induced inclusions of fibrations EK

g
−→

EL
f
−→ E, we have (f ◦ g)! = g! ◦ f!.
The loop product enjoys the Frobenius compatibility with respect to the loop coproduct, in the

following sense. This is discussed in [S] from the point of view of chains. Here, we give a homotopy
theoretic proof with precise determination of signs.

For a ∈ H∗(LM) and c ∈ H∗(LM × LM), let a · c be defined by (ι × 1)∗ ◦ (j × 1)!(a × c) =
(−1)d(|a|−d)a · c using the following diagram

(LM × LM)× LM
j×1
−−−−→ (LM ×M LM)× LM

ι×1
−−−−→ LM × LM

p1×p2





y

p1





y

M ×M
φ

←−−−− M
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where p1 × p2 denotes projections from the first and second factor. If c is of the form of a
cross product b × c, then a · (b × c) = (a · b) × c. Similarly, an element c · a is defined by
(1× ι)∗(1× j)!(c× a) = (−1)d(|c|−d)c · a using a similar diagram.

Theorem 2.2. The loop product and the loop coproduct satisfy Frobenius compatibility, namely,

for a, b ∈ H∗(LM),

(2-3) Ψ(a · b) = (−1)d(|a|−d)a ·Ψ(b) = Ψ(a) · b.

Proof. For convenience, we introduce a space LrM of continuous loops from a circle of length r > 0

to M . We let L′M = L
1

3M and L′′M = L
2

3M . We identify SM ⊂ L2rM with LrM ×M LrM .
We have the following commutative diagram of inclusions:

L′M × L′′M
1×ι
←−−−− L′M × L′M ×

M
L′M

1×j
−−−−→ L′M × L′M × L′M

j

x





j1=(j×M1)

x





j×1

x





L′M ×
M

L′′M
ι1=(1×M ι)
←−−−−−−− L′M ×

M
L′M ×

M
L′M

j2=(1×M j)
−−−−−−−→ L′M ×

M
L′M × L′M

ι





y

ι2=(ι×M1)





y

ι×1





y

LM
ι

←−−−− L′′M ×
M

L′M
j

−−−−→ L′′M × L′M.

The base manifolds of fibrations in the above diagram form the following diagram which we use
to compute Thom classes of embeddings, which in turn are used to construct transfer maps.

M ×M ×M
1×φ
←−−−− M ×M

1×φ
−−−−→ M ×M ×M

φ×1

x





φ

x





φ×1

x





M ×M
φ

←−−−− M
φ

−−−−→ M ×M

φ×1





y

φ





y

φ×1





y

M ×M ×M
φ13

←−−−− M ×M
φ13

−−−−→ M ×M ×M

where φ13(x, y) = (x, y, x), or φ13 = (1 × T )(φ × 1) and T : M ×M −→ M ×M is the switching
map. Here, for example, the fibration p : L′′M ×M L′M −→ M ×M is given by p(γ, η) = (γ(0) =
η(0), γ(13 )), and the fibration p : L′M×M L′′M −→M×M is given by p(γ, η) = (γ(0) = η(0), η(13 )).

To prove Ψ(a · b) = (−1)d(|a|−d)a · Ψ(b), we examine the following induced homology diagram
with transfers in which we replaced L′M and L′′M by their homeomorphic copy LM .

H∗(LM × LM)
(1×ι)!

−−−−−−−→
=(−1)d1×ι!

H∗−d(LM × LM ×
M

LM)
(1×j)∗
−−−−→ H∗−d(LM × LM × LM)

j̃!=j!





y

(j1)!





y

(j×1)!=j!×1





y

H∗−d(LM ×
M

LM)
(ι1)!
−−−−→ H∗−2d(LM ×

M
LM ×

M
LM)

(j2)∗
−−−−→ H∗−2d(LM ×

M
LM × LM)

ι∗





y

(ι2)∗





y

(ι×1)∗





y

H∗−d(LM)
ι̃!=(−1)dι!
−−−−−−−→ H∗−2d(LM ×

M
LM)

j∗
−−−−→ H∗−2d(LM × LM)
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In the above, the transfer maps j̃!, ι̃! indicate that Thom classes used to define these transfer maps
may be different in signs from Thom classes used to define transfers ι! and j!.

The top left square and the bottom right square commute because of the functorial properties
of transfer maps and induced maps. We examine the commutativity of the bottom left square.
Since the corresponding square of fibrations commutes, the homology square with induced maps
and transfer maps commutes up to a sign. To determine this sign, for a ∈ H∗(LM ×M LM), we
compare ι∗(ι2)∗(ι1)!(a) and ι∗ι̃!ι∗(a) in H∗(LM). Let u ∈ Hd(M ×M) be the Thom class for the
embedding φ : M −→M×M . Then the Thom class for the embedding φ13 : M×M −→M×M×M
is given by (−1)du13, where u13 = (1 × T )∗(u × 1) =

∑

i(u
′
i × 1 × u′′

i ) if u =
∑

i u
′
i × u′′

i . Hence
(ι∗ι̃!)ι∗(a) = (−1)dp∗(u13) ∩ ι∗(a), where the map p : LM −→ M ×M ×M is a fibration given by
p(γ) = (γ(0), γ(1

3
), γ(2

3
)). On the other hand, using the commutativity of the induced homology

square, we have ι∗(ι2)∗(ι1)!(a) = ι∗(ι1)∗(ι1)!(a) = ι∗(p
∗(u) ∩ a), since the Thom class for the

embedding ι1 is p∗(u). Since u = (φ× 1)∗(u13), we have p∗(u) = p∗((φ× 1)∗(u13)) = ι∗(p∗(u13)).
Hence ι∗(p

∗(u)∩ a) = p∗(u13)∩ ι∗(a). Collecting our computations, we have that ι∗(ι2)∗(ι1)!(a) =
p∗(u13) ∩ ι∗(a). Comparing with the formula above for ι∗ι̃!ι∗(a), we see that the sign difference
between (ι2)∗(ι1)!(a) and ι̃!ι∗(a) is given by (−1)d. Hence the square commutes up to (−1)d.

Similar argument shows that the top right square in the homology diagram actually commutes.

Next we examine transfer maps in the diagram. For the top horizontal left transfer (1 × ι)!,
since the Thom class of the embedding 1× φ : M ×M −→M ×M ×M is (−1)d(1× u),

(1× ι)∗(1× ι)!(a× b) = (−1)dp∗(1× u) ∩ (a× b) = (−1)d+d|a|a× (p∗(u) ∩ b)

= (−1)d+d|a|a× ι∗ι!(b) = (−1)d(1× ι)∗(1× (ι)!)(a× b).

for a, b ∈ H∗(LM), Thus, (1 × ι)! = (−1)d1× (ι)!, as indicated in the diagram. Similarly, we can
verify that for the vertical top right transfer map, we have (j×1)! = j!×1. For the vertical top left
transfer j̃! associated to the Thom class for the embedding φ×1 : M×M −→M×M×M coincides
with the transfer j! associated to the Thom class for the embedding φ : M −→ M × M . The
bottom left horizontal transfer map ι̃! associated to the Thom class (−1)du13 for the embedding
φ13 : M ×M −→ M ×M ×M coincides with (−1)dι!, where ι! is the transfer associated to the
Thom class u of the embedding φ : M −→M ×M .

Hence for a, b ∈ H∗(LM), tracing the diagram from the top left corner to the bottom right
corner via bottom left corner, we get

j∗(ι̃)!ι∗(j̃)!(a× b) = j∗(−1)
dι!

(

(−1)d(|a|−d)a · b
)

= (−1)d+d(|a|−d)Ψ(a · b).

Following the diagram via the top right corner, we get

(ι× 1)∗(j × 1)!(1× j)∗(1× ι)!(a× b) = (ι∗ × 1)(j! × 1)(1 × j∗)(−1)
d(1× ι!)(a× b)

= (−1)d+|a|d(ι∗j! × 1)(a ×Ψ(b)) = (−1)d+|a|d+d(|a|−d)a ·Ψ(b).

Since the entire diagram commutes up to (−1)d, we finally get Ψ(a · b) = (−1)d(|a|−d)a ·Ψ(b).

To prove the other identity Ψ(a · b) = Ψ(a) · b, we consider the induced homology diagram with
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transfers flowing from the bottom right corner to the top left corner given below.

H∗−2d(LM × LM)
(1×ι)∗
←−−−− H∗−2d(LM × LM ×

M
LM)

(1×j)!
←−−−−−−−−−
=(−1)d(1×j!)

H∗−d(LM × LM × LM)

j̃∗

x





(j1)∗

x





(j×1)∗

x





H∗−2d(LM ×
M

LM)
(ι1)∗
←−−−− H∗−2d(LM ×

M
LM ×

M
LM)

(j2)!
←−−−− H∗−d(LM ×

M
LM × LM)

ι̃!=ι!

x





(ι2)!

x





(ι×1)!=ι!×1

x





H∗−d(LM)
ι∗←−−−− H∗−d(LM ×

M
LM)

j̃!=(−1)dj!
←−−−−−−− H∗(LM × LM)

where the transfer maps along the perimeter has been identified as shown. Using similar methods,
all the squares commute except the top right one which commutes up to (−1)d. With this informa-
tion, following the diagram via top right corner gives (−1)d+d|a|Ψ(a) · b, and following the diagram
via the bottom left corner gives (−1)d+d(|a|−d)Ψ(a · b). Since the entire diagram commutes up to
(−1)d, we obtain the identity Ψ(a · b) = Ψ(a) · b. This completes the proof. �

Note that in the same diagram of fibrations, if we consider an induced homology diagram with
transfers flowing from the top right corner to the bottom left corner, or a diagram flowing from the
bottom left corner to the top right corner, we obtain homotopy theoretic proofs of associativity of
the loop product [CJ] and the coassociativity of the loop coproduct.

Next we show that Ψ is symmetric. Let T : LM × LM −→ LM × LM be the switching map.

Proposition 2.3. The loop coproduct is symmetric in the sense that

T∗

(

Ψ(a)
)

= Ψ(a)

for any a ∈ H∗(LM).

Proof. We consider the following commutative diagram:

LM
ι

←−−−− LM ×M LM
j

−−−−→ LM × LM

R 1

2





y
T





y
T





y

LM
ι

←−−−− LM ×M LM
j

−−−−→ LM × LM

Here, as before, we identify SM with LM ×M LM , and R 1

2

is the rotation of loops by 1
2 , that is

R 1

2

(γ)(t) = γ(t+ 1
2
). The left square commutes because R 1

2

◦ι(γ, η) = R 1

2

(γ ·η) = η ·γ = ι◦T (γ, η).

The Thom class for the embedding ι is given by ũ = p∗(eM ). Since R 1

2

≃ 1, we have R∗
1

2

(ũ) = ũ.

Thus the Thom classes for two ι’s are compatible and we have T∗◦ι! = ι!◦R 1

2 ∗
= ι!. Thus the above

commutative diagram implies T∗

(

Ψ(a)
)

= T∗ ◦ j∗ ◦ ι!(a) = j∗ ◦ T∗ ◦ ι!(a) = j∗ ◦ ι!(a) = Ψ(a). �

The loop coproduct behaves well with respect to cap products with cohomology classes in
H∗(LM) arising from α ∈ H∗(M). Let p : LM −→ M be the base point map. For the evaluation
map e = p ◦ ∆ : S1 × LM −→ M , let e∗(α) = 1 × p∗(α) + {S1} × ∆

(

p∗(α)
)

, where {S1} is the

fundamental cohomology class for S1.
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Theorem 2.4. Let α ∈ H∗(M) and b ∈ H∗(LM).
(1) The cap product with p∗(α) satisfies Frobenius compatibility with respect to the loop coprod-

uct :

(2-4) Ψ
(

p∗(α) ∩ b
)

= (−1)d|α|
(

p∗(α)× 1
)

∩Ψ(b) = (−1)d|α|
(

1× p∗(α)
)

∩Ψ(b).

(2) The cap product with ∆
(

p∗(α)
)

behaves as a coderivation with respect to the loop coproduct :

(2-5) Ψ
(

∆
(

p∗(α)
)

∩ b
)

= (−1)d(|α|−1)
[

∆
(

p∗(α)
)

× 1 + 1×∆
(

p∗(α)
)]

∩Ψ(b).

Proof. From the definition of the loop coproduct and a property (2-2) of the transfer ι!, we have
Ψ
(

p∗(α)∩ b
)

= j∗ ◦ ι!
(

p∗(α)∩ b
)

= (−1)d|α|j∗
(

ι∗p∗(α)∩ ι!(b)
)

. To understand ι∗p∗(α), we consider
the following commutative diagram.

LM
ι

←−−−− LM ×M LM
j

−−−−→ LM × LM

p×p′





y

q





y

p×p





y

M ×M
φ

←−−−− M
φ

−−−−→ M ×M

π1





y

∥

∥

∥

πi





y

M M M

where p′(γ) = γ(12 ), and πi for i = 1, 2 is the projection onto the ith factor. From the diagram,

we have ι∗p∗(α) = q∗(α) = j∗(p × p)∗π∗
i (α), which is equal, for i = 1, 2, to j∗

(

p∗(α) × 1
)

and to

j∗
(

1× p∗(α)
)

. For i = 1 case,

(−1)d|α|Ψ
(

p∗(α) ∩ b
)

= j∗
(

j∗
(

p∗(α)× 1) ∩ ι!(b)
)

=
(

p∗(α) × 1
)

∩ j∗ι!(b) =
(

p∗(α) × 1
)

∩Ψ(b).

Similarly, for the case i = 2, we obtain (−1)d|α|Ψ
(

p∗(α) ∩ b
)

=
(

1× p∗(α)
)

∩Ψ(b).
For (2), first we note that

Ψ
(

∆(p∗(α)) ∩ b
)

= j∗ι!
(

∆(p∗(α)) ∩ b
)

= (−1)d(|α|−1)j∗
(

ι∗∆(p∗(α)) ∩ ι!(b)
)

.

We need to understand ι∗
(

∆(p∗(α))
)

. For this purpose, we introduce some notations. Let I1 =

[0, 1
2 ] and I2 = [12 , 1]. Let r : S1 = I/∂I −→ I/{0, 1

2 , 1} = S1
1 ∨ S1

2 , where S1
i = Ii/∂Ii for i = 1, 2,

be an identification map. Let ιi : S
1
i −→ S1

1 ∨S
1
2 be the inclusion map for i = 1, 2. We consider the

following commutative diagram.

S1
i × (LM ×M LM)

1×j
−−−−→ S1

i × (LM × LM)

ιi×1





y

1×πi





y

S1 × (LM ×M LM)
r×1
−−−−→ (S1

1 ∨ S1
2)× (LM ×M LM) S1

i × LM ∼= S1 × LM

1×ι





y e′





y

e





y

S1 × LM
e

−−−−→ M M

where e′(t, γ, η) is given by γ(2t) for 0 ≤ t ≤ 1
2 , and η(2t − 1) for 1

2 ≤ t ≤ 1. Let e′
∗
(α) =

1× ι∗p∗(α) + {S1
1}×∆1(α) + {S

1
2}×∆2(α), where the first term is due to a fact that e′ restricted
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to {0}×(LM×MLM) is given by p◦ι. Since e∗(α) = 1×p∗(α)+{S1}×∆p∗(α) and r∗({S1
i }) = {S

1}
for i = 1, 2, the commutativity of the left bottom square implies that

ι∗∆
(

p∗(α)
)

= ∆1(α) + ∆2(α).

We need to identify ∆i(α) for i = 1, 2. The commutativity of the right square implies that,
for i = 1, (1 × j)∗(1 × π1)

∗e∗(α) = 1 × j∗(p∗(α) × 1) + {S1} × j∗
(

∆(p∗(α)) × 1
)

is equal to

(ι1 × 1)∗e′
∗
(α) = 1 × ι∗p∗(α) + {S1} ×∆1(α). Hence ∆1(α) = j∗

(

∆(p∗(α)) × 1
)

. Similarly, the

i = 2 case implies that ∆2(α) = j∗
(

1×∆(p∗(α))
)

. Combining the above calculations, we have

Ψ
(

∆(p∗(α)) ∩ b
)

= (−1)d(|α|−1)
(

ι∗∆(p∗(α)) ∩ ι!(b)
)

= (−1)d(|α|−1)j∗
(

j∗
(

∆(p∗(α)) × 1 + 1×∆(p∗(α))
)

∩ ι!(b)
)

= (−1)d(|α|−1)
[

∆(p∗(α)) × 1 + 1×∆(p∗(α))
]

∩Ψ(b).

This proves the coderivation property. �

§3 Properties of the loop coproduct and their consequences

So far we have proved various algebraic properties of the loop coproduct. These properties turn
out to be strong enough to force the loop coproduct to be given by a very simple formula, given
in the next theorem. Let s : M −→ LM be the constant loop map given by s(x) = cx, where cx is
the constant loop at x ∈M . Recall that we assume that M is connected with base point x0, and
let c0 be the constant loop at the base point.

The connected components of LM are in 1:1 corespondence to the set of free homotopy classes
of loops [S1.M ], which is in 1:1 correspondence with conjugacy classes of π1(M). Let

LM = (LM)[1] ∪
⋃

[α] 6=[1]

(LM)[α],

be the decomposition of LM into its components, where [α]’s are conjugacy classes in π1(M).

Theorem 3.1. Let M be a connected oriented closed smooth d-manifold.

(1) Let p ≥ 0 and let a1, a2, . . . , ap ∈ H∗(LM). The loop coproduct on the loop product of these

elements is given by the following formula, for each 0 ≤ ℓ ≤ p.

(3-1) Ψ(a1a2 · · · ap) = χ(M)
(

[c0] · a1 · a2 · · · aℓ
)

⊗
(

[c0] · aℓ+1 · · · ap
)

∈ H∗(LM)⊗H∗(LM).

In particular, for the unit 1 = s∗([M ]) ∈ Hd(LM) = H0(LM) of the loop homology algebra, its

coproduct is given by

(3-2) Ψ(1) = χ(M)[c0]⊗ [c0] ∈ H0(LM)⊗H0(LM) ∼= H0(LM × LM).

When p = 1, the formula for a ∈ H∗(LM) for ℓ = 0, 1 becomes

(3-3) Ψ(a) = χ(M)
(

[c0] · a
)

⊗ [c0] = χ(M)[c0]⊗
(

[c0] · a
)

.

(2) If |a| 6= d, then Ψ(a) = 0. If |a| = d, then Ψ(a) = n[c0] ⊗ [c0] for some n ∈ Z. Thus,

ImΨ = Z[c0]⊗ [c0].

(3) Suppose a ∈ Hd

(

(LM)[α]
)

be a degree d homology class in [α]-component of LM . If [α] 6= [1],
then Ψ(a) = 0.
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(4) Suppose a ∈ Hd

(

(LM)[1]
)

, and suppose it is of the form a = ks∗([M ]) + (decomposables) in
the loop algebra H∗(LM) for some k ∈ Z, then

Ψ(a) = kχ(M)[c0]⊗ [c0].

Proof. First, we prove the formula for Ψ(1). Since 1 = s∗([M ]) has degree d, and ι! decreases
degree by d, we have ι!(1) ∈ H0(LM ×M LM). Since M is connected, connected components
of LM are in 1:1 correspondence with conjugacy classes of π1(M). Let L0M be the component
consisting of contractible loops so that c0 ∈ L0M . Note that L0M ×M L0M is also connected, and
H0(L0M ×M L0M) ∼= Z is generated by [(c0, c0)]. So we may write ι!(1) = m[(c0, c0)] for some
m ∈ Z. Since ι∗ : H0(L0M ×M L0M) −→ H0(L0M) is an isomorphism with ι∗([(c0, c0)]) = [c0],
and since (2-1) implies ι∗ι!(1) = p∗(eM ) ∩ s∗([M ]) = s∗(eM ∩ [M ]) = χ(M)[c0], we have ι!(1) =
χ(M)[(c0, c0)]. Hence Ψ(1) = j∗ι!(1) = χ(M)[c0]⊗ [c0].

For a1, a2, . . . , ap ∈ H∗(LM) and for 0 ≤ ℓ ≤ p, the Frobenius compatibility (2-3) implies

Ψ(a1 · a2 · · · ap) = (−1)d(|a1|+···+|aℓ|−dℓ)(a1 · · · aℓ) ·Ψ(1) · aℓ+1 · · · ap

= (−1)d(|a1|+···+|aℓ|−dℓ)χ(M)a1 · · · aℓ · [c0]⊗ [c0] · aℓ+1 · · · ap

= χ(M)
(

[c0] · a1 · · · aℓ
)

⊗
(

[c0] · aℓ+1 · · · ap
)

.

Here, we used the graded commutativity in the loop homology algebra given by

a · b = (−1)(|a|−d)(|b|−d)b · a, a, b ∈ H∗(LM).

When p = 1, we get the formula for Ψ(a) given in (3-3). Note that the formula is compatible
with the symmetry formula T∗Ψ(a) = Ψ(a) in Proposition 2.3. Note also that our formula tells
us that the image of Ψ is contained in the tensor product H∗(LM)⊗H∗(LM) ⊂ H∗(LM × LM),
essentially because Ψ(1) is by (3-2).

(2) From the formula (3-3), the value Ψ(a) must be an integral multiple of [c0]⊗[c0] ∈ H0(LM)⊗
H0(LM). Since Ψ lowers degree by d, if |a| 6= d, we must have Ψ(a) = 0.

(3) Let a ∈ Hd

(

(LM)[α]
)

. We show that if Ψ(a) 6= 0, then [α] = [1]. By (2), Ψ(a) must be
of the form n[c0] ⊗ [c0] for some n ∈ Z. Compaing with (3-3), if Ψ(a) 6= 0, then [c0] · a = k[c0]
for some k 6= 0, which is a homology class of finite union of contractible loops. Thus a must be
represented by a cycle in the space of contractible loops (LM)[1]. Hence we have [α] = [1].

(4) By (2), if |a| 6= d, we must have Ψ(a) = 0, which is equivalent to

(3-4) χ(M)[c0] · a = 0, a ∈ H∗(LM) with |a| 6= d.

Now suppose |a| = d and a is decomposable of the form a =
∑

i b
′
i · b

′′
i with |b′i| 6= d for all i,

then Ψ(a) =
∑

i χ(M)[c0] · b
′
i ⊗ [c0] · b

′′
i = 0 by (3-1). Thus, if a is of the form a = ks∗([M ]) +

(decomposables), then Ψ(a) = Ψ
(

ks∗([M ])
)

= kχ(M)[c0]⊗ [c0]. �

Implications of Theorem 3.1 are rather striking. First, we start with straightforward corollaries
whose proofs are obvious.

Corollary 3.2. Let M be a connected closed oriented smooth manifold. If its Euler characteristic

is zero, then the loop coproduct vanishes identically.

In particular, if M is odd dimensional, then the loop coproduct vanishes identically.

For example, the loop coproduct vanishes in H∗(LS
2n+1). The above Corollary 3.2 was also

observed in [S].
Next, we examine torsion elements in loop homology.
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Corollary 3.3. Assume that χ(M) 6= 0 for a connected closed oriented smooth d-manifold M .

For any element a ∈ H∗(LM) with |a| 6= d, the element [c0] · a is either 0 or a torsion element of

order a divisor of χ(M).

Proof. In the proof of Theorem 3.1, we noted that χ(M)[c0] · a = 0 if |a| 6= d in (3-4). Since
χ(M) 6= 0, the conclusion follows. �

When |a| = d, the element [c0] · a lies in H0(LM), so it is either 0 or torsion free.
Let ι : ΩM −→ LM be the inclusion map from the based loop space to the free loop space.

Recall that we have an algebra map

ι! : H∗+d(LM) −→ H∗(ΩM)

from the loop algebra to the Pontrjagin ring, where d = dimM .

Corollary 3.4. Suppose χ(M) 6= 0 for a closed oriented smooth d-manifold M . Then for p 6= 0,
the image of the composition

ι∗ ◦ ι! : Hp+d(LM) −→ Hp(ΩM) −→ Hp(LM)

consists entirely of torsion elements of order a divisor of χ(M).

Proof. Since ι∗ ◦ ι!(a) = [c0] · a for a ∈ H∗(LM), the assertion follows from Corollary 3.3. �

Next, we show that similar statements hold for loop bracket products of the form {[c0], a} for
a ∈ H∗(LM).

Corollary 3.5. Suppose χ(M) 6= 0 for a closed connected oriented smooth d-manifold M , and let

a ∈ H∗(LM).

(1) If |a| 6= d, d−1, then the element {[c0], a} is either 0 or a torsion element of order a divisor

of χ(M).
(2) Suppose further M is simply connected. Then if |a| 6= d − 1, then the element {[c0], a} is

either 0 or a torsion element of order a divisor of χ(M).

Proof. Since χ(M) 6= 0, M is even dimensional. The BV-identity multiplied by χ(M) gives

∆
(

χ(M)[c0] · a
)

= χ(M)∆([c0]) · a+ χ(M)[c0] ·∆(a) + χ(M){[c0], a}.

If |a| 6= d, d − 1, then by Corollary 3.3, we have χ(M)[c0] · a = 0 and χ(M)[c0] ·∆(a) = 0. Since
S1 action on M is trivial, we have ∆([c0]) = 0. Thus χ(M){[c0], a} = 0, and the conclusion of (1)
follows.

For (2), when |a| = d, the element ∆(a) has degree d+1. By Corollary 3.3, χ(M)[c0] ·∆(a) = 0.
If M is simply connected, LM has a single component L0M and so [c0] · a ∈ H0(LM) ∼= Z

generated by [c0]. Since ∆([c0]) = 0, we have ∆([c0] · a) = 0. Hence χ(M){[c0], a} = 0, from which
the conclusion follows. �

When |a| = d − 1, since {[c0], a} ∈ H0(LM), this element is either 0 or torsion free. To see
what happens when M is not simply connected, for each conjugacy class [g] of π1(M) we choose a
loop γg in M belonging to [g]. When |a| = d, the element [c0] · a is a linear combination of classes
[γg ] ∈ H0(LM). Since ∆([γg]) ∈ H1(L[g]M) can be nonzero, the simple connectivity assumption
is needed in (2) of Corollary 3.5.
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Example 3.6. We can verify Corollary 3.3 in actual examples. In [CJY], the loop homology
algebra for LS2n and LCPn are computed. Their computation shows

H∗(LS
2n) ∼= Λ(b)⊗ Z[a, v]/(a2, ab, 2av), b ∈ H−1, a ∈ H−2n, v ∈ H4n−2,

H∗(LCP
n) ∼= Λ(w)⊗ Z[c, u]/(cn+1, (n+ 1)cnu,wcn), w ∈ H−1, c ∈ H−2, u ∈ H2n.

For H∗(LS
2n), we have [c0] = a and χ(S2n) = 2. By the above computation, we can easily see

that χ(S2n)[c0] · x = 2a · x = 0 for all x ∈ H∗(LS
2n) not in H0. For H∗(LCP

n), we have [c0] = cn

and χ(CPn) = n+ 1. Again we can easily see that the identity χ(CPn)[c0] · y = (n + 1)cn · y = 0
for all y not in H0.

We discuss two final related results. The first one concerns an analogue of the BV identity
for the loop coproduct. The BV identity can be understood by saying that the failure of the
commutativity of the following diagram is the loop bracket:

H∗(LM)⊗H∗(LM)
loop product
−−−−−−−−→ H∗(LM)

∆⊗1+1⊗∆





y
∆





y

H∗(LM)⊗H∗(LM)
loop product
−−−−−−−−→ H∗(LM).

We ask a similar question for the loop coproduct. Does the following diagram commute? If not,
what is the measure of the failure of the commutativity?

H∗(LM)
Ψ

−−−−→ H∗(LM × LM)

∆





y
∆×1+1×∆





y

H∗(LM)
Ψ

−−−−→ H∗(LM × LM)

Unfortunately, things turn out to be rather trivial for the loop coproduct.

Proposition 3.7. For every a ∈ H∗(LM), the identity (∆× 1 + 1×∆)Ψ(a) = 0 holds.

Proof. For a ∈ H∗(LM), by (2) of Theorem 3.1, Ψ(a) ∈ Z[c0] ⊗ [c0] ⊂ H0(LM × LM). Since
∆([c0]) = 0, the above identity holds. �

For the second result, recall that the loop product and the loop coproduct satisfy Frobenius
compatibility (Theorem 2.2). We ask a similar question. What is the compatibility relation for the
loop bracket and the loop coproduct? The result turns out to be trivial when one of the elements
is from H∗(M).

Proposition 3.8. Let M be as before with χ(M) 6= 0. Suppose a ∈ H∗(M). Then for any

b ∈ H∗(LM), we have Ψ({a, b}) = 0.

Proof. Let α ∈ H∗(M) be the cohomology class dual to a. Since ∆α∩ b = (−1)|α|{a, b} (see [T1]),
using the coderivation property of the cap product with respect to the loop coproduct (2-5),

Ψ({a, b}) = (−1)|α|+(|α|−1)d(∆α× 1 + 1×∆α) ∩Ψ(b)

= (−1)|α|+(|α|−1)d
[

χ(M)
(

∆α ∩ ([c0] · b)
)

⊗ [c0] + χ(M)[c0]⊗
(

∆α ∩ ([c0] · b)
)]

.

Since the loop bracket behaves as a derivation in each variable, and {a, [c0]} = 0 for a ∈ H∗(M),
we have ∆α ∩ ([c0] · b) = (−1)|α|{a, [c0] · b} = (−1)|α|+(|α|+1)d[c0] · {a, b}. The above identity then
becomes

Ψ({a, b}) = χ(M)([c0] · {a, b}) ⊗ [c0] + χ(M)[c0]⊗ ([c0] · {a, b}) = Ψ({a, b}) + Ψ({a, b}),

using (3-3). Hence Ψ({a, b}) = 0. �
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