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Inflationary models with a superheavy scale F-term hybrid inflation followed by an inter-
mediate scale modular inflation are considered. The restrictions on the power spectrum
PR of curvature perturbation and the spectral index ns from the recent data within
the power-law cosmological model with cold dark matter and a cosmological constant
can be met provided that the number of e-foldings NHI∗ suffered by the pivot scale
k∗ = 0.002/Mpc during hybrid inflation is suitably restricted. The additional e-foldings
needed for solving the horizon and flatness problems are generated by modular inflation
with a string axion as inflaton. For central values of PR and ns, the grand unification
scale comes out, in the case of standard hybrid inflation, close to its supersymmet-
ric value MGUT ≃ 2.86 × 1016 GeV, the relevant coupling constant is relatively large
(≈ 0.005 − 0.14), and 10 . NHI∗ . 21.7. In the shifted [smooth] hybrid inflation case,
the grand unification scale can be identified with MGUT for NHI∗ ≃ 21 [NHI∗ ≃ 18].
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1. Introduction

Fitting the recent three-year results1 from the Wilkinson microwave anisotropy

probe satellite (WMAP3) with the standard power-law cosmological model with

cold dark matter and a cosmological constant (ΛCDM), one obtains1 that, at the

pivot scale k∗ = 0.002/Mpc,

ns = 0.958± 0.016 ⇒ 0.926 . ns . 0.99 (1)

at 95% confidence level. One of the most natural and well-motivated classes of in-

flationary models is the class2 of supersymmetric (SUSY) F-term hybrid inflation

(FHI)3,4 models. They are realized at (or close to) the SUSY grand unified the-

ory (GUT) scale MGUT ≃ 2.86 × 1016 GeV. However, these inflationary models

predict that the scalar spectral index ns is too close to unity and without much

running, which is in conflict with the WMAP3 data. Moreover, including super-

gravity (SUGRA) corrections with canonical Kähler potential, ns gets5 closer to

unity and can even exceed it.

1
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One way out of this inconsistency is6–8 to use a quasi-canonical Kähler poten-

tial with a convenient arrangement of the sign of one of its terms. This yields7–9

a negative mass term for the inflaton in the inflationary potential, which, thus, in

general acquires a local maximum. Hilltop inflation6 can then be realized as the in-

flaton rolls from this maximum down to smaller values. In this case, ns can become

consistent with Eq. (1), but only at the cost of a mild tuning9 of the initial condi-

tions. Note, though, that, in some cases,8,10 acceptable ns’s can be obtained even

without this local maximum. Another possibility for resolving the tension between

FHI and the data is11 to include a small contribution to the curvature perturbation

from cosmic strings,12,13 which can make ns’s between 0.98 and 1 compatible with

the data. However, the GUT scale is constrained9,14,15 to values well below MGUT.

In this talk, we present a recent proposal16 of a two-step inflationary set-up: a

GUT scale FHI followed by an intermediate scale modular inflation (MI),17 which

allows acceptable ns’s even with canonical Kähler potential and without cosmic

strings. The idea is to constrain the number of e-foldings that k∗ suffers during

FHI to relatively small values, which reduces ns to acceptable values. The addi-

tional number of e-foldings required for solving the horizon and flatness problems of

standard hot big bang cosmology is naturally provided by MI, which can be easily

realized by a string axion. We show that this scheme can satisfy all the relevant

constraints with natural values of its parameters.

In Sec. 2, we review the basic FHI models. The calculation of their inflationary

observables is described in Sec. 3. Then, in Sec. 4, we sketch the main features of MI

and, in Sec. 5, we exhibit the constraints imposed on our set-up. Finally, in Sec. 6,

we present our numerical results and, in Sec. 7, we summarize our conclusions.

2. The FHI Models

The relevant superpotentials for the various versions of FHI are2

W =















κS
(

Φ̄Φ−M2
)

for standard FHI,

κS
(

Φ̄Φ−M2
)

− S (Φ̄Φ)2

M2

S

for shifted FHI,

S
(

(Φ̄Φ)2

M2

S

− µ2
S

)

for smooth FHI,

(2)

where Φ̄, Φ are left handed superfields belonging to conjugate representations of

a GUT gauge group G and reducing its rank by their vacuum expectation values

(VEVs), S is a gauge singlet left handed superfield, MS ∼ 5×1017 GeV is the string

scale, and κ and M , µS (∼ MGUT) are made real and positive by field redefinitions.

The superpotential for standard3,4 FHI in Eq. (2) is the most general renormal-

izable superpotential consistent with a global U(1) R symmetry4 under which

S → eiα S, Φ̄Φ → Φ̄Φ. (3)

Note, in passing, that global continuous symmetries such as this R symmetry can

effectively arise18 from the rich discrete symmetry groups encountered in many
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compactified string theories (see e.g. Ref. 19). Including in the superpotential for

standard FHI the leading non-renormalizable term, one obtains the superpotential

for shifted20 FHI in Eq. (2). The superpotential for smooth21 FHI is produced by

further imposing a Z2 symmetry under which Φ → −Φ and, thus, allowing only

even powers of Φ̄Φ.

The vanishing of the D-terms implies that |〈Φ̄〉| = |〈Φ〉|, while the vanishing of

the F-terms gives the VEVs of the fields in the SUSY vacuum, namely 〈S〉 = 0 and

|〈Φ̄〉| = |〈Φ〉| ≡ v
G
with

v
G
=











M for standard FHI,
M√
2ξ

√

1−
√
1− 4ξ for shifted FHI,√

µSMS for smooth FHI,

(4)

where ξ ≡ M2/κM2
S with 1/7.2 < ξ < 1/4.20 So, the W ’s in Eq. (2) lead to the

spontaneous breaking of G. The same superpotentials give rise to hybrid inflation.

This is due to the fact that, for large enough values of |S|, there exist flat directions
in field space, i.e. valleys of local minima of the classical potential with constant

(or almost constant in the case of smooth FHI) potential energy density, which can

serve as inflationary paths.

The dominant contribution to the (inflationary) potential energy density along

these paths is

VHI0 =







κ2M4 for standard FHI,

κ2M4
ξ for shifted FHI,

µ4
S for smooth FHI,

(5)

where Mξ ≡ M
√

1/4ξ − 1. For inflation to be realized, we need a slope along the

flat direction (inflationary valley) to drive the inflaton towards the vacuum. In the

cases of standard4 and shifted20 FHI, this slope is generated by the SUSY breaking

on this valley caused by the non-vanishing VHI0 on the valley. This gives rise to

logarithmic radiative corrections to the potential. On the other hand, in the case

of smooth21 FHI, the inflationary valley is not classically flat and, thus, there is

no need of radiative corrections. The relevant correction VHIc to the inflationary

potential can be written as follows:

VHIc =































κ4M4
N

32π2

(

2 ln κ2xM2

Q2 + (x+ 1)2 ln(1 + x−1)+(x− 1)2 ln(1− x−1)
)

for standard FHI,
κ4M4

ξ

16π2

(

2 ln
2κ2xξM

2

ξ

Q2 + (xξ + 1)2 ln(1 + x−1
ξ )+(xξ − 1)2 ln(1− x−1

ξ )
)

for shifted FHI,

−2µ6
SM

2
S/27σ

4 for smooth FHI,

(6)

where σ ≡
√
2|S| is the canonically normalized inflaton field, N is the dimensionality

of the representations to which Φ̄ and Φ belong in the case of standard FHI, Q

is a renormalization scale, x ≡ |S|2/M2, and xξ ≡ σ2/M2
ξ . For minimal Kähler
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potential, the leading SUGRA correction to the inflationary potential reads3,5,15

VHIS = VHI0
σ4

8m4
P

, (7)

where mP ≃ 2.44 × 1018 GeV is the reduced Planck scale. In the case of standard

FHI, the contribution22 to the inflationary potential from the soft SUSY breaking

terms is negligibly small in our set-up due to the large κ’s encountered (see Sec. 6).

This contribution, in general, does not have22 a significant effect in the cases of

shifted and smooth FHI too. All in all, the general form of the potential which

drives the various versions of FHI reads

VHI ≃ VHI0 + VHIc + VHIS. (8)

During standard FHI, both Φ̄ and Φ vanish and so the GUT gauge group G is

restored. As a consequence, topological defects such as cosmic strings,12,13 magnetic

monopoles,23,24 or domain walls13,25 will be copiously produced21 via the Kibble

mechanism26 during the spontaneous breaking of G at the end of FHI if they are

predicted by this symmetry breaking. This, which could lead to a cosmological

catastrophe in the cases of monopoles and walls, is avoided in shifted and smooth

FHI, since the form of W allows the existence of non-trivial inflationary valleys

along which G is spontaneously broken (with Φ̄ and Φ acquiring non-zero values).

Therefore, no topological defects are produced in these cases. In standard FHI, on

the other hand, we must normally ensure that no monopoles or walls are predicted

by the underlying particle physics scheme. In our set-up, however, this restriction

can be evaded since the subsequent MI dilutes the topological defects.

3. The Dynamics of FHI

We will assume that all the cosmological scales cross outside the horizon during

FHI and do not re-enter the horizon before the onset of MI (see below). The latter

guarantees that they are not “re-processed” by MI. So, we can apply the standard

formalism (see e.g. Ref. 27) to calculate the inflationary observables of FHI. Namely,

the number of e-foldings NHI∗ that the pivot scale k∗ suffers during FHI is given by

NHI∗ =
1

m2
P

∫ σ∗

σf

dσ
VHI

V ′
HI

, (9)

where the prime denotes derivation with respect to σ, σ∗ is the value of σ when k∗
crosses outside the horizon of FHI, and σf is the value of σ at the end of FHI. In

the slow-roll approximation, σf is found from the condition

max{ǫ(σf), |η(σf)|} = 1, where

ǫ ≃ m2
P

2

(

V ′
HI

VHI

)2

and η ≃ m2
P

V ′′
HI

VHI
. (10)

In standard4 and shifted20 FHI, the end of inflation coincides with the onset of the

GUT phase transition, i.e. the slow-roll conditions are violated infinitesimally close
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to the critical point at σ = σc ≡
√
2M [σ = σc ≡ Mξ] for standard [shifted] FHI,

where the inflationary path is destabilized and the “waterfall” regime commences.

On the contrary, the end of smooth21 FHI is not abrupt since the inflationary path

is stable with respect to variations in Φ̄, Φ for all σ’s and σf is found from Eq. (10).

The power spectrum PR of the curvature perturbation at k∗ is given by

P
1/2
R =

1

2
√
3πm3

P

V
3/2
HI

|V ′
HI|

∣

∣

∣

∣

∣

σ=σ∗

. (11)

Finally, the spectral index ns and its running dns/d ln k are

ns = 1− 6ǫ(σ∗) + 2η(σ∗) and

dns/d ln k = 2
(

4η(σ∗)
2 − (ns − 1

)2
)/3− 2ξ(σ∗) (12)

respectively with ξ ≃ m4
P V ′

HIV
′′′
HI/V

2
HI.

4. The Basics of MI

After the gravity mediated soft SUSY breaking, the potential for MI is17

VMI = VMI0 −
1

2
m2

ss
2 + . . . , (13)

where s is the canonically normalized real string axion field, the ellipsis denotes

terms which stabilize VMI at s ∼ mP,

VMI0 = vs(m3/2mP)
2, and ms ∼ m3/2 (14)

with m3/2 ∼ 1 TeV being the gravitino mass and the dimensionless parameter vs

being of order unity, which yields V
1/4
MI0 ≃ 3× 1010 GeV. In this model, inflation can

be of the fast-roll type.28 The field evolution is given28 by

s ≃ sie
Fs∆NMI with Fs ≡

√

9

4
+

(

ms

Hs

)2

− 3

2
, (15)

where si is the initial value of s (at the onset of MI), Hs ≃
√
VMI0/

√
3mP is the

Hubble parameter corresponding to VMI0, and ∆NMI is the number of e-foldings

obtained from s = si until a given s.

From Eq. (15), we estimate the number of e-foldings NMI during MI:

NMI ≃
1

Fs
ln

(

sf
si

)

, (16)

where sf = min{〈s〉, ssr} is the final value of s with 〈s〉 ∼ mP being the VEV of s

and ssr determined by the condition

ǫMI ≡ − ḢMI

H2
MI

≃ 1

2
F 2
s

(

s

mP

)2

= 1 (17)

(HMI is the Hubble parameter during MI and the dot denotes derivation with respect

to the cosmic time). For definiteness, we take 〈s〉 = mP throughout our calculation.
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5. Observational Constraints

Our scenario needs to satisfy the following constraints:

(i) The power spectrum in Eq. (11) is to be confronted with the WMAP3 data1:

P
1/2
R ≃ 4.86× 10−5 at k∗ = 0.002/Mpc. (18)

(ii) In our case, the horizon and flatness problems of big bang cosmology can be

resolved provided that the total number of e-foldings Ntot suffered by k∗ is

given3,29 by

Ntot ≃ 22.6 +
2

3
ln

V
1/4
HI0

1 GeV
+

1

3
ln

TMrh

1 GeV
, (19)

where TMrh is the reheat temperature after the completion of MI. Here, we have

assumed that the reheat temperature after FHI is lower than V
1/4
MI0 and, thus,

the whole inter-inflationary period is matter dominated. In our set-up, Ntot

consists of two contributions:

Ntot = NHI∗ +NMI . (20)

(iii) The assumption that all the cosmological scales leave the horizon during FHI

and do not re-enter the horizon before the onset of MI yields29,30 the restriction:

NHI∗ & Nmin
HI∗ ≃ 3.9 +

1

6
ln

VHI0

VMI0
. (21)

The first term in the expression for Nmin
HI∗ is the number of e-foldings elapsed

between the horizon crossing of the pivot scale k∗ and the scale 0.1/Mpc during

FHI. Length scales ∼ 10 Mpc are starting to feel non-linear effects and it is,

thus, difficult to constrain30 primordial density fluctuations on smaller length

scales. So, we take the largest cosmological scale to be about 0.1/Mpc.

(iv) In the FHI models, |dns/d ln k| increases31 as NHI∗ decreases. Therefore, con-

sistency with the assumptions of the power-law ΛCDM cosmological model,

which requires that

|dns/d ln k| ≪ 0.01, (22)

yields a lower bound on NHI∗. In our numerical investigation (see Sec. 6), we

display boundary curves for dns/d lnk = −0.005 and −0.01.

(v) The requirement of naturalness of MI constrains the dimensionless parameter

vs in Eq. (14) as follows:

0.5 ≤ vs ≤ 10 ⇒ 2.45 & ms/Hs & 0.55, (23)

where we take ms = m3/2 (see below). The lower bound on vs guarantees

that the sum of the two explicitly displayed terms in the right hand side of

Eq. (13) is positive for s < mP. From Eq. (17), we see that, for the values of

ms/Hs in Eq. (23), ssr > mP and, thus, sf = mP. Eqs. (15)–(17) are not very

accurate near the upper bound on ms/Hs since, in this region, the value of ǫMI
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at s = mP gets too close to unity and, thus, the Hubble parameter does not

remain constant as s approaches mP. So, our results at large values of ms/Hs

should be considered only as indicative. Fortunately, the interesting solutions

with ns near its central value and, in the smooth FHI case, v
G

∼ MGUT lie

near the lower bound on ms/Hs, where the accuracy of these formulas is much

better. Moreover,

ηMI ≡ m2
P

V
(2)
MI

VMI
≃ −1

3

(

ms

Hs

)2

. 1 for ms/Hs . 1.73, (24)

where we again take ms = m3/2 and the superscript (n) denotes the n-th

derivative with respect to s. So, the interesting solutions correspond to slow-

rather than fast-roll MI. The unspecified terms in the ellipsis in the right hand

side of Eq. (13) also generate an uncertainty in Eqs. (15)–(17), which will be

assumed negligible.

(vi) Finally, we assume that FHI lasts long enough so that the almost massless string

axion field s is completely randomized32 by its quantum fluctuations from FHI.

We further assume that

VMI0 . H4
HI0, (25)

where HHI0 =
√
VHI0/

√
3mP is the Hubble parameter corresponding to VHI0,

so that all the values of s belong to the randomization region.32 The field s

remains practically frozen during the inter-inflationary period since the Hubble

parameter is larger than its mass. So, all the initial values si of s from zero tomP

are equally probable. However, we take si ≫ HHI0/2π so that the homogeneity

of our present universe is not jeopardized by the quantum fluctuations of s from

FHI. Randomization of the value of a scalar field via inflationary quantum

fluctuations requires that this field remains almost massless during inflation.

For this, it is important that the field does not acquire3,33 mass of the order

of the Hubble parameter via the SUGRA scalar potential. This is, indeed, the

case for the string axion during FHI (and the inter-inflationary period).

6. Numerical Results

For standard4 FHI, we take N = 2, which corresponds to the left-right symmet-

ric GUT gauge group SU(3)c × SU(2)L × SU(2)R ×U(1)B−L with Φ̄ and Φ be-

ing SU(2)R doublets with B − L = −1 and 1 respectively. No cosmic strings

are produced34 during this realization of standard FHI, which liberates the

model from extra restrictions on its parameters (for such restrictions, see e.g.

Refs. 14, 15). For shifted20 FHI, the GUT gauge group is the Pati-Salam group35

SU(4)c × SU(2)L × SU(2)R. This predicts the existence of doubly charged36 mag-

netic monopoles which are, though, not produced at the end of inflation as men-

tioned in Sec. 2. We take TMrh = 1 GeV and m3/2 = ms = 1 TeV throughout.

These are indicative values, which do not affect crucially our results. Finally, we
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Fig. 1. Allowed (lightly gray shaded) regions in the (a) κ − v
G
, (b) κ − ms/Hs, (c) κ − NHI∗,

and (d) κ− NMI plane for standard FHI. The black solid [dashed] lines correspond to the upper
[lower] bound on ns in Eq. (1), whereas the gray solid lines correspond to its central value in
this equation. The dot-dashed [double dot-dashed] lines correspond to the lower [upper] bound on
NHI∗ [ms/Hs] from Eq. (21) [Eq. (23)]. The bold [faint] dotted lines correspond to dns/d ln k =
−0.01 [dns/d lnk = −0.005]. Finally, the lower bound on VHI0 from Eq. (25) is represented by the
short dash-dotted lines.

choose the initial value si of the string axion s at the onset of MI to be given by

si = 0.01mP in all the cases that we consider. This value is close enough to mP to

have a non-negligible probability to be achieved by the randomization of s during

FHI. At the same time, it is adequately smaller than mP to guarantee good accuracy

of Eqs. (15)–(17) near the interesting solutions and justify the fact that we neglect

the uncertainty from the ellipsis in Eq. (13). Moreover, larger si’s lead to smaller

parameter space for interesting solutions (with ns near its central value).

Our input parameters are κ (for standard and shifted FHI with fixed MS =

5×1017 GeV) or MS (for smooth FHI) and σ∗. Using Eqs. (12) and (18), we extract

ns and v
G

respectively. For every chosen κ or MS, we then restrict σ∗ so as to

achieve ns in the range of Eq. (1) and take the output values of NHI∗. Finally, we

find, from Eqs. (19) and (20), the required NMI and the corresponding vs or ms/Hs

from Eq. (16).

Our numerical results for the three versions of FHI are presented in Figs. 1–3.

In Fig. 2(a) [Fig. 3(a)], we focus on a limited range of κ’s [MS’s] for the sake of

clarity of the presentation. Let us discuss each case separately:
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Fig. 2. Allowed regions in the (a) κ− v
G
, (b) κ−ms/Hs, (c) κ−NHI∗, and (d) κ−NMI plane

for shifted FHI with MS = 5 × 1017 GeV. Same notation as in Fig. 1. We also include dark gray
solid lines corresponding to v

G
= MGUT.

6.1. Standard FHI

In Fig. 1, we present the regions allowed by Eqs. (1), (18)–(23), and (25) in the (a)

κ− v
G
, (b) κ−ms/Hs, (c) κ−NHI∗, and (d) κ−NMI plane for standard FHI. We

observe the following:

(i) The resulting v
G
’s and κ’s are restricted to rather large values compared to those

allowed within the conventional set-up, i.e. the pure standard FHI without the

complementary MI (compare with Refs. 15, 22).

(ii) As κ increases above 0.01, the SUGRA corrections become more and more

significant.

(iii) As κ decreases below about 0.015 [0.042], the constraint from the lower [upper]

bound on ns ceases to restrict the parameters, since it is overshadowed by the

lower [upper] bound on NHI∗ [ms/Hs] in Eq. (21) [Eq. (23)].

(iv) The running dns/d ln k of the spectral index satisfies comfortably the bound

in Eq. (22) in the largest part of the regions allowed by the other constraints,

whereas −0.005 & dns/d ln k & −0.01 in a very limited part of these regions.

(v) For ns = 0.958, we obtain 0.004 . κ . 0.14, 0.79 . v
G
/(1016 GeV) . 1.08, and

−0.002 & dns/d lnk & −0.01. Also, 10 . NHI∗ . 21.7, 35 & NMI & 24, and

0.64 . ms/Hs . 0.77.
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Fig. 3. Allowed regions in the (a) MS−v
G
, (b) MS−ms/Hs, (c) MS−NHI∗, and (d) MS−NMI

plane for smooth FHI. Same notation as in Fig. 2. We included small MS’s of less physical interest
just to show the effect of the constraints.

6.2. Shifted FHI

In Fig. 2, we delineate the regions allowed by Eqs. (1), (18)–(23), and (25) in the

(a) κ − v
G
, (b) κ − ms/Hs, (c) κ − NHI∗, and (d) κ − NMI plane for shifted FHI

with MS = 5× 1017 GeV. Some observations are in order:

(i) The lower [upper] bound on NHI∗ [ms/Hs] in Eq. (21) [Eq. (23)] gives a lower

[upper] bound on v
G
for each κ, in contrast to the case of standard FHI.

(ii) The results on ms/Hs, NHI∗, and NMI are quite similar to those obtained in

the case of standard FHI.

(iii) The common magnitude v
G

of the VEVs of Φ̄ and Φ comes out considerably

larger than in the case of standard FHI and can be put equal to the SUSY GUT

scale. Some key inputs and outputs for the interesting case with v
G
= MGUT

and ns = 0.958 are presented in Table 1.

6.3. Smooth FHI

In Fig. 3, we present the regions allowed by Eqs. (1), (18)–(23), and (25) in the (a)

MS − v
G
, (b) MS − ms/Hs, (c) MS − NHI∗, and (d) MS − NMI plane for smooth

FHI. We observe the following:
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Table 1. Input and output parameters for our scenario with shifted
(MS = 5×1017 GeV) or smooth FHI for ns = 0.958 and v

G
= MGUT.

Shifted FHI Smooth FHI

σ∗ (1016 GeV) 2.2 σ∗ (1016 GeV) 23.53
κ 0.01 MS (5× 1017 GeV) 0.87

M (1016 GeV) 2.35 µS (1016 GeV) 0.188
1/ξ 4.54 σf (1016 GeV) 13.42
NHI∗ 21 NHI∗ 18
dns/d ln k −0.0018 dns/d lnk −0.0055

NMI 24.3 NMI 27.8
ms/Hs 0.77 ms/Hs 0.72

(i) The SUGRA corrections play an important role for every MS in the allowed

regions of Fig. 3.

(ii) In contrast to standard and shifted FHI, |dns/d lnk| is considerably enhanced

with −0.005 & dns/d ln k & −0.01 holding in a sizable portion of the parameter

space for v
G
∼ MGUT.

(iii) Unlike the cases of standard and shifted FHI, the constraint of Eq. (21) does

not restrict the parameters.

(iv) Similarly to the case of shifted FHI, we can find an acceptable solution fixing

ns = 0.958 and v
G
= MGUT. Some key inputs and outputs of this solution are

arranged in Table 1.

7. Conclusions

We presented a recently proposed16 cosmological scenario tied to two bouts of

inflation: a GUT scale FHI which reproduces the current data on PR and ns within

the power-law ΛCDM cosmological model and generates a restricted number of e-

foldings NHI∗ followed by an intermediate scale MI which generates the residual

number of e-foldings. We assumed that the inflaton of MI is a string axion which

remains naturally almost massless during FHI (and the inter-inflationary period).

We considered extra restrictions on the parameters of the model originating from

the following:

(i) The resolution of the horizon and flatness problems of the standard hot big

bang cosmology.

(ii) The requirements that FHI lasts long enough to generate the observed primor-

dial fluctuations on all the cosmological scales and that these scales are not

re-processed by the subsequent MI.

(iii) The limit on the running of the spectral index.

(iv) The naturalness of MI.

(v) The homogeneity of the present universe.

(vi) The complete randomization of the string axion during FHI.
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Fixing the spectral index to its central value, we concluded the following:

(i) In the case of standard FHI, relatively large values of the dimensionless param-

eter κ and the GUT breaking VEV v
G
are required and 10 . NHI∗ . 21.7.

(ii) In the shifted [smooth] FHI case, identification of the GUT breaking VEV with

the SUSY GUT scale is possible provided that NHI∗ ≃ 21 [NHI∗ ≃ 18].

In all three versions of hybrid inflation studied here with ns near its central

value and, in the smooth FHI case, v
G

∼ MGUT, MI of the slow-roll type with

ms/Hs ∼ 0.6− 0.8 and a very mild tuning (of order 0.01) of the initial value of the

string axion produces the additional number of e-foldings required for solving the

horizon and flatness problems of standard hot big bang cosmology. Therefore, MI

complements successfully FHI.

Note that MI naturally assures a low reheat temperature. As a consequence,

baryogenesis is made more difficult. In particular, thermal37 or non-thermal38

leptogenesis won’t work since the reheat temperature is very low for the non-

perturbative electroweak sphalerons to operate. However, it is not impossible to

achieve39 adequate baryogenesis within a larger scheme with (large) extra dimen-

sions. Let us also mention that, due to the presence of MI, the gravitino constraint40

on the reheat temperature of FHI and the potential topological defect problem of

standard FHI can be significantly relaxed or completely evaded. Our set-up is ben-

eficial for MI too, since, due to its low inflationary scale, this model cannot account

for the observed primordial fluctuations (unless a special mechanism41 is employed).
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