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Abstract. A new technique has been devised for the analysis of extensive air

shower data in observing the effect of the moon on this data. In this technique

the number of EAS events with arrival directions falling in error circles centered

about the moving moon is compared to the mean number of events falling in

error circles with centers randomly chosen in the sky. For any assumed angular

radius of the error circle the deficit in EAS event count in the direction of moon

which is a moon-related effect is interpreted as the shadow of the moon. A simple

theoretical model has been developed to relate Nsky to the angular radius of the

error circle and has been applied to the counts from the moon’s direction in order

to extract the physical parameters of the shadow of the moon. The technique and

the theoretical model has been used on 1.7× 105 EAS events recorded at Alborz

observatory.
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1. Introduction

In 1957, Clark (Clark 1975) recognized that the moon and the sun cast a shadow in the

isotropic flux of cosmic-ray nuclei. As they pass overhead during a transit, the moon
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and the sun block cosmic rays, so their shadows in the cosmic ray flux should be vis-

ible to Extensive Air Shower (EAS) arrays with sufficiently good angular resolution.

It was not until the early 1990’s that an extensive air shower array had the required

angular resolution to observe this shadow. Since that time the shadow of the sun and

the moon have been used to measure the angular resolution of extensive air shower

arrays (Urban et al. 1990, Ambrosio et al. 2003, Amenomori et al. 2007). Observing the

shadow of the moon in EAS experiments which usually might have a much larger error

circle than the disk of the moon is a very difficult task and requires a careful scrutiniza-

tion of the data. Normally study on the shadow of moon is needed as the first step to

find angular resolution and systematic errors of any observational data which is to be

used for any astronomical study in particular for the research of point sources in sky.

The object of this paper is to describe a new technique and procedure devised for the

analysis of extensive air shower data in observing the effect of the moon on this data

and also to present a theoretical model from which we can extract the relevant physical

parameters of the shadow of moon. The technique has been previously briefly outlined

on an investigation of energy spectrum of EGRET γ−ray point sources with EAS ex-

periment (Khakian et al. 2005 a). In Sec.2 we will describe this new technique and its

procedure for EAS data analysis. In Sec.3 we will present a theoretical model from which

we can extract the relevant physical parameters, In Sec.4 the result of applying the proce-

dure and the theoretical model to 1.7× 105 EAS data of Alborz observatory is presented

and the obtained results on shadow of the moon is also presented. Sec.5 is devoted to

discussion and some concluding remarks.

2. Description of the New Technique and EAS data Analysis procedure

This technique and the corresponding EAS data analysis procedure for observing the

effect of the moon on the data and determining the pertinent physical parameters is

based on corrected measured EAS data (corrected for systematic errors). The data must

contain the following information for each EAS event: The arrival time of each shower,

ts, and the coordinates of the arrival direction of the shower. The local coordinates

of each shower arrival direction should be converted to declination and right ascension

of each shower with arrived direction denoted here by δs , RAs respectively. Here, we

denote the declination and right ascension of the center of the moving moon by δm(t) and

RAm(t) at the arrival time of each shower. The EAS experiments generally might have an

experimental uncertainty which results in the experiment’s error circle to be larger than

the disk of the moon. Furthermore, normally, realistic determination of the radius of the

error circle is best obtained by observation of the shadow moon in EAS data. However,

in this new proposed technique and the procedure described here, there is no need for

the use of a predetermined radius of error circle or a fitted value for it, and, instead it is
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based on the observation of any possible deficit in shower counts falling in the error circle

centered about the moving location of moon as compared to the average shower counts

falling in error circles centered at other positions in sky during the observation time for

a wide range of assumed values for the radius of the error circle ranging from 0.2◦ to a

maximum value relevant to the particular EAS data set under analysis. For any assumed

radius of circle of error, or equivalently, its angular radius θerr the number of showers

falling in each circle is determined by calculating the angular separations θsm between

the arrival direction of each shower event (δs, RAs) and the direction of the center of the

moon at the time of recording of that event, using the following equation from spherical

geometry:

cos θsm = cos δm cos δs + sin δm sin δs cos(RAm −RAs). (1)

Obviously, if θsm < θerr that shower is counted as falling in the moon’s error circle. In

order to compare the obtained result with random sampling and scrutinize the difference

for each assumed value of θerr some random locations in the sky denoted by celestial

coordinates (δr, RAr) are chosen and the number of showers falling in the error circles

centered about each of the random locations is determined similarly by calculating the

angular separation θsr of each shower arrival direction (δs, RAs) with the direction of

the center of the randomly chosen error circle denoted by (δr, RAr) from above equation

with (δm, RAm) replaced by (δr, RAr). If for any shower event θsr < θerr that shower is

counted as falling in the error circle of that random position. For any assumed angular

error radius, θerr, some error circles are chosen in the sky centered about truly random

locations. The number of random circles for every angular error radius should be limited

such that it ensures that no overlap occurs between two or more random circles, so the

number of random centers are varied from at least 1000 (for small error circles) to 77 a

smaller number which depends on the data set under analysis (for larger error circles).

Thus, for each assumed radius for the error circle, the mean of the shower counts falling

in random circles could safely be used as the expected mean number of EAS events

falling in the error circle in any direction in the moonless sky against which the number

of EAS falling in the circle centered about the moving moon could be safely compared,

and, the variance of its distribution could safely be used as the statistical error of the

mean number. Obviously if the deficit in the number of showers falling in each error

circle centered about the moving moon from the mean number exceeds the statistical

uncertainly in the mean , then the deficit could only be attributed to the moon’s effect.

This effect is the shadow of moon in the EAS data, and, as explained in Sec.3, from a

quantitative analysis and comparison with the expected mean number of EAS showers

falling in the randomly centered error circle with that falling in the circles centered about

the moving moon, the physical parameters of the moon’s shadow could be extracted.
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3. A theoretical model for Moon’s shadow in EAS data

Following the procedure described in above technique, one now has the expected mean

number of showers falling in randomly chosen error circles in monless sky as well as that

in the moon-centered error circle for a set of assumed radii of the error circles, ρerr,

(or equivalently angular radii, θerr). Here we propose a simple physical model to obtain

this expected mean number as a function of the angular radius of the error circle, as

a function of θerr. We now derive the expected mean number of EAS events from each

random direction in the moonless sky as a function of the assumed radius for the error

circle, Nsky(ρerr). The derivation is based on the single assumption of the model, that

is, the assumption of uniform intensity, I, of EAS producing radiation everywhere in the

4π steradian for each area of the random moonless sky and thus for each element of the

error circle. For the contribution from each element of area of the error circle (2πρdρ),

we should take into account only a fraction of radiations coming at such an angle to be

able to reach the point of observation, that is a fraction equal to IdΩ
4π

. Where dΩ is the

solid angle subtended by the element of area element from the observation point, which is

the projection of the area element divided by the square of its distance from observation

point, that is, dΩ = 2πρdρ( d
R
) 1

R2 , with R =
√

ρ2 + d2 and d is the distance from point

of observation to the center of the error circle, and it is merely a multiplicative constant

factor relating the radius of the error circle to its angular radius ρerr = d tan θerr. The

integration is trivial. Thus we have:

Nsky(ρerr) =

∫ ρerr

0

Id

4π

2πρdρ

[ρ2 + d2]
3

2

= −
Id

2
[ρ2 + d2]−

1

2 |ρerr

0
= −

Id

2
(

1
√

ρ2err + d2
−

1

d
) (2)

for the number of showers falling in the error circle centered about moon, Nmoon(ρerr)

the integration has to be split into two or tree parts involving the physical parameters

of shadow of moon in EAS data. Here, we define the following three physical parameters

used in this model:

a) rm ≡ radius of umbra of shadow that is, from ρ = 0 to ρ = rm the EAS producing

radiation are assumed to be fully absorbed (totally blocked) and could not contribute to

Nmoon(ρerr).

b) rp ≡ radius of penumbra of shadow; that is from ρ = rm to r = rp only a fraction (f )

of EAS producing radiation penetrate the penumbra and contribute to Nmoon(ρerr).

c) f ≡ the fraction of EAS producing radiation which penetrate the moon’s penumbra.

Obviously, if ρerr ≤ rp the integration will only be split into two parts, that is,
∫ ρerr

0
→

0×
∫ rm

0
+f ×

∫ ρerr

rm
.

For the case of ρerr > rp, the integral will be split into three parts:
∫ ρerr

0
→ 0×

∫ rm

0
+f ×

∫ rp

rm
+1×

∫ ρerr

rp
.

The result of these integrations giving Nmoon(ρerr) in terms of physical parameters of

the moon’s shadow (rm, rp, f) is given in Appendix. It should be emphasized here that

the strict explicit assumption of uniform flux of EAS producing radiation used in this
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model requires that when the EAS data is used to extract the parameters of the moon’s

shadow from this model one has to make sure that the data may only have statistical

error (as this has also been implicitly assumed as outlined in the procedure for obtaining

shower counts in the error circles), that is, the data should have been corrected for any

systematic errors such as those related to the site of observation and non- Uniformities

in the exposure time in various directions in sky.

4. Application of the Technique to ALBORZ EAS data

The technique described in Sec.2 for determination of the moon shadow has been ap-

plied to 1.7 × 105 EAS data collected in 280 hours of observations in April-June 2002,

with the small EAS array of the prototype of ALBORZ Observatory of Sharif University

located in Tehran, Iran (51◦ 20
′

E and 35◦ 43
′

N, elevation 1200 m ≡ 890 g cm−2). For

details of array and data, see (Bahmanabadi et al. 2003). As explained in our previous

report(Khakian 2005 b), the data has been corrected (scaled for uniform exposure) for

site-dependent factors effecting shower counts from different directions in sky. The in-

formation on the celestial coordinates of the moon during the observation time of the

collected data has been obtained from the internet site (http://aa.usno.navy.mil). The

moon’s data has been obtained for time increments of one minute, and the location of

moon in Right ascension and declination coordinate at the recorded time of arrival of

each EAS event has been calculated and used.

For an assumed set of radii for error circles ranging from 0◦ to 6◦ (increments of 0.2◦)

we have calculated the number of corrected shower counts falling in each error circle. For

every assumed radius, some random moon-like locations passing through the paths like

as moon’s path in sky was chosen according to the radius of error circles and the number

of corrected EAS counts falling in each error circle was found according to the procedure

described in Sec.2. In table 1 the number of random circles and the mean of counts for

various assumed radii of error circles are given in second and third columns, also in this

table (4th column) the number of corrected shower counts from the error circle centered

about the moving moon is shown. In column 5 and 6 of the table the deficit of counts

from moon’s error circle from the mean count of the random sky error circle and the

statistical error of deficits are given. The last column of the table gives the statistical

significance of these deficits calculated with Li&Ma method (Li&Ma 1983). Fig.1 shows

the variation of the mean number of events for moon-like error circles with random cen-

ters as a function of the chosen radius of the error circles. The smooth curve shown that

calculated according to our theoretical model of Sec.3 and it fits the mean count from

random sky with a regression of 0.996. Error bars are taken from 4th column of table 1.

The good fit of random sky counts with model shows that we can safely use these mean

number of events to compare with that falling in the error circles centered about the

http://aa.usno.navy.mil
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moving moon and rule out the possibility of the deficit in the number of events falling

in the moon centered circle as due to statistical fluctuations.In Fig.2 we have shown the

variation of events falling in each circle centered about the moon and the mean number

of events falling in the error circles centered about random moving moon-like locations

as a function of radius of the error circles. As seen in Fig. 2 moon counts are less than

mean counts from random moon-like centers for all error circles that we considered. In

Fig.3 we have shown the number of deficit events for each radius of the error circles. We

have fitted the deficit counts falling in the error circle centered about the moving moon

from that for moon-like circles with random centers to our theoretical model (sec.3 and

Eq. A2 in Appendix) and have obtained the following results:

θm = 0.5◦, θp = 4.5◦, f = 0.80.

5. Concluding Remarks

It is worth remarking that the application of the proposed technique to ALBORZ

EAS data has yielded good agreement between the mean number of counts from error

circles with centers chosen randomly in sky with no moon in the line of sight and the

expected number according to our proposed theoretical model. This good agreement

is very encouraging and prompted us to extract the physical parameters of the moon

shadow (defined in Sec.3) from this data. It should also be remarked that the data used

for calculating shower counts in each error circle was the corrected counts scaled in

order to obtain a uniform exposure of sky. The correction accounted for site-dependent

systematic errors arising from uneven number of EAS events in various directions in sky

due to two main factors: (1) varying amount of air mass which produces the EAS event

as a function of zenith angle and depends on the elevation of the site (Khakian 2005 b),

and (2) geomagnetic effect which depends on the components of magnetic field at the

site’s location. Our attempt to extract the physical parameters of moon’s shadow from

this data has been fully successful as can be seen from the reported result in Sec.4. That

is in fitting the corrected data to our theoretical model we are able to obtain a value for

the radius of shadow’s umbra θm = 0.5◦. However , according to statistical significance

shown in the last column of table 1 we didn’t see the umbra with good significance

but the obtained results show that in spite of low-statistics EAS data base this method

is powerful to find shadow of moon. One may suggest that the value of θp = 4.5◦ we

obtained is just the umbra’s radius rather than penumbra’s and resulted from low

angular resolution of our array . This could be right since the angular resolution of

our array which was reported before (Khakian et al. 2005 a) is about 4.3◦ close to 4.5◦

which we find here as the radius of penumbra. We believe that the main uncertainty in

extracting results from Alborz data could be due to the following two reasons, both of

which will be improved upon in future with much higher number of events and larger
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statistics.

1. Inaccurate and low-statistics EAS data base

Since the umbra’s radius is in the order of 0.5◦ it is hard to expect to extract it from

inaccurate EAS data. The local coordinates associated with each EAS event in ALBORZ

EAS data has been obtained from an array with a very small number of detectors.

EAS data from observatories with large arrays, once corrected for the systematic

site-dependent errors may be more accurate to yield better results for the physical

parameters of moon’s shadow according to the technique presented here.

2. Incomplete data on Moon

As explained in Sec.3 the information about the celestial coordinates of the moon

was obtained from the internet site using time increments of one minute. The time of

arrival of EAS events had been recorded with an uncertainty of 0.07 seconds. In the

computations of shower counts in the error circles of various radii centered about the

moving moon which are given in Table 1 to check whether a given EAS event falls in the

error circle centered about the moon or falls outside it, we have used the coordinates of

the moon at the one of the minute steps which is closest to the arrival time of the given

EAS event. Obviously, this may have caused an extra inaccuracy in the counts given in

column 5 of Table 1. In future application of this technique the interpolated or exact

location of the moon at the instant of recording of each EAS event must be used and

the variable earth-moon distance should also be taken into account. However, the study

of the moon’s motion has been beyond the scope of the present work.

6. Appendix

For calculating the count in the error circle centered about the moon, we split Eqn.2 in

three parts. The result of integrations for two regions are shown in following equations:

Nmoon = − I
2
[(cos θerr − cosθp) + f(cos(θp − cos θm))], θerr > θp

Nmoon = − I
2
.f(cos θerr − cosθm), θm < θerr < θp (A.1)

If we now subtract the number of events in the random circles, Nsky(Eq.2) from above

we obtain:

Nback −Nmoon = − I
2
[cos θerr − 1] θerr < θm

Nback −Nmoon = − I
2
[(1 − f) cos θerr − 1 + fcosθm] θm < θerr < θp (A.2)

Nback −Nmoon = − I
2
[(1 − f) cos θp − 1 + f cos θm] θp < θerr

The parameter I (=497270) is determined by fitting Eqn.2 to the data of column 3 in

table 1. By knowing I and fitting the data of deficit events (column 6 of table 1) with

above equations (A.2), we obtained θm, θp, and f.
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radii of Circle centered Deficit of counts error in Statistical

error circle(◦) random moon-like locations about the moon from the moon deficit Significant

#random circles mean count counts counts in counts Li&Ma Method

0.1 1000 7 5 2 2.24 0.89

0.3 1000 15 6 9 2.46 3.67

0.5 1000 26 17 9 4.13 2.18

0.7 1000 40 22 18 4.70 3.83

0.9 1000 55 42 13 6.50 2.0

1.1 1000 74 52 22 7.23 3.05

1.3 1000 97 73 24 8.56 2.81

1.5 1000 125 93 32 9.67 3.31

1.7 991 155 105 50 10.29 4.87

1.9 793 187 134 53 11.63 4.57

2.1 649 223 168 55 13.03 4.24

2.3 541 261 204 57 14.38 3.98

2.5 458 303 246 57 15.82 3.63

2.7 393 348 287 61 17.09 3.59

2.9 340 396 317 79 17.99 4.43

3.1 298 446 365 81 19.36 4.23

3.3 263 497 422 75 20.81 3.64

3.5 233 553 454 99 21.67 4.63

3.7 209 610 487 123 22.56 5.56

3.9 188 669 518 151 23.39 6.61

4.1 170 727 579 148 24.77 6.13

4.3 155 791 636 155 26.03 6.12

4.5 141 858 709 149 27.52 5.57

4.7 129 924 780 144 29.03 5.13

4.9 119 994 840 154 30.31 5.29

5.1 110 1068 924 144 31.88 4.71

5.3 102 1140 972 168 32.84 5.36

5.5 94 1210 1048 162 34.32 4.97

5.7 88 1286 1132 154 35.93 4.55

5.9 82 1364 1205 159 37.31 4.55

6.1 77 1434 1272 162 38.78 4.51

Table 1. Number of EAS events obtained in various error circles with random centers

and moon center, of the low-statistics EAS data of Alborz observatory.
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Fig. 1. Variation of the mean number of EAS events falling in the random error circles

as a function of the angular radius of the error circle, θerr. The smooth curve is the result

of computations according to our theoretical model (Sec.2).

Fig. 2. Variation of events falling in the random circles(•) and moving moon(△) as a

function of the angular radius of the error circle, the smooth curve is the same as Fig.1.
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Fig. 3. Variation of deficit events falling in moving moon circles from that in the random

circles as a function of the angular radius of the error circle, the smooth two parts curve

is the result of fitting data with the theoretical model equations see in appendix.
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