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Abstract: Traditionally, longitudinal shower profiles are reconstructed in fluorescence light
experiments by treating the Cherenkov light contribution as background. Here we will argue
that, due to universality of the energy spectra of electrons and positrons, both fluorescence
and Cherenkov light can be used simultaneously as signal to infer the longitudinal shower
development. We present a new profile reconstruction method that is based on the analytic
least-square solution for the estimation of the shower profile from the observed light signal
and discuss the extrapolation of the profile with a Gaisser-Hillas function.

Introduction

During its passage through the atmosphere
of the earth an extensive air shower excites
nitrogen molecules of the air, which subse-
quently radiate isotropically ultraviolet fluo-
rescence light. Since the amount of emitted
light is proportional to the energy deposited,
the longitudinal shower development can be
observed by appropriate optical detectors such
as HiRes [1], Auger [2] or TA [3].
As part of the charged shower particles travel
faster than the speed of light in air, Cherenkov
light is emitted in addition. Therefore, in gen-
eral a mixture of the two light sources reaches
the aperture of the detector.
In the traditional method [4] for the recon-
struction of the longitudinal shower develop-
ment the Cherenkov light is iteratively sub-
tracted from the measured total light. The
drawbacks of this ansatz are the lack of con-
vergence for events with a large amount of
Cherenkov light and the difficulty of propagat-
ing the uncertainty of the subtracted signal to
the reconstructed shower profile.
It has already been noted in [5] that, due to
the universality of the energy spectra of the
secondary electrons and positrons within an
air shower, there exists a non-iterative solution

for the reconstruction of a longitudinal shower
profile from light detected by fluorescence tele-
scopes.
Here we will present the analytic least-square
solution for the estimation of the shower profile
from the observed light signal in which both,
fluorescence and Cherenkov light, are treated
as signal.

Scattered and Direct Light

The non-scattered, i.e. direct fluorescence light
emitted at a certain slant depthXi is measured
at the detector at a time ti. Given the fluores-
cence yield Y f

i [6, 7] at this point of the atmo-
sphere, the number of photons produced at the
shower in a slant depth interval ∆Xi is

N f
γ(Xi) = Y f

i wi ∆Xi,

where wi denotes the energy deposited at slant
depth Xi (cf. Fig. 1). These photons are
distributed over a sphere with surface 4 π r2i ,
where ri denotes the distance of the detector.
Due to atmospheric attenuation only a frac-
tion Ti of them can be detected. Given a light
detection efficiency of ε, the measured fluores-
cence light flux yfi can be written as

yfi = di Y
f
i wi ∆Xi, (1)
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Figure 1: Illustration of the isotropic fluorescence light emission (circles), Cherenkov beam along
the shower axis and the direct (left) and scattered (right) Cherenkov light contributions.

where the abbreviation di = ε Ti

4 π r2
i

was used.

For the sake of clarity the wave length depen-
dence of Y , T and ε will be disregarded in the
following but be discussed later.
The number of Cherenkov photons emitted at
the shower is proportional to the number of
charged particles above the Cherenkov thresh-
old energy. Since the electromagnetic compo-
nent dominates the shower development, the
emitted Cherenkov light, NC

γ , can e calculated
from

NC
γ (Xi) = Y C

i N e
i ∆Xi,

where N e
i denotes the number of electrons and

positrons above a certain energy cutoff, which
is constant over the full shower track and not to
be confused with the Cherenkov emission en-
ergy threshold. Details of the Cherenkov light
production like these thresholds are included
in the Cherenkov yield factor Y C

i [5, 8, 9, 10].

Although the Cherenkov photons are emitted
in a narrow cone along the particle direction,
they cover a considerable angular range with
respect to the shower axis, because the charged
particles are deflected from the primary parti-
cle direction due to multiple scattering. Given
the fraction fC(βi) of Cherenkov photons emit-
ted at an angle βi with respect to the shower
axis [8, 10], the light flux at the detector aper-
ture originating from direct Cherenkov light is

yCd
i = di fC(βi)Y

C
i ∆Xi N

e
i . (2)

Due to the forward peaked nature of
Cherenkov light production, an intense

Cherenkov light beam can build up along
the shower as it traverses the atmosphere
(cf. Fig. 1). If a fraction fs(βi) of the beam
is scattered towards the detector it can con-
tribute significantly to the total light received.
In a simple one-dimensional model the number
of photons in the beam at depth Xi is just
the sum of Cherenkov light produced at all
previous depths Xj attenuated on the way
from Xj to Xi by Tji:

Nbeam
γ (Xi) =

i∑

j=0

Tji Y
C
j ∆Xj N

e
j .

Similar to the direct contributions, the scat-
tered Cherenkov light received at the detector
is then

yCs
i = di fs(βi)

i∑

j=0

Tji Y
C
j ∆Xj N

e
j . (3)

Finally, the total light received at the detec-
tor at the time ti is obtained by adding the
scattered and direct light contributions.

Shower Profile Reconstruction

The aim of the profile reconstruction is to es-
timate the energy deposit and/or electron pro-
file from the light flux observed at the detector.
At first glance this seems to be hopeless, since
at each depth there are the two unknown vari-
ables wi and N e

i , and only one measured quan-
tity, namely yi. Since the total energy deposit
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is just the sum of the energy loss of electrons,
wi and N e

i are related via

wi = N e
i

∫
∞

0

fe(E,Xi) we(E) dE, (4)

where fe(E,Xi) denotes the normalized elec-
tron energy distribution and we(E,Xi) is the
energy loss of a single electron with energy E.
As it is shown in [9, 5, 10], the electron energy
spectrum fe(E,Xi) is universal in shower age
si = 3/(1+2Xmax/Xi), i.e. it does not depend
on the primary mass or energy, but only on
the relative distance to the shower maximum,
Xmax. Eq. (4) can thus be simplified to

wi = N e
i αi.

where αi is the average energy deposit per elec-
tron at shower age si. With this one-to-one
relation between the energy deposit and the
number of electrons, the shower profile is read-
ily calculable from the equations given in the
last section. For the solution of the problem,
it is convenient to rewrite the relation between
energy deposit and light at the detector in ma-
trix notation: Let y = (y1, y2, . . . , yn)

T be the
n-component vector (histogram) of the mea-
sured photon flux at the aperture and w =
(w1, w2, . . . , wn)

T the energy deposit vector at
the shower track. Using the ansatz

y = C ·w (5)

the elements of the Cherenkov-fluorescence

matrix C can be found by a comparison with
the coefficients in equations (1), (2) and (3):

Cij =





0, i < j

cdi + csii, i = j

csij , i > j,

(6)

where

cdi = di
(
Y f
i + fC(βi)Y

C
i /αi

)
∆Xi

and

csij = di fs(βi) Tji Y
C
j /αj ∆Xj .

The solution of Eq. (5) can be obtained by in-
version, leading to the energy deposit estima-
tor ŵ:

ŵ = C−1 · y .

Due to the triangular structure of the
Cherenkov-fluorescence matrix the inverse can
be calculated fast even for matrices with large
dimension. As the matrix elements in (6) are
always ≥ 0, C is never singular.
The statistical uncertainties of ŵ are obtained
by error propagation:

Vw = C−1 Vy

(
CT

)
−1

.

It is interesting to note that even if the
measurements yi are uncorrelated, i.e. their
covariance matrix Vy is diagonal, the calcu-
lated energy loss values ŵi are not. This is,
because the light observed during time interval
i does not solely originate from wi, but also
receives a contribution from earlier shower
parts wj , j < i, via the ’Cherenkov beam’.

Wavelength Dependence

Until now it has been assumed that the shower
induces light emission at a single wavelength λ.
In reality, the fluorescence yield shows distinct
emission peaks and the number of Cherenkov
photons is proportional to 1

λ2 . In that case,
also the wavelength dependence of the detec-
tor efficiency and the light transmission need
to be taken into account. Assuming that a
binned wavelength distribution of the yields is

available (Yik =
∫ λk+∆λ

λk−∆λ
Yi(λ) dλ), the above

considerations still hold when replacing cdi and
csij in Eq. (6) by

c̃ d
i = ∆Xi

∑

k

dik
(
Y f
ik + fC(βi)Y

C
ik/αi

)

and

c̃ s
ij = ∆Xj

∑

k

dik fs(βi) Tjik Y
C
jk/αj ,

where

dik =
εk Tik

4 π r2i
.

The detector efficiency εk and transmission co-
efficients Tik and Tjik are evaluated at the
wavelength λk.



Longitudinal Shower Profile Reconstruction from Fluorescence and Cherenkov Light

Shower Age Dependence

Due to the age dependence of the electron
spectra fe(E, si), the Cherenkov yield factors
Y C
i and the average electron energy deposits

αi depend on the shower maximum, which is
not known before the profile has been recon-
structed. Fortunately, these dependencies are
small: In the age range of importance for the
shower profile reconstruction (s ∈ [0.8, 1.2]) α
varies only within a few percent [10] and Y C by
less than 15% [5]. Therefore, a good estimate
of α and Y C can be obtained by setting s = 1.
After the shower profile has been calculated
with these estimates, Xmax can be determined
and the profiles can be re-calculated with an
updated Cherenkov-fluorescence matrix.

Gaisser-Hillas Fit

The knowledge of the complete profile is re-
quired for the calculation of the Cherenkov
beam and the shower energy. If due to the
limited field of view of the detector only a part
of the profile is observed, an appropriate func-
tion for the extrapolation to unobserved depths
is needed. A possible choice is the Gaisser-
Hillas function [11] which was found to give
a good description of measured longitudinal
profiles [12]. It has only four free parameters:
Xmax, the depth where the shower reaches its
maximum energy deposit wmax and two shape
parameters X0 and λ.
The best set of Gaisser-Hillas parameters p can
be obtained by minimizing the error weighted
squared difference between the vector of func-
tion values fGH and x̂, which is

χ2
GH = [ ŵ − f(p)]T Vw

−1 [ ŵ − f(p)]

This minimization works well if a large frac-
tion of the shower has been observed below and
above the shower maximum. If this is not the
case, or even worse, if the shower maximum is
outside the field of view, the problem is under-
determined, i.e. the experimental information
is not sufficient to reconstruct all four Gaisser-
Hillas parameters. This complication can be
overcome by weakly constraining X0 and λ to

their average values 〈X0〉 and 〈λ〉. The new
minimization function is then the modified χ2

χ2 = χ2
GH +

(X0 − 〈X0〉)
2

VX0

+
(λ− 〈λ〉)2

Vλ

,

where the variance of X0 and λ around their
mean values are in the denominators.
In this way, even if χ2

GH is not sensitive to X0

and λ, the minimization will still converge.
On the other hand, if the measurements have
small statistical uncertainties and/or cover
a wide range in depth, the minimization
function is flexible enough to allow for shape
parameters differing from their mean values.
These mean values can be determined from
air shower simulations or, preferably, from
high quality data profiles which can be recon-
structed without constraints.
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