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We derive the energy asymmetry given the proto-neutron star during the time when the neutrino
sphere is near the surface of the proto-neutron star, using the modified URCA process. The electrons
produced with the anti-neutrinos are in Landau levels due to the strong magnetic field, and this leads
to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong
enough for a large fraction of the eletrons to be in the lowest Landau level, however, there is no
direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction
is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding
neutrinos correlated in the direction of the magnetic field. We predict a pulsar velocity of 1.03
×10−4(T/1010K)7 km/s, which reaches 1000 km/s if T ≃ 9.96 × 1010 K.
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I. INTRODUCTION

The creation of neutron stars, often called pulsars,
through neutrino cooling starting less than a second
after the collapse of a massive star has long been
of interest, with a number of processes contributing
to neutrino production[1, 2]. The strong interaction
treatment of these processes was refined by Friman
and Maxwell using perturbative one pion exchange
and short-range interactions[3].
In recent years it has been observed that many

pulsars move with much greater velocities than other
stars in our galaxy. This is called the pulsar kick.
See Ref.[4] for a review. Pulsars with velocities of
more than 1500 km/s have been observed. There
has been a great deal of theoretical effort in at-
tempts to explain the pulsar kicks. For many years
a number of investigations of asymmetries in the
hydrodynamics of core collapse have been carried
out, and in recent years there have been a num-
ber of reviews[5, 6, 7, 8]. Although some simula-
tions have found possible pulsar velocities of 1000
km/s or more, there is no clear proof that one can
get the observed large pulsar velocities by the initial
core collapse. There have been several calculations
of possible asymmetry in the neutrinos produced in
strong magnetic fields using the URCA process[9]
and other processes[10, 11] during the first few sec-
onds when the neutrinosphere has a radius of about
40 km. However. the opacities and short mean free

paths of neutrinos in the neutrino atmosphere re-
duces the emission, and these processes cannot ac-
count for the large pulsar kicks[12, 13]. There have
also been calculations of pulsar kicks resulting from
oscillation to sterile neutrinos[14, 15, 16, 17], which
can escape from the neutrino sphere during this early
period. The recent MiniBooNE experiment[18] with
previous LSND resiults are not consistent with a sin-
gle sterile neutrino, but allow models with two or
more sterile neutrinos.

It has long been recognized that during the later
period, when the neutrinosphere radius has been re-
duced to about 10 km, the radius of the protoneu-
tron star, that the modified URCA process domi-
nates the cooling of the protoneutron star[1, 3]. It is
also known that protoneutron stars have very large
magnetic fields. In the presence of such fields the
electrons produced in the modified URCA process
will be in Landau levels[19, 20]

In the present work we derive the asymmetric neu-
trino emissivity during the period when the neutri-
nosphere is just within the protoneutron star sur-
face, and show that due to the electrons being in
Landau levels pulsar velocities consistent with ob-
servations are obtained. In the present work the
contribution from polarization of the nucleons is not
included. Our work shows that for about a 10 s
period starting at about 10 s, when the modified
URCA process dominates and the radius of the neu-
trinosphere is a fraction of a km less than the neu-
tron star radius, the main neutrino emission is asym-
metric, and during this period the high velocity pul-
sar kicks are generated. One of us presented a pre-
liminary version of this work at the CosPA 2006
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Symposium[21]. Also, the process of temperature
equlibrium for the electrons in a strong magnetic
field is being completed[22]
Our paper is organized as follows. In Sect. II we

give the basic quantities in terms of which we cal-
culate the emissivity. In Sect. III we explain the
important differences between our formulation with
the electrons in the lowest Landau level giving asym-
metric momentum emissivity and the previous ones
with no kick. As explained in Sect. IIIB, we in-
corporate the Landau wave function in the lepton
trace and give the results of the calculation of the
traces, explaining that with the contributing elec-
trons all moving in the direction of the magnetic
field the intregration over the direction of the neu-
trino momentum is not present. In Sect. IIID we
give our results for the asymmetric emissivity that
gives the pulsar kick. In Sect. IIID1 we evaluate the
essential ingredients of proto-neutron star structure
that is needed for obtaining our final numerical re-
sult, given in Eq. (26) and Fig. 4. In Sect. IV we
present our conclusions. In the Appendix we give
details of the calculation of the matrix elements, the
nucleon and lepton traces, and the angular integrals.

II. MODIFIED URCA PROCESS IN A
STRONG MAGNETIC FIELD: LANDAU

LEVELS
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FIG. 1: Modified URCA diagrams with OPE and a
short-range n-n interaction

The modified URCA process,

n + n → n + p + e− + ν̄e (1)

for cooling of protoneutron stars has been treated
in many publications [1, 2, 3]. In a detailed
calculation[3] the one pion exchange (OPE) and a
short-range interaction were used for the nuclear in-
teraction, illustrated in Fig 1.
Diagrams (1,2,3) are for neutral and charged pion

exchange, diagrams (4,5,6) are the exchange dia-
grams, and 7 is the short-range diagram. It can
be shown that for our calculation of the asymmetric
neutrino emissivity the short-range n-n interaction
is negligible, so we only consider the OPE diagrams
here.
The OPE factor is given by the standard nonrel-

ativistic form, while the weak interaction used for
the nucleons is the nonrelativiatic form of the stan-
dard model. As we shall show, only the weak axial
interaction, WA, needs to be considered

VOPE = − f2

m2
π

τ1 · τ2~σ1 · ~k
1

k2 +m2
π

~σ2 · ~k

WA = − G√
2
gAχ

†
p
~l · ~σχn (2)

lµ = Ψ̄(qe)γµ(1− γ5)Ψ(qν) ,

with σ, τ the Pauli spin and isospin operators, (1,2)
refer to the two nucleons at pion vertices, G =
10−5

m2
n

, gA = 1.26, the χ are the nucleon spinors, and

the lepton wave functions are Ψ(qe),Ψ(qν), where qe

and qν are the electron and antineutrino momenta,
respectively, with the notation qe ≡ ~qe, qν ≡ ~qν .
Another point that should be mentioned is that the
inverse modified URCA processes which we neglect
in the present work,

n + p+ e− → n + n + νe

n + e− → n + π− + νe ,

will also have the electrons in Landau levels and
thereby contribute to the overall pulsar kick, as we
show below.

A. Landau Levels and Product Matrix
Elements

The neutrino wave function is a Dirac spinor,
while the electrons in a very strong magnetic field are
in Landau levels, which are similar to that of a Dirac
particle in a plane wave state moving in the z or -
z direction, where ẑ is the direction of the magnetic
field, and the motion in the transverse direction is of
the form of a tightly bound state. For a discussion
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of Landau wave functions see Refs[19, 20]. These
states are labeled by a principal quantum number,
n, and spin and momentum.
An essential aspect of the present work, is that

a sizable fraction of the electrons are in the lowest
Landau level (n=0). One can estimate the fraction
of electrons in this n=0 level from the energy gap
between the n=0 and n=1 levels, and T. The pro-
toneutron stars that receive a large velocity from
the mechanism that we are considering have a large
magnetic field strength, about 1015 to 1016 G at the
star surface at a time of about 10 sec, when the
neutrinosphere is near the surface of the protoneu-
tron star. From expressions given in Ref[20], the en-
ergy gap between the n=0 and n=1 levels is about
6.0 MeV. Our work, shown below, concludes that a
temperature T with kT about 8.59 MeV will yield
a pulsar velocity of about 1000 km/sec. From this
we can use basic thermodynamics to estimate that
the occupation probability of the n=1 state is about
0.5, and that the overall probability of the electron
being in the n=0 level is about 40%.
A crucial point is that the electron in the n=0 level

has its spin in the -z direction, which we show below
causes all of the emitted neutrinos to be correlated in
the z direction, while electrons in the higher n levels
have both helicities, and give no net pulsar kick.
Since we assume that all electrons produced via the
modified URCA process are in the n=0 Landau level,
this introduces an error of a factor of aqpproximately
2, but as we shall see this is a trivial correction due
to the very strong dependence of the resulting pulsar
velocity on T, and the uncertainty in the magnitude
of T.
The lowest Landau level, with n=0 has the form

Ψ(qν) = us,Dirac(qν) ≡ us(qν)∑
s

us(q)ūs(q) = 6q +m

Ψ(qe) = ψLandau,n=0(qe⊥, q
e
z, φ) (3)

= i(
√
γ)−1e−(qe

⊥
)2/(2γ)u−(qe) ,

where u− is a negative helicity Dirac spinor, 6 q ≡
qµγµ, and γ = δm2

e; δ = B/(2Bc) ≃ B/8 ×
1013Gauss ≃ 12.5 to 125 for B=1015 to 1016

Gauss.Using E+m ≃ E, the wave functions have the
conventional normalization

∫
Ψ̄Ψ = 1. The vector

weak interaction is not included in our calculation
as its contribution to the neutrino asymmetric emis-
sivity is much smaller than the axial vector. The
pulsar velocity is independent of the magnitude of B
except for the n=0 occupation probability.

Although the z-component of the electron momen-
tum can be in the +z or -z direction, we shall show
that there is no neutrino emission for the electron
moving in the -z direction, due to the vanishing of
the lepton trace.
For the calculation of the neutrino emissivity and

the pulsar momentum one needs the traces of the
product matrix elements. The axial product matrix
element, |MA|2, is obtained by taking the nucleon
traces over the product of the leptonic traces times
the square of the weak-strong product:

|MA|2 = Tr(nucleon)|Tr(lepton)[l†i lj ]
[WA(VOPE + exchange)]ij|2 , (4)

with VOPE given in Eq(2) and the (i,j) indices are the
spatial components of the lepton currents, defined
in Eq.(2). This is treated in detail in the following
section and in the Appendix.

We introduce the following notation:

k = p1 − p3 , p = p2 − p1 , ; k
e = k + p

χiχ
†
i ≡ Λi = (1 + σ · P i)/2 (5)

A = (
f

mπ
)2
G√
2
gA

1

ω

1

(k2 +m2
π)

R(k) =
k2 +m2

π

(ke)2 +m2
π

.

The factor R(k) is used in exchange matrix elements.

III. NEUTRINO ASYMMETRIC
MOMENTUM EMISSIVITY

With a strong magnetic field the electrons are in
Landau levels. That is, the motion of the electron
transverse to the magnetic field is compressed, and
the electron is essentially a one-dimensional plane
wave Dirac particle moving in the direction of the
magnetic field with energies given as Landau state
energies. With a very strong magnetic field, such as
near the surface of the protoneutron star when the
modified URCA process dominates neutrino emis-
sion, the electron will fall into the lowest Landau
level, with the wave function given in Eq.(3). The
polarization of the nucleons is a very small effect[1].
The electrons being in Landau levels gives asymme-
try to the neutrino emissivity. As we shall now dis-
cuss, the standard formulation for obtaining the en-
ergy emissivity from the modified URCA processes
leads to the momentum of the emitted neutrinos cor-
related in the B-field direction, and thus directly to
the pulsar velocity.
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A. Neutrino Asymmetric Emissivity

The neutrino emissivity is given in general form
in many papers, e.g., see Ref[3]:

eν = Π4
i=1

∫
d3pi

(2π)3
d3qν

2ων(2π)3

∫
d3qe

(2π)3

(2π)4
∑
si,sν

1

2ωe
L

ωνFM †
AMA (6)

δ(Efinal − Einitial)δ(~pfinal − ~pinitial)

|MA|2 = MD−D
A−A +ME−E

A−A +MD−E
A−A +ME−D

A−A ,

where F is the product of the initial and final Fermi-
Dirac functions corresponding to the temperature
and density of the medium. We use the terminol-
ogy that MA is the axial matrix element, which is
given as the sum over the six Feynman-like diagrams
shown in Fig. 1, but keeping only the axial weak in-
teraction, shown in Eq.(2); MD

A stands for the direct
diagrams 1,2, and 3 in Fig. 1, ME

A for diagrams 4,5,

and 6, MD−D
A−A is the product of (MD

A )† and MD
A .

ME−E
A−A andMD−E

A−A ,M
E−D
A−A , are analogously defined.

The sum runs over the nucleon spins, si, and the
neutrino spin. The electron is in the lowest Landau
level, with its wave function given in Eq(3).

As in Refs [1, 2, 3] the nucleons and the electrons
are in thermal equilibrium. In this present work
we assume that the proton quickly reaches thermal
equilibrium, while the process of the electron state
transforming to the n=0 Landau state does not in-
terfere with the proton reaching its Fermi momen-
tum. Therefore we can use the values for the mag-
nitudes of the nucleon and lepton momenta derived
in [1, 2, 3].

In the present paper we neglect the polarization of
the nucleons, so the Λi = I/2 (see Eq.(5)). Thus the
entire asymmetry of neutrino emission, which causes
the pulsar kick in the present work, arises from the
electrons being in the lowest Landau level and the
modified URCA process.

B. Neutrino asymmetric momentum emissivity

As seen from Eq.(6) our calculation of the asym-
metric neutrino emissivity starts with the standard
theory, except that the electron is in the lowest Lan-
dau level, rather than in the usual Dirac state. This
turns out to be the crucial point. With the elec-

tron in the lowest Landau level, the energy emissiv-
ity is also the projection of the momentum emissivity
along the B̂ axis. That is, in the following sections of
the present paper we shall show that the emissivity
given by Eq.(6) is of the form

eν(qν)z = angular and energy integrals× |M |2(qν)z
= PAS(qν)zc = −p(ns)c , (7)

where Tr(lepton)Tr(nucleon)|MA|2 ≡ |M |2(qν)z ,
c= speed of light, PAS(qν)z is the projection of the
momentum emissivity (momentum/volume/time)
along the z=B direction, and p(ns) is the momen-
tum/volume/time of the proto-neutron star. It
should be noted that the form equivalent to that of
Eq(7) has been used by a number of authors study-
ing pulsar kicks, such as Refs[16, 17].

An essential ingredient in our framework is that
electrons in the lowest Landau level moving in the
direction of the magnetic field are emitted while
those moving in the opposite direction are not,
which produces the asymmetric momentum emissiv-
ity. This arises from the lepton traces (see Eq.(4)
and Eqs.(38,39)) It is a straightforwrd exercise in
Dirac algebra to show that for an electron in the
lowest Landau level (I − γ5)u

−(qe)ū−(qe)] vanishes

for q̂e · B̂ = −1, so that we can write∫
d2qe⊥Tr[l

†
i lj ] ≃ 8πEe[(qν)jδi3 + (qν)iδj3

−δij(qν)3](q̂e = B̂ = ẑ) ,

which is Eq.(40), derived in the Appendix. Note
(qν)i is the ith component of qν , and (qν)3 = (qν)z .
This shows that when deriving the momentum asym-
metry we can assume that the electrons in the lowest
Landau levels are moving in the direction of the mag-
netic field. We shall take ~qe in the z (B) direction in
the remainder of this paper.
An important result of our work is that the pulsar

velocity does not depend directly on the strength of
the magnetic field, as is indicated in Eq(40). This
can be seen from the fact that the integral over the
transverse components ofcthe electron in the lowest

landau level,
∫
dqe⊥q

3
⊥e

−(qe
⊥
)2/2λ = 2λ, gives a factor

of λ which cancels the factor of 1/λ from the square
of the electron wave function (see Eq.(3). Therefore
the only dependence of our pulsar velocity on the
magnetic field strength is the requirement that it is
large enough that a sizable fraction of the electrons
are in the n=0 Landau level.

Therefore, with the electrons produced with the
neutrinos in the modified URCA process undergo-
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ing a transition to the lowest Landau level in the
very strong magnetic field near the protoneutron
star, the standard theory for energy emissivity also
gives the emitted momentum of the neutrinos, and
therefore the recoil velocity of the resulting neutron
star. However, there is a great deal to discuss, in-
cluding the calculation of the various traces and the
effective volume and time for the modified URCA
process to give a pulsar kick.

We start with the calculation of the traces of
|MA|2. As an example, let us calculate the direct
axial matrix element. Writing the product of ma-
trix elements needed for the emissivity, as shown in
Eq.(6), and using the notation given in Eq.(5), with
M1, M2, and M3 the 1, 2, and 3 diagram in Fig. 1,

M1 +M2 = Aχ†
3σ · kχ1χ

†
4[σ · k, σ · l]+χ2

= 2Al · kχ†
3σ · kχ1χ

†
4χ2

M3 = −2Aχ†
3σ · kσ · lχ1χ

†
4σ · kχ2 (8)

MD
A = M1 +M2 +M3 = 2Al · kχ†

3σ · kχ1

χ†
4χ2 − χ†

3σ · kσ · lχ1χ
†
4σ · kχ2 .

Further results and the calculation of the MD−D
A−A ,

MD−D
A−A , and MD−E

A−A traces of the product matrix
elements are given in the Appendix. It is important
to note that the Landau wave function is contained
in the lepton current, li.

From the Appendix, Eqs.(32,37,40), and defining

MDE
AA ≡MD−E

A−A +ME−D
A−A

∫
d2qe⊥M

D−D
A−A =

∫
d2qe⊥Tr[l

†
i lj]A

2(k2kikj + k4δij)

= 8πA2Eek
2(−(qν)3k2 + 2(qν)ikikz)

ME−E
A−A = R(k)2MD−D

A−A (k → ke) (9)∫
d2qe⊥M

DE
AA = −

∫
d2qe⊥Tr[l

†
i lj ]A

2R(k)

[−5

2
k · ke(kikej + kei kj) + 2kei k

e
jk

2

+2kikj(k
e)2 − (k × ke)i(k × ke)j

+(k · ke)2δij ]
= −8πA2R(k)Ee[−5k · ke(kezk · qν

+kzk
e · qν)− 2q · k × ke(k × ke)z

+4k · qνkz(ke)2 + 4ke · qνkez(k)2
+3(qν)z((k · ke)2 − k2(ke)2)] .

The next step in the calculation is to carry out
the nucleon angular integrals.

C. Angular integrals with k and ke angles
independent

Following the prescriptions of Ref[3] the magni-
tudes of the momenta are given by the Fermi mo-
menta, so one only does integrals over the ener-
gies and angles of the momenta, and the momentum

transfer of the pion in the direct term, ~k = ~p1 − ~p3
is introduced as an independent vector by inserting

∫
d3δ(~k − ~p1 + ~p3) = 1 .

For the D-D (direct-direct) term, the only angular
integral is over the direction of k. For the E-E and

D-E terms, however, one must deal with ~ke = ~k + ~p
(see Eq.(5)). Using the δ-functions, one can see that

neither ~ke nor ~p are completely independent of ~k,
but with the proton momentum being smaller than
the neutron, following arguments in Ref[3], it is a

good approximation to assume that ~ke and ~k are
independent.

Using the results given in Eq.(9) for the traces
of the products of the matrix elements, the integrals
given in Eq.(41), and the approximations k = ke and
R(k) = 1, with the notation

∫ ∫
= angular integrals

over ~k, ~ke, and qe⊥ one finds

∫ ∫
MD−D

A−A =

∫ ∫
ME−E

A−A = −128

3
π2A2k4(qν)zqe

∫ ∫
MDE

AA =
32

9
π2A2k4(qν)zqe . (10)

Recognizing that the nucleons are in thermal equi-
librium, the magnitudes of the nucleon momenta are
given by the Fermi momentum, pF , and therefore the
integrals over the magnitude of the four nucleon mo-
menta are carried out via delta functions. Dropping
the Eν terms, this gives the final result for the traces
and integrals over the axial product matrix element

∫ ∫
|MA|2 = −0.81× 103A2qe(qν)zp4F

= −0.81× 103(
f

mπ
)4
G2g2A
2ω2

(
p2F

p2F +m2
π

)2qe(qν)z . (11)
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D. Neutrino asymmetric emissivity

From Eq.(6), based on the general ideas of Ref[3],
but with our formalism for the phase space integrals,
with the angular integrations given by Eqs.(10,11) in
subsection III.C, we obtain the neutrino asymmetric
emissivity:

(ǫAS)ν = 2

∫ ∫
|MA|2

(m∗
n)

3m∗
p

(2π)9
pF (e)I . (12)

The energy integrals, I, are the same as those in
Ref[3]; and with qe = 85MeV , and qν = 4.7kT , we
find:

I = 9.04× 102(kT )8 (13)

From Eqs.(11,12,13) we obtain

ǫAS ≃ 0.64× 1021(
T

109K
)7erg cm−3 s−1

= pnsc(volume−1 time−1) , (14)

where pns is the momentum given to the neutron
star, the volume is the active region for the modi-
fied URCA process and the time represents the time
interval. pns has the magnitude of ǫAS/c in the op-
posite direction of the net neutrino momentum.
Due to the short mean free path of neutrinos

within the neutrinosphere, the main asymmetric
emission from the process we have proposed will take
place in the volume between the neutrinosphere and
the protoneutronstar surface during the period when
the neutrinosphere is just within the protoneutron-
star surface. At this time the temperature is ex-
pected to be in the range 109K < T < 1011K for
a period of 10s starting at about 10s. Taking the
neutrinosphere and protoneutron star to have radii
Rν and Rns, respectively, in km units, we find for
the momentum given to the pulsar for this period of
10-20 s

pns ≃ 0.43× 1027(
T

109K
)7

(R3
ns − (Rν)3) gm cm s−1 , (15)

where we use the effective volume for neutrino emis-

sion as Vns −Vν−sphere = f 4π
3 (R3

ns − (Rν)3)., where
f is the fraction of neutrinos which escape without
striking the neutrinosphere for various positions of
emission. A rough quess is 0.5, and by integrating
qνz , where z is defined in the direction of B, we find
that f=0.52.

1. Radius of neutrinosphere during modified URCA

emission

The final step in our derivation is to estimate the
volume in which the neutrino emission takes place
with the modified URCA process in a strong magntic
field. Referring to Eq.(23), we must find the radius
of the neutrinosphere, Rν , assuming that the radius
of the protoneutron star at this time is 10 km.
To do this we use the Spherical Eddington model,

which has been used by a number of authors to study
the neutrino atmosphere associated with the cre-
ation of a pulsar[16, 17, 23, 24]. We follow the recent
method of Barkovich et. al.[17] to find the neutri-
nosphere radius, and estimate the time and temper-
ature during which our process is taking place. See
Ref[25]for a review of the evolution of the birth of a
neutron star.
Our starting point is the energy-momentum ten-

sor, T µν for the neutrinos with a distribution func-

tion fν(~x,~k, t) for each type of neutrino, giving an

energy density, U and momentum density ~F

U = T 00 =

∫
d3k

(2π)3
k0f

ν

F i = T 0i =

∫
d3k

(2π)3
kifν . (16)

Making use of the Boltzmann equation, and recog-
nizing that the neutrinos have a very short mean free
path, λν , the neutrino distribution can be written in

terms of the equilibrium distribution, (feq)ν(~x,~k) as

fν ≃ (feq)ν − λν k̂ ·∆(feq)ν

(feq)ν =
1

1 + e(k−µν )/T
, (17)

which form we have used to obtain the integrals in
Eq(16).
The mean free path for each neutrino type in a

medium of nucleons with density ρ can be written
as

λν =
1

χνk2ρ
, (18)

with the constant χν determined from the constants
of the standard weak interaction model and the cross
sections for each neutrino type. Assuming the spher-
ical Eddington model one finds for the energy and
momentum densities, including the electron, muon,
and tau neutrinos, for equilibrium temperature T
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U =
7π2

40
T 4 (19)

~F = − 1

36χρ

dT 2

dr
r̂ .

The time dependence of T can be found from
energy-momentum conservation:

∂νT 0ν = 0 or

∂tU +∆ · ~F = 0 . (20)

Using the equations of hydrostatic equilibrium,
Barkovich et. al. showed that the T can be obtained
from the first order differential equation

dT̄

dx
+ bc

T̄ 2 − a(x))

T̄ 2x2(1− a(x))
= 0 , (21)

with T̄ ≡ T/Tc, x = r/Rns and a(x) depends on
the constant bc and two other constants, as well as
T̄ . We use the constants of Ref[17], with Tc = 40
MeV, slightly altered for our expected luminoscity in
the 10-30s interval when the modified URCA process
dominates.
Our solutions are shown in figures 2 and 3.

1.05 1.1 1.15 1.2
r�Rc

0.11995

0.11996

0.11997

0.11998

0.11999

T�Tc

FIG. 2:

0.960 1.021 1.061 1.1

0.01442

0.01446

0.0145

x=r/Rc

a(x)

FIG. 3:

In our solutions we find that a(x) << 1, a(x) <<

T̄ , a(x) ≃ ¯T (x)
2
(x ≥ 1), and that the result for the

mean free path is

(λν)−1 ≃ T̄ (T̄ 2 − a)cm−1 . (22)

With this solution the radius of the neutrinosphere
can be obtained in terms of Rns from the relation

∫ ∞

Rν/Rns

T̄ (T̄ 2 − a)dx ≃ 2

3

cm

Rns
. (23)

Using our solutions we find that for Rns =10 km,

Rν ≃ 9.96 km (24)

when the temperature is in the range T ≃ 1010K, so
that from Eq(23) the neutron star momentumm is

pns ≃ 5.14× 1027gm cm/s(
T

109
)7

= Mnsvns , (25)

For a neutron star with the mass of the sun = 2×1033

gm, including a factor of 0.4 for the n=0 occupation
probability,

vns = 1.03× 10−4(
T

1010
)7km s−1 . (26)

giving a velocity of v≃ 1000 km/s for T≃ 9.96×1010

K, which is in the expected range. Fig 4 illustrates
the velocity of the pulsar as a function of T.
Therefore we find that the modified URCA pro-

cess can produce the observed velocities of 1000
km/s if T or more during this period if the temper-
ature is sufficiently high when the neutrinosphere
is slightly within the protoneutron star due to the
electrons being in Landau levels. These large pulsar
kicks start about 10 s after the supernova collapse.

T ( 1010 K)

Pulsar velocity vs T assuming constant emission volume

( km/s)v

10000

1000

100

10

10.0 14.012.08.06.0

FIG. 4:
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IV. CONCLUSIONS

The basis of our present work is that for a mag-
netic field strength strong enough for a sizable fac-
tion of electrons produced in the modified URCA
process to be in the lowest Landau lavel, all of the
neutrinos emitted will be correlated with the direc-
tion of the magnetic field, giving a pulsar kick. The
resulting velocity depends strongly on the tempera-
ture, and only indirectly on the magnetic field. Us-
ing expected values of 1015 to 1016 Gauss for B, and
the T for which we get a pulsar velocity of 1000
km/s, we estimate that about 40% of the electrons
are in the n=0 Landau level, which is satisfactory.
The calculation of the asymmetric neutrino emis-

sivity, and the resulting pulsar velocity arising from
electrons being in Landau orbits in the strong mag-
netic field near the protoneutron star, is straight-
forward with the modified URCA process. Using
the standard properties of protoneutron stars in the
10-20 s time interval, we find that with the elec-
trons in Landau levels, the modified URCA pro-
cess can account for the measured pulsar kicks for
T > 9.96 × 1010K, with the neutrinosphere surface
just inside the protoneutron star surface. Studies[17]
give T ≃ 1011K, or even greater near the protoneu-
tron star surface. We predict a strong correlation
between the protoneutronstar T and pulsar velocity,
as well as a strong correlation between the direction
of the pulsar’s velocity and the direction of B. Since
the luminoscity of the pulsar is related to proper-
ties of the protoneutron star, such as strengths of B
and T, one can also expect our result to predict a
correlation between v and L of the pulsar for high
L.

FIG. 5: Pulsar velocity vs luminoscity, Ref[4]

In figure 5 the correlation between large L and
large v that has been observed is shown. It is a
subject for future study for us to see if our model is
consistent with that observation.

Our unique prediction is that the main neutrino
emission during this period when the neutrinosphere
is just inside the the neutron star is almost entirely
asymmetric, when the pulsar kicks should occur,
with a strong correlation with Eν . E.g., Eν = 35
MeV↔ kT = 11 MeV and v=2,000 km/s.

It is interesting to consider the neutrinos ob-
served in the Kamiokanda-II[26] and IBM[27] detec-
tors from supernova SN1987A. In the analysis of the
neutrino data[28], in which the Kamiokanda-II and
IBM data are plotted as a function of time, there
might be a gap in the data, with additional neu-
trinos seen after 10 s (with the first neutrinos seen
at about 1 s). See Fig. 6 for KAM II and IBM
results[28].

Although our agreement with the time gap seen
in Fig 6 is not statistically significant, we predict
asymmetric neutrinos start to appear at about 10
s, correlated in the B direction. This should be ob-
servable in future measurements of neutrinos from
supernovae with today’s improved detectors, with
neutrino energies determining the pulsar velocities.
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V. APPENDIX

A. Axial-Axial (A-A) Matrix elements

The axial OPE matrix element has a direct and
an exchange part,

MA = MD
A +ME

A , (27)

corresponding the diagrams 1,2, and 3 for the direct
and 4,5, and 6 for the exchange in Fig. 1. Using the
notation χn for the spinor of the nucleon n (n=1,2
for the initial neutrons, n=3 for the final neutron,
and n=4 for the produced proton), from Eq.(2,6)

MD
A = 2A[~l · ~kχ†

3σ · ~kχ1χ
†
4χ2 − χ†

3σ · ~kσ · lχ1

χ†
4σ · ~kχ2] (28)

ME
A = −R(k)MD

A (k → ke, 1 ↔ 2) (29)

Using χiχ
†
i ≡ Λi, the D-D product matrix element

is

MD−D
A−A = 4A2Tr[l · kl† · k(A1)(A2) + (A3)(A4)

−l† · k(A5)(A6)− l · k(A7)(A8)] , (30)
where, assuming that k̄ = k − q ≃ k, Λn = I/2 and

with the notation ~k → k

(A1) = Tr[σ · kΛ3σ · kΛ1] =
1

2
k2

(A2) = Tr[Λ2Λ4] =
1

2

(A3) = Tr[σ · l†σ · kΛ3σ · kσ · lΛ1]

=
1

2
l†i ljk

2δij

(A4) ≃ (1A) =
1

2
k2 (31)

(A6) = Tr[σ · kΛ2Λ4] = 0

(A8) = Tr[σ · kΛ4Λ2] = 0 .

From this we find

MD−D
A−A = A2Tr[l†i lj ]k

2(kikj + k2δij) (32)

ME−E
A−A = A2R(k)2Tr[l†i lj ](k

e)2(kei k
e
j + (ke)2δij)

Using k̄ ≃ k, k̄e ≃ ke, the two direct-exchange
product matrix elements can be written as (note

ME−D
A−A =MD−E

A−A (k ↔ ke))

MD−E
A−A = −4A2R(k)

∑
spins

[l† · kl · keDE1 (33)

+DE2− l† · kDE3− l · keDE4] ,

with (assuming Λn = I/2 for all nucleons)

DE1 =
1

16
Tr[σ · kσ · ke] =

1

8
k · ke

DE2 =
1

16
Tr[σ · l†σ · kσ · keσ · lσ · kσ · ke]

=
1

8
l†i lj [−k · ke(kiiej + kei ij) + kikj(k

e)2

+kei k
e
j (k)

2 − (k × ke)i(k × ke)j + δij(k × ke)2]

DE3 =
1

16
Tr[σ · kσ · keσ · lσ · ke]

=
1

8
(2k · kel · ke − l · k(ke)2)

DE4 =
1

16
Tr[σ · l†σ · kσ · keσ · k]

=
1

8
(2k · kel† − l† · ke(k)2) . (34)

To obtain Eq.(34) we use the trace relationships

Tr[σ ·Aσ · Bσ · Cσ ·D] = 2(A ·BC ·D (35)

−A×B · C ×D) ,

T r[σ · Aσ ·Bσ · Cσ ·Dσ · Eσ · F ]
= 2E · F (A · BC ·D −A×B · C ×D) (36)

−2[A · BE × F · C ×D + C ·DE × F ·A×B

−((A×B)× (C ×D)) · E × F ] .

From this, defining MDE
AA = MD−E

A−A + ME−D
A−A we

obtain

MDE
AA = −A2R(k)Tr[l†i lj][−

5

2
k · ke(kikej + kei kj)

+2kikj(k
e)2 + 2kei k

e
j (k)

2 + (k · ke)2δij
−(k × ke)i(k × ke)j ] . (37)

B. Lepton Traces

The lepton trace, Tr[l†i lj ], from Eq.(2), with the
neutrino in a standard Dirac state, us(qν), and
the electron in the lowest Landau level, Ψ(qe) =

i(
√
γ)−1)e−(qe

⊥
)2/(2γ)u−(qe), with the electron mo-

mentum along direction of the magnetic field, its
spin in the opposite direction, is defined as

Tr[l†i lj ] =
2

γ
e−(qe

⊥
)2/γTr[γi 6qνγj(I − γ5)

u−(qe)ū−(qe)] . (38)
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Using me ≪ Ee, and dropping terms in (q0)ν , which
do not give rise to momentum asymmetry,

γi 6qνγj |i6=j = −(qi)νγj − (qj)νγi

γi 6qνγi = 6qν − 2(qi)νγi (39)

(I − γ5)u
−(qe)ū−(qe) =

Ee

2
[γo + γoγ5 + γ5γ3 − γ3]

(q̂e = B̂ = ẑ)∫
d2q⊥

1

γ
e−(q⊥)2/γ = 2π .

An essential part of our work is that (I −
γ5)u

−(qe)ū−(qe) vanishes if the electron momentum
is opposite to the B-field, and that only electrons in
the lowest Landau level in the direction of the B-
field contribute to the emissivity. From Eqs.(38,39)
we find for the electron in the lowest Landau level∫

d2qe⊥Tr[l
†
i lj] ≃ 8πEe[(qν)jδi3 + (qν)iδj3

−δij(qν)3](q̂e = B̂ = ẑ) .(40)

C. Angular Integration

Using k = p1 − p3, k
e = p2 − p1 as indepen-

dent variables (see text for discussion), and defining∫ ∫
≡

∫
dΩk

∫
dΩke

4π We need the following angular
integrals

∫ ∫
ki =

∫ ∫
kei = 0 (41)

∫ ∫
k · Ak · B =

4πk2

3
A ·B

∫ ∫
k · Ak · Bk · Ck ·D =

4πk4

15
(A ·BC ·D +

A · CB ·D +A ·DB · C)∫ ∫
k2 = 4πk2

∫ ∫
(kz)

2 =
4π

3
k2

∫ ∫
(k · ke)2 =

4π

3
k2(ke)2

∫ ∫
k · kekzkez =

4π

9
k2(ke)2

∫ ∫
((k × ke)z)

2 =
8π

9
k2(ke)2

∫ ∫
k · kekzke · q =

4π

9
k2(ke)2qz∫ ∫

kezk
e · q =

4π

3
(ke)2qz∫ ∫

k × ke · q(k × ke)z =
8π

9
k2(ke)2qz

∫ ∫
(k × ke)ik · ke = 0 .
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