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1. Introduction

It is a matter of debate in the literature whether a theory that admits superluminal prop-

agation is acceptable [1, 2, 3, 4, 5, 6, 7, 8, 9]. It has been argued that superluminal motion

needs not lead to closed ’timelike’ curves, and is therefore not problematic. Furthermore,

it has been put forward that perturbations on a background which is not Lorentz invariant

(i.e., around a solution of the equations of motion which breaks Lorentz invariance) can

very well propagate faster than the speed of light, without leading to serious problems with

causality.

In this paper we first show that whenever the Lagrangian for a field is such that field

modes can propagate at superluminal speeds, closed curves along which a signal propagates

can be constructed. We call them ’closed signal curves’ or short CSC’s. In a next step we

show that, for a fixed cosmological background solution, the same result holds if one requires

that observers can send signals only forward in time, i.e., a forward time direction exists

unambiguously in each reference frame. Only if we require that all signals, independently

from the frame with respect to which they have been emitted, travel forward with respect

to the time of the cosmological reference frame, we can avoid the possibility of CSC’s.

However, this goes at the cost that observers traveling at high (but sub-luminal) speed

with respect to the cosmological frame must send signals backwards in their time for some

specific directions. In other words, fluctuations in these frames propagate sometimes with

the advanced and sometimes with the retarded Green function.

It seems clear to us, that in a universe with closed signal curves, physics, as we know

it, is no longer possible. For example, the second law of thermodynamics is violated, since

after one turn in a closed loop, the original state of the system must be re-established hence

entropy cannot have grown. If these loops are of Planckian size or much larger than the

age of the universe, there may be a way out of contradiction with every day experience,

but if the loops can be of mm or cm size, this becomes very difficult. Especially, it is not

clear to us whether thermodynamics in general, and the concept of entropy in particular,

can still make sense in a universe with closed signal curves.
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The point of the present note is to show that theories which do admit superluminal

motion, either admit closed signal curves or force some observers to send signals backwards

in their time. This finding is independent of the fact whether or not the background breaks

Lorentz invariance.

In the next section we construct closed signal curves in a field theory which allows for

superluminal motion. We discuss our result and show that it can be avoided by additional

assumptions if we have a preferred reference frame, like in cosmology. We also formulate the

conditions under which scalar field Lagrangians allow superluminal motion. In Section III

we discuss in more detail the cosmological situation concentrating especially on the example

of k-essence [10, 11, 12, 13] and in Section IV we conclude. The speed of light is c = 1 and

we use the metric signature (+,−,−,−).

2. Closed signal curves from superluminal velocities

It is well known that covariant Lagrangians can lead to superluminal motion. To be

specific and to simplify matters, let us consider the Lagrangian of a scalar field φ, leading

to a covariant equation of motion of the form

Gµν∇µ∇νφ = lower order terms , (2.1)

where Gµν is a symmetric tensor field given by φ and other degrees of freedom. It need not

be the spacetime metric. If Gµν is non-degenerate and has Lorentzian signature, Eq. (2.1)

is a hyperbolic equation of motion. We assume this to be the case (see [12] for a discussion

about this issue). The null-cone of the co-metric Gµν is the characteristic cone of this

equation. The rays are defined by the ’metric’ (G−1)µν such that Gµν(G−1)νλ = δµλ. The

characteristic cone limits the propagation of field modes in the sense that the value of

the field at some event q is not affected by the values outside the past characteristic cone

and, on the other hand, that the value at q cannot influence the field outside the future

characteristic cone [14].

For very high frequencies, the lower order terms are subdominant and the field prop-

agates along the characteristic cone. At lower frequencies, lower order terms act similarly

to an effective mass and the field propagates inside the characteristic cone. We now show

that, closed signal curves can be constructed if this cone is wider than the light cone defined

by the spacetime metric gµν .

If the characteristic cone of Gµν is wider than the light cone, the maximal propagation

velocity vmax of the field φ, which satisfies Gµνv
µ
maxvνmax = 0, is spacelike (with respect to

gµν). Since the notion ’spacelike’ is frame independent, this is true in every reference frame.

Of course, the characteristic cone for φ is not invariant under Lorentz transformations, but

the fact that it is spacelike is.

We consider two reference frames R and R′ with common origin q0: (0, 0) = (t, x) =

(t′, x′). R′ is boosted with respect to R in x-direction with velocity v < 1. For an event q

with coordinates (t, x) in R and (t′, x′) in R′ we have the usual transformation laws

t′ = γ(t− vx) , x′ = γ(x− vt), γ =
1√

1− v2
,

t = γ(t′ + vx′) , x = γ(x′ + vt′) . (2.2)

We assume that v is sufficiently large such that the superluminal velocity 1/v in x-direction

is inside the characteristic cone of φ. We can then send a φ-signal from (0, 0) with speed
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v1 > 1/v in x-direction to the event q1, see Fig. 1. The signal is received in x1 at time t1 =

x1/v1. In R′ this event has the coordinates t′1 = γt1(1− vv1) < 0 and x′1 = γt1(v1− v) > 0.

Note also that v′1 = x′1/t
′

1 = (v1 − v)/(1 − vv1) < 0, and the signal is propagating into the

past of R′.

We can choose x1 and correspondingly t1 very small so that curvature is negligible on

these scales and we may identify the spacetime manifold with its tangent space at (0, 0). In

other words we want to choose these dimensions sufficiently small so that we may neglect

the position dependence of both, the light cone and the characteristic cone for φ. The

situation is then exactly analogous to the one of special relativity.

An observer in the frame R′ now receives the signal emitted at (0, 0) in R and returns

it with velocity v′2 to x2 = 0 = γ(x′2 + vt′2). We denote the arrival event by q2. It has the

coordinates (t2, 0) with respect to R and (t′2, x
′

2) with respect to R′. Since v′2 6= v′1 in order

for a CSC to form, we may have to transform the signal to another frequency to allow it

to travel with speed v′2. If the returned signal arrives at some time t2 < 0, the observer in

R which has received the signal simply stores it until the time |t2| has elapsed after which

this signal has propagated along the closed curve q0 → q1 → q2 → q0 shown in Fig. 1, a

CSC has been generated.

Let us elaborate on the requirement t2 < 0. We assume here that an arbitrary observer

can send signals only into her future, so that t′2 > t′1. Hence we want to choose v′2 such

that even though ∆t′ = t′2 − t′1 > 0, we have ∆t = t2 − t1 < 0. When sending a signal with

speed v2 in frame R, respectively v′2 in R′, the times which elapse while the signal travels

a distance ∆x respectively ∆x′ are related by (∆x′ = v′2∆t′)

∆t = t2 − t1 = γ(t′2 + vx′2 − t′1 − vx′1) = γ(∆t′ + v∆x′) = γ(1 + vv′2)∆t′ , (2.3)

∆t′ = γ(1− vv2)∆t . (2.4)

In order to achieve ∆t < 0 and at the same time ∆t′ > 0 we need vv2 > 1, hence

v2 > 1/v > 1.

From Fig. 1 it is evident that v2 which is the inverse of the slope of the line from q2 to

q1 is smaller than v1 which is the inverse of the slope from q0 to q1. This is also obtained

from

0 < v2 =
−x1

t2 − t1
=

x1
t1 − t2

<
x1
t1

= v1 .

For the inequality sign we have used t2 < 0. Therefore, also v2 is inside the characteristic

cone of φ and is admitted as a propagation velocity. Note that since v2 > 1 the distance

between the events q1 and q2 is spacelike. Also in the reference frame R′, v′1 > v′2, but both

these velocities are negative hence for the absolute values we have |v′2| > |v′1|.

2.1 Lagrangians which allow for superluminal motion

We now identify scalar field Lagrangians which allow for superluminal motion leading to the

causal problem discussed above. Consider a Lagrangian characterized by a non-standard

kinetic term, with the action

S =

∫

d4x
√−g

[

−R

6
+K(φ)p(X) − V (φ)

]

, (2.5)

were φ is the scalar field (for example, a tachyon [15], the k-essence field [10], or the k-

inflaton [16]). X = 1
2∇µφ∇µφ is the kinetic energy; we use units with 8πG

3 = 1. The

– 3 –



equation of motion for φ is given by

Kp,XGµν∇µ∇νφ = −K,φp− V,φ − 2Xp,XK,φ . (2.6)

The potential term and first order derivatives are irrelevant for the characteristics of the

field equation. These are given by the co-metric Gµν . If a prime denotes derivative with

respect to X, the co-metric is

Gµν = gµν +
p′′(X)

p′(X)
∇µφ∇νφ . (2.7)

As discussed above, for the signal not to propagate faster than the speed of light, the

characteristic cone should not lie outside the metric cone. This means that the unit normal

to the characteristics Sµ must not be timelike with respect to gµν [3, 17]. The condition

GµνSµSν = 0 (2.8)

implies

gµνSµSν = −p′′(X)

p′(X)
(∇µφSµ)

2 . (2.9)

Therefore, Sµ is not timelike if and only if

p′′(X)

p′(X)
≥ 0 . (2.10)

Every theory that does not fulfill this conditions runs into the problem discussed above.

Already in the 60ties, the appearance of superluminal motion has led to the exclusion of

generic covariant higher spin s ≥ 1 Lagrangians [18]. Examples are the Lagrangian of

a self-interacting neutral vector field, a minimally coupled spin 2 field, or the minimally

coupled Rarita-Schwinger equation for a spin 3/2 particle [19].

3. Closed signal curves on a background
t

x

v
1

v
2

x

t

q0

q1

q2

Figure 1: A closed signal curve going
along q0 → q1 → q2 → q0.

So far, we have not specified any background

upon which the φ-signal propagates. As we have

seen above, the Lagrangian can be such that the

presence of a non-vanishing signal is sufficient

for the characteristic cone of φ to be spacelike

or, equivalently, its normal to be timelike, and

hence the propagation to be superluminal.

On the other hand, one can consider the

propagation of fluctuations upon a fixed back-

ground φ0. If ∇φ0 6= 0 is timelike, this gener-

ates a preferred frame of reference, the one in

which ∇φ0 is parallel to t. Let us call this ref-

erence frame R0. If the null-cone of the metric

Gµν(φ0) is spacelike (always with respect to the

spacetime metric), the construction leading to a CSC presented in the previous section

is still possible. However, now there is in principle a way out. If we require that signals
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always propagate forward in time in the frame R0, closed signal curves become impossible.

The CSC q0 → q1 → q2 → q0 is also closed in R0. As it encloses a non-vanishing area it

must contain both, a part where it advances in time and a part where it goes backward in

time, so that it violates the requirement that the signal can only advance in time in the

frame R0.

This is the main point. In relativity, events with spacelike separations have no well

defined chronology. Depending on the reference frame we are using, q2 is either before (in

R) or after (in R′) q1. If we can send a signal from q1 to q2, this signal travels forward in

time in R′ and backward in time in R. In the frame which is boosted with respect to R

with velocity 1/v2 in x-direction, the signal has even infinite velocity: q1 and q2 have the

same time coordinate in this reference frame.

If we require every signal to travel forward with respect to the time coordinate of

R0, we shall no longer have closed curves along which a signal propagates, but we then

have signals propagating into the past in the boosted reference frame R′ in which they

have been emitted. Moreover, the field value at some point q can now be influenced

by field values in the future. This may sound very bizarre; however, as far as we can

see, it is not contradictory since the events in the future which can influence q are in

its spacelike future and cannot be influenced by q. On the other hand, the events in

its past which q can influence are in its spacelike past and they cannot influence q, see

Fig. 2. In the limit in which the maximal propagation velocity vmax derived from Eq. (2.1)

approaches infinity in the frame R0, the past and future cones in the boosted reference

frame will approach each other, but never overlap. The cone edge x′ = v′maxt
′ is always

flatter than the one x′ = (−vmax)
′t′: one has (−vmax)

′ = −(vmax + v)/(1 + vvmax), and

v′max = (vmax − v)/(1 − vvmax), which both tend to −1/v in the limit vmax → ∞. The

opening angle α between v′max and (−vmax)
′ is given by

α =
2vmax

v2max − 1

(

1− v2

1 + v2

)

. (3.1)

Hence α → 0 if either v → 1 or vmax → ∞.

From Fig. 2 it is clear that there is no immediate contradiction since there are no

points which are simultaneously in the past and future characteristic cone of q, hence no

closed signal curves or CSC’s are possible. The physical interpretation is however quite

striking for an observer sitting at the origin of R′. When sending a signal with a velocity

close to vmax to the left, it naturally propagates into the observer’s future; when sending

it to the right, it has to propagate into her past, from where it can reach her again later

at a t′ > 0, when the past cone from (t′, 0) intersects the future cone from (0, 0). However,

also in the boosted frame R′, φ0 is a solution of the equation of motion and were it not for

the cosmological symmetry, there would be no reason to prefer one frame over the other.

3.1 k-essence

We now consider in somewhat more detail the particular example of k-essence [10, 11].

We show that k-essence signals with different wave numbers can propagate with different

superluminal velocities.

The k-essence action is given by

S =

∫

d4x
√−g

[

−R

6
+

p(X)

φ2

]

, (3.2)
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where now φ is the k-essence field and again X = 1
2∇µφ∇µφ.

In [13] it has been shown that, in every
t

xq

Figure 2: The characteristic cone v′
max

and
(−vmax)

′ is shown with arrows indicating the
forward time direction in the preferred frame
R0. All events inside the ’backward’ charac-
teristic cone (light grey) can influence the
event q, whereas q can influence all events
inside the ’forward’ characteristic cone (dark
grey).

k-essence model which solves the coincidence

problem and leads to a period of acceleration,

the field has to propagate superluminally dur-

ing some stage of its evolution. Therefore, k-

essence can lead to the formation of CSC’s. As

discussed above, CSC’s can be constructed us-

ing two different superluminal propagation ve-

locities (see Fig. 1). In particular, in the frame

R0 where the background is homogeneous and

isotropic we need v2 < v1. This can be achieved

because the equation of motion of k-essence per-

turbations contains an effective mass term which

leads to dispersion. Therefore, different wave-

numbers propagate with different velocities. In

the following, we calculate the group velocity

of the k-essence perturbations using the WKB

approximation.

We split the k-essence field in the cosmic

background solution and a perturbation, φ =

φ0(t)+δφ(t,x). In longitudinal gauge the metric

is

ds2 =
(

1 + 2Ψ(t,x)
)

dt2 − a(t)2
(

1− 2Ψ(t,x)
)

δijdx
idxj , (3.3)

where a(t) is the scale factor and Ψ(t,x) is the Bardeen potential. We restrict our calcula-

tions to the case in which k-essence is subdominant with respect to matter and radiation.

This is the case when k-essence evolves from the radiation fixed point to the de Sitter fixed

point (see for example Fig. 1 in [13]). As it is shown in [13], during this stage the sound

velocity c2s has to be larger than one. The equation of motion of k-essence perturbations

depends on the choice of initial conditions. One possibility is to consider standard adiabatic

initial conditions, for which the ratio δρi/ρi is of the same order of magnitude for matter,

radiation and k-essence. Since the Bardeen potential Ψ is related to (
∑

i δρi)/ρtot, it is

sourced mainly by the perturbations in the dominant component of the universe. There-

fore, when k-essence is subdominant, we can write the equation of motion for k-essence

perturbations considering the Bardeen potential as an external source, which does not

influence the propagation properties. This equation is of the form

δ̈φ+ α ˙δφ+ βδφ + c2s∆δφ = µΨ̇ + νΨ , (3.4)

where ∆δφ = gij∂i∂j(δφ). Here the over-dot denotes derivative with respect to physical

time t and α, β, c2s , µ and ν are functions of t. Similar perturbation equations have also

been derived in [20]. This equation is of the type (2.1). The wave fronts are given by the

characteristics, which determine the maximal speed of signal propagation, here cs. This

sound velocity is achieved in the limit of high wave-numbers k → ∞, and is given by

c2s =
p′

2Xp′′ + p′
′ =

d

dX
. (3.5)
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For the effective mass term β, we find

β =
2ρk

2Xp′′ + p′
, (3.6)

which is always positive since the energy density of k-essence, ρk = (2Xp′ − p)/φ2, is

positive, and 2Xp′′ + p′ > 0 in a stable theory [11]. For the damping term α ˙δφ we find

α = 3H

(

1− 2Xp′(3p′′ + 2Xp′′′)

(p′ + 2Xp′′)2

)

− 2
φ̇

φ

(

1 +
(p− 2Xp′)(3p′′ + 2Xp′′′)

(p′ + 2Xp′′)2

)

. (3.7)

For illustrative purpose, we can now calculate the group velocity using a WKB approxi-

mation. For simplicity we neglect the source term which does not affect the propagation

properties. We set

δφ(x, t) =

∫

d3k eikxϕ(k, t) , (3.8)

where t, k are the physical time and momentum. The Fourier transformed function satisfies

the equation

ϕ̈+ αϕ̇+ (β + c2sk
2)ϕ = 0 . (3.9)

In order to put this equation in a form suitable for the WKB approximation, we perform

the substitution

ϕ(k, t) = e−
R

t

0
α(t′)

2
dt′A(k)W (t) , (3.10)

so that (3.9) reduces to

Ẅ (t) + ω2(k, t)W (t) = 0 , (3.11)

where we have identified

ω2(k, t) ≡ β + c2sk
2 − α2

4
− α̇

2
. (3.12)

We define the effective mass term

m2 ≡ β − α2

4
− α̇

2
. (3.13)

Within the WKB approximation we neglect the time derivatives of c2s and of m2,

ċs/cs ≪ ω and ṁ/m ≪ ω, yielding the approximate solution

δφ(x, t) = e−
R

t

0
α

2
dt′
∫

d3k
A(k)

√

ω(k, t)
eikx−i

R

t

0 ω(k,t′)dt′ . (3.14)

As customary in the evaluation of the group velocity, we now suppose that A(k) is a

function sharply peaked around a given wave-number k0, and that it stays so for at least

a few oscillations. We can therefore Taylor expand ω(k, t) at first order both in k− k0 and

in t, and within the WKB approximation we then find

δφ(x, t) ≃ f(k0, t) δφ(y, 0) , (3.15)

where f(k0, t) is an irrelevant phase and

y = x− ∂kω(k0, 0)t . (3.16)
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The group velocity is therefore given by

vg(k0) = ∂kω(k0, 0) =
c2sk0

√

c2sk
2
0 +m2

. (3.17)

If m2 is positive, the velocity of the perturbation is always smaller than cs, and approaches

it in the limit k0 → ∞. If m2 is negative, low wave numbers with c2sk
2
0 < −m2 are

unstable. Because of the properties of hyperbolic equations of motion [14], we know that

the maximal speed of the signal is again cs. Therefore in this case, Eq. (3.17) no longer

correctly describes the signal propagation speed.

In Fig. 3, we plot m2 and c2s for the

Figure 3: The mass term m2 and the sound
velocity c2

s
as functions of redshift for the example

(3.18). We have plotted the absolute value of m2

and the solid line corresponds to a positive m2

whereas the dotted line corresponds to a negative
m2.

k-essence Lagrangian given in ref. [10]

p(X) = −2.01+2
√
1 +X+3·10−17X3−10−24X4 .

(3.18)

We see that the condition m2 > 0 (solid

line) is verified for most of the region of in-

terest given by c2s > 1 (dashed line). In the

example considered, c2s > 1 after z ≃ 1.4 ×
106 and stays so until today [13]. Note that

the part where m2 < 0 (dotted line) cor-

responds to a stage where the background

varies so quickly that in any case the WKB

approximation breaks down, and our calcu-

lation does not apply any longer. If m2 >

0, the group velocity is given by equation

(3.17) for sufficiently large values of k0 . In

order to construct the CSC of Fig. 1, we

now simply need to choose k1 > k2 in or-

der to have v1 = vg(k1) > v2 = vg(k2), and

k1, k2 large enough to have v1, v2 > 1/v > 1.

The situation is analogous if we choose

non-adiabatic initial conditions where k-essence perturbations are much larger than matter

and radiation perturbations. Of course the sound velocity c2s which only depends on the

second order spatial derivatives in the equation of motion will remain the same. Therefore

the fact that the theory has a speed of sound larger than the speed of light does not depend

on the particular choice of the initial conditions. But the group velocity can be different

in the two cases.

Combining the three Einstein equations 00, 0i and ii, which relate the evolution of the

k-essence perturbations δφ to the Bardeen potential Ψ, we obtain a second order equation

of motion for Ψ which has the form

Ψ̈ + α̃Ψ̇ + β̃Ψ+ c2s∆Ψ = 0 , (3.19)

where now

β̃ = 2Ḣ + 2
H

p′ + 2Xp′′

(

3H(p′ +Xp′′)− 2g(X)

p′φφ̇

)

(3.20)
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and the damping term

α̃ =
7p′ + 8Xp′′

p′ + 2Xp′′
H − 4g(X)

(p′ + 2Xp′′)p′φφ̇
, (3.21)

with g(X) = Xp′2 − pp′ −Xpp′′.

The above calculation of the group velocity can be straightforwardly repeated in this

case. One finds for the Bardeen potential the same form of the group velocity as in (3.17),

but in terms of the new effective mass m̃ given by m̃2 ≡ β̃ − α̃2

4 − ˙̃α
2 . As in the previous

case, we have evaluated m̃2 for the particular Lagrangian (3.18), and we find the same

qualitative behaviour as for m2 in Fig. 3.

4. Conclusions

We have shown that if superluminal motion is possible and if a signal emitted in some

reference frame R′ propagates always forward with respect to the frame time t′, closed

signal curves, CSC’s can be constructed. Note that these are neither closed timelike curves

nor closed causal curves (timelike or lightlike) in the sense of Hawking and Ellis [21],

since they contain spacelike parts. Hawking and Ellis call spacetimes which do not admit

closed causal curves ’causally stable’, and they show that stable causality is equivalent to

the existence of a Lorentzian metric and of a function t the gradient of which is globally

timelike and past-directed [21], p198ff. This condition may very well be satisfied in our

case since the field φ may be weak and the metric nearly flat.

However the relevant question is whether the existence of a global past-directed timelike

gradient∇αt prevents also the existence of closed signal curves which are partially spacelike,

as constructed in Fig. 1. As argued in [21] (see also [22]), if a past-directed timelike

gradient ∇αt exists, closed timelike or lightlike curves cannot be formed since for every

future-directed timelike or lightlike curve with tangent vα the derivative of t along the

curve gαβv
α∇βt < 0. This means that t can only decrease along such a curve and therefore

can never return to its initial value.

The situation is different if one allows a signal to propagate along a spacelike curve,

even if it remains inside a given cone defined by a Lorentzian metric Gαβ . Indeed the

notion of ’future-directed curve’ is not well defined for a spacelike curve; it depends on the

reference frame. Therefore we cannot apply the same argument as before; first we have to

choose a notion of ’future-directed’ for spacelike curves. Let us first use the notion which

has led to the CSC: We define (unambiguously) a curve to be future-directed, if a signal

along this curve always propagates forward in time with respect to the reference frame in

which it has been emitted. With this definition the curve from q0 to q1 as well as the one

from q1 to q2 are both future-directed. But, denoting by vα1 and vα2 their tangent vectors,

we clearly have gαβv
α
1∇βt < 0 but gαβv

α
2∇βt > 0 and gαβv

α
1∇βt′ > 0 but gαβv

α
2∇βt′ < 0.

Every timelike coordinate which grows along one part of our curve, decays along the other

part. Therefore the conditions of the theorem are no longer met and one can construct

closed signal curves.

On the other hand if we introduce a preferred frame and require that signals always

propagate forward in time with respect to this frame, we can define the notion of future-

directed curve in this frame and the theorem does apply: no closed curves can be con-

structed. But the price to pay is that in other reference frames emitters can send signal

– 9 –



which are past-directed with respect to their proper time. In the reference frame with

velocity v = 1/v1 the signal even propagates with infinite velocity, which means that the

’propagation equation’ is no longer hyperbolic but elliptic. In this frame the propagation

of the fluctuations δφ becomes non-local.

Finally, one may consider to apply the Hawking and Ellis theorem not to the spacetime

metric gαβ but to the metric Gαβ . In this case even if a curve has a superluminal velocity,

it can be a timelike future-directed curve with respect to Gαβ and therefore Gαβv
α∇βt < 0,

which implies that no closed timelike (with respect to Gαβ) curve can be formed. But this

notion is invariant only with respect to ’Lorentz transformations’ which leave Gαβ invariant

and not the lightcone. Therefore, now the speed of light depends on the reference frame.

Furthemore, local Lorentz symmetry with respect to Gαβ would now imply that we have

to take covariant derivatives with respect to this metric. Hence it is Gαβ and no longer gαβ
which defines the structure of spacetime, and we replace general relativity by a bi-metric

theory of gravity.

Hence the Hawking and Ellis theorem confirms our conclusions: if superluminal motion

is possible and if a signal emitted in some reference frame R′ propagates always forward in

frame-time t′, closed signal curves can be constructed. These curves, even if they are not

timelike or lightlike, are ’time machines’. They allow us, e.g., to influence the present with

knowledge of the future. After watching the 6 numbers on TV on Saturday evening we can

send this information back to Friday afternoon and enter them in our lottery bulletin.

On the other hand, if a background which defines a preferred timelike direction is

present, the ruin of all lottery companies can sometimes be prevented: we just have to

require that signals travel forward in time in a preferred rest frame which can be defined

unambiguously if ∇φ0 is timelike. But this implies that in other reference frames a signal

can propagate either towards the future or towards the past, depending on the direction

of emission (or it can even behave non-locally).

As we have started with a Lorentz invariant Lagrangian, we would in principle expect

that all solutions of the equations of motion are viable and that their perturbations have

to be handled in the same way. However in order to avoid CSC’s, theories that allow

for superluminal motion have, in addition to the Lagrangian, to provide a rule which

tells us when to take the retarded and when the advanced Green function to propagate

perturbations on a background. If the background solution has no special symmetries, it

is not straightforward to implement such a rule.
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