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ABSTRACT

Context. The solar torsional oscillations, i.e., the perturbatiohshe angular velocity of rotation associated with the eteyear
activity cycle, are a manifestation of the interaction amtre interior magnetic fields, amplified and modulated bystiiar dynamo,
and rotation, meridional flow and turbulent thermal tramspbherefore, they can be used, at least in principle, tacpostraints on
that interaction. Similar phenomena are expected to beraddén solar-like stars and can be modelled to shed lightraogous
interactions in dferent environments.

Aims. The source of the torsional oscillations is investigatedrisans of a model for the angular momentum transport witten th

convection zone.

Methods. A description of the torsional oscillations is introducedsed on an analytical solution of the angular momentumtigua
in the mean-field approach. It provides information on tHerisity and location of the torques producing the redistiiin of the
angular momentum within the convection zone of the Sun atbaegctivity cycle. The method can be extended to solarslies for
which some information on the time-dependence of tifiedintial rotation is becoming available.

Results. lllustrative applications to the Sun and solar-like staesmesented. Under the hypothesis that the solar torsiscdlations
are due to the mean-field Lorentz force, an amplitude of thevidl stressefB,B,| = 8x 10° G at a depth of 0.85R;, at low latitude
is estimated. Moreover, the phase relationship betvigzeand B, can be estimated, suggesting tBaB, > 0 below~ 0.85R, and

BB, < 0 above.
Conclusions. Such preliminary results show the capability of the proplasgproach to constrain the amplitude, phase and location

of the perturbations leading to the observed torsionallations.
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1. Introduction propagate almost all the way down to the base of the conwectio
zone.
Doppler measurements of the surface rotation of the Sun show A general description of the perturbation of the angular ve-
bands of faster and slower zonal flows that appear at midl&eity of the torsional oscillations, given the presentwecy
itudes and migrate toward the equator with the period of tl the observations, is provided by the simple formula €f,,
eleven-year cycle, accompanying the bands of sunspoftsctivWorontsov et al. 2002; Howe et al. 2005):
The amplitude of such velocity perturbations, called wmai c s .
oscillati(?ns, is of~ 5m s? andyferl)ster rotation is observed o (1, 0) = A9(r, ) cosgrt) + A )_(r, 0)sin(ot) =
the side equatorward of the sunspot belt (Howard & LaBonte = A(r, 0) sin[ot + ¢(r, 0)], (1)
1980). Helioseismology has revealed that the torsionall@sc wherer is the distance from the centre of the Sérthe co-
tions are not at all a superficial phenomenon but involve Mugdtitude measured from the North pote the frequency of the
of the convection zone, as shown, for example, by Howe et @leven-year cycle,the time, and the amplitude function) =
(2000), Vorontsov et al. (2002), Basu & Antia (2003) and morgsing, A® = Acosg depend on the amplitudeand the initial
recently by Howe et al. (2005, 2006). The amplitude of the aghases. Moreover, the velocity perturbation is symmetric with
gular velocity variation is5Q/2r ~ 0.5 — 1 nHz at least down regpect to the equator:
to 10%-15% of the solar radius, although the precise depth of
penetration of the oscillations isfiicult to establish given the @(r.6) = w(r, - 6). (2)
present uncertainties of the inversion methods in the |dvaéfr Several models have been proposed to interpret the totsiona
of the solar convection zone (e.g., Howe etal. 2006). Intatdi oscillations beginning with the pioneering work by Schéss
to such a low-latitude branch of the torsional oscillations- (1981) and Yoshimura (1981) who considered the Lorentzforc
lioseismic studies have detected the presence of a highdat associated with the magnetic fields in the activity beltshas t
branch (above- 60° latitude) that propagates poleward and thgause of the velocity perturbations observed in the solatgh
amplitude of which is aboutQ/2r ~ 1 — 2 nHz (see also, €.9., sphere. Later models, based on theets of the Lorentz force on
Toomre et al. 2000; Basu & Antia 2001) Such a branch Seem&lﬁ@ turbulent Reyn0|ds stresses, were proposed, by’ mgerK
et al. (1996) and Kichatinov et al. (1999), following an dmigf
suggestion by Riidiger & Kichatinov (1990). Spruit (2008
Send gfprint requests toA. F. Lanza posed that the low-latitude branch of the torsional ogailtes is



http://arxiv.org/abs/0706.1623v1

2 Antonino F. Lanza: Torsional oscillations in the Sun aratsst

a geostrophic flow driven by temperature variations due ¢o tivhereuyy) is the meridional circulationy’ the fluctuating ve-

enhanced radiative losses in the active region belts. locity field, 4 the magnetic permeability the mean magnetic
More recent works by Covas et al. (2004, 2005) present mdield andB’ the fluctuating magnetic field; angular brackets in-

els based on the simultaneous solution of non-linear medeh-fidicate the Reynolds average defining the mean-field quashtiti

dynamo equations and the azimuthal component of the Naviéhe Reynolds stresses can be written as:

Stokes equation with a uniform turbulent viscosity. Theyree

duce the gross features of the torsional oscillations anithef (U = — ou + ou; + A (5)

solar activity cycle with an appropriate tuning of the fregam- ol n oxj 0% o

eters. Rempel (2006, 2007) considers the role of the mevédio ) ) _ ) _

component of the Navier-Stokes equation in mean-field ngod#thereu is the mean flow fields(r) is the turbulent viscosity,

and finds that the perturbation of the meridional flow canrmot #ssumed to be a scalar functionrabnly, andA;; indicates the

neglected in the interpretation of the torsional oscitlasi. His non-difusive part of the Reynolds stresses due to the velocity

models suggest that the low-latitude branch of the torsioga Ccorrelations in a rotating star (see Rudiger 1989; Rird&e

cillations cannot be explained solely by thigeet of the mean- Hollerbach 2004, for details). The conservation of theltata

field Lorentz force, but that thermal perturbations in thévac gular momentum of the convection zone implies:

region belt and in the bulk of the convection zone do play an

active role, as proposed by Spruit (2003). O = 0forr =rp, R, (6)

In the present study, the angular momentum conservationjga ey is the radius at the lower boundary of the convection
considered and the relevant equation in the mean-field &PPIY e andR, is the radius of the Sun

tmhgt'ggéiﬁggiﬂ ?ﬁglghﬁgrg%:gﬁ];?se:;gr:g;grls%?ﬁg:g The equation for the conservation of the angular momentum
. ) = .~ can be recast in the form:

rived independently of any specific dynamo model, allowisg u

to put constraints on the localization of the torques pratlythe  9Q 1 6 [, 9Q
torsional oscillations. An illustrative application ofetproposed 5 ~ fﬁg (r Utﬁ) +
methods is presented using the available data.

The observations of young solar-like stars by means of tomo-_ /1t_ 1 o
graphic techniques based on high-resolution spectroscapy prz (1—u?) ou
recently provided evidence for time variation of their swe dif-
ferential rotation (see, e. g., Donati et al. 2003feks et al.

a5 = )
m

whereu = cosd and the source teri@ is given by:

2007). Lanza (2006a) has recently shown how such variations V.1
can be related to the intensity of the magnetic torque preducS = —— 1= (8)
by a non-linear dynamo in their convective envelopes, irctse pré(l - p?)

of rapidly rotating stars for which the Taylor-Proudmandfem andr is a vector whose components are:
applies. In the near future, the possibility of measurirgttme

variation of the rotational splittings of p-mode osciltats in i 1 L,
solar-like stars may provide us with information on the ajes 7i = ' SIN¢ [Aiw 7 (BiB, +(B/B}))
of their internal rotation, although with limited spatiasolu-

tion. In the present study, we extend the considerationsiok The boundary conditions given by Eq. (6) can be written as:
(20064a) to the case of a generic internal rotation profileneo-

essarily verifying the Taylor-Proudman theorem, to obtaitts ~ 9€2 R (10)

. X . — =0forr=ry,
on the amplitude of the torque leading to the rotation change ar b

+ pl’2 sir? QUi (9)

when we assume, = 0 at the surface. Note that helioseismic

2. The model measurements indicate the presence of a subsurface shear la
with % < 0 at low latitudes (Corbard & Thompson 2005), but
we prefer to adopt the stress-free boundary condition (fLthea
We consider an inertial reference frame with the origin ia thsurface to ensure the conservation of the total angular meme
barycentre of the Sun and theaxis in the direction of the tum of the convection zone in our model.
rotation axis. A spherical polar co-ordinate system®,() is The solar angular velocity can be split into a time-
adopted, whereis the distance from the origifithe co-latitude independent componef¥ and a time-dependent component
measured from the North pole apdhe azimuthal angle. We as-i-€., the torsional oscillations:
sume that all the variables are independegtand that the solar
density stratification is spherically symmetric. Q(r, 1, 1) = Qo(r, ) + (1, 1, 1). (11)

The equation for the angular momentum conservation
the mean-field approach reads (e.g., Rudiger 1989; Rii&ige

2.1. Hypotheses and basic equations

the equation for the torsional oscillations thus becomes:

Hollerbach 2004): do 1 8 (4 S0
e T 4o, Ut—) +

é(,or2 SifeQ)+V -0 =0, 3) ot prdor ar

at Ui 1 6 2 Zaw —S 2

wherep(r) is the densityQ(r, 6, t) the angular velocity an@ the  ~ ;12 (1— ;2) 3 (1-u9) | =5 (12)

angular momentum flux vector given by:
0= (pr2 sir? 6 Qum)+

_ rsing V-
6(pu’u,y — —— (BB B'B; 4) S1=- )
+1 siné(pu’u,) 7 (BB, +(B'B)), (4) S or2(1— 12)

where the perturbation of the source term is:

(13)
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with eigenvalues verify the inequalityyo < An1 < ...Ank < Ankel < -
_ and that the eigenfunctiafix hask nodes in the intervak], R]
+pr2sir? QQOUE%V (14) for eachn. Forn = 0, the first eigenvalue corresponding to the
eigenfunction/yg is zero and the eigenfunction vanishes at all

© ©) . _ points in |, Ry], as it is evident by integrating both sides of
WhereAiW andu(m)i are the time-dependent perturbations of thgq' (19) in the same interval, applying the boundary coanti

non-difusive Reynolds stresses and of the meridional circulgz0) and considering thato has no nodes. Far > 0, all the
tion, respectively, an@o is the average of the solar angular vegjgenvaluesi, are positive, as can be derived by integrating
locity over the convection zone. Note that the Maxwell stess photh sides of Eq. (19) in the intervatp[R,], applying the
appear in Eq. (14), but not in the corresponding equatio®for poundary conditions (20) and considering thigthas no nodes.
because the solar magnetic field has no time-independent coR\Vjiew of the inequality given above, all the eigenvalugsare

ponent. Moreover, in deriving Eq. (14), the variation of #1e  then positive fom > 0. Moreover, it is possible to prove that
gular velocity over the convection zone has been neglectedji,, > 1., if * > nand that (see Smirnov 1964b):

the term containing the perturbation of the meridional e
tion sincelw| < Qo (cf.,, e.g., Ridiger 1989; Rempel 2007).(%) p+ n(n+ 3)q
Eqg. (12) must be solved together with the boundary condition <

. 1
y =rsing AP - = (BB, + (B/B)))

i

(¥2)P+n(n+3)Q
M nk < m s
dw _ 0forr = rp, Re. (15) WwhereP, Q and M are the maximum values of the functions

rn., r’n; andpr# in the interval f,, Ro], respectively, anag, q
andm their minimum values in the same interval, respectively;

2.2. Solution of the angular momentum equation and| = f:o \Jp/mdr. Fork > 1 the asymptotic expression for
The general solution of Eq. (12) with the boundary condiiorthe eigenfunctiod is (cf., e.g., Morse & Feshbach 1953):
(15) can be obtained by the method of separation of the Vasgab

T
and expressed as a series of the form (cf., e.g., Lanza 2@08b, /(1) ~ (o) "% r 2 cos( w//lnkf w/p/ntdf') ) (22)
references therein): b

(21)

o o The time dependence of the solution (16) is specified by the
w(r,u,t) = Z Z ank(®)Zni(r)PED (1), (16) functionsan that are given by:
n=0,2,4,... k=0
dank
wherean(t) andnk(r) are functions that will be specified belowd—;1 + Ankarnk(t) = Bok(1), (23)
and Pﬁl’l)(u) are Jacobian polynomials, i.e., the finite solutions . .
of the equation: where the functiongn appear in the development of the pertur-
bation termSy:
d 2 zdpgl’l) 2yp(L,1) (L1)
G =K =g |+ nn+ 3)(A-kAPEY =0, (A7) Salrpt) = D > Bkan)PS(w), (24)
n k

in the interval-1 < ¢ < 1 including its ends (cf., e.g., Smirnov ; .
1964a). The Jacobian polynomials form a complete and orthoagnd are given by (cf. Lanza 2006b):
onal set in the intervaH1, 1] with respect to the weight function 2n+3)n+2)
(1-2). Only the polynomials of even degree appear in Eq. (159* = T 8(n+1)
because the angular velocity perturbation is symmetrib vt R, Al
spect to the equator (see Eq. 2). Iros> 1 the asymptotic ex- Xf f pri (A - 1A)Sa(r, i, ) Zn(r) P () drdy, (25)
pression of the Jacobian polynomials is (see, e.g., Gragsht rn J-1
& Ryzhik 1994): The solution of Eq. (23) is:
cos|(n+ $)0 - ¥| P "

; 3z + 02 (18)  ank(t) = ank(0) + exp-ndt) f Bridt’) explind)dt . (26)
van sin(4) cos(5)| 0

The functionstn are the solutions of the Sturm-Liouville Which allows us to specify the general solution of Eq. (12)

roblem defined in the interval < r < R. by the equation: with the boundary conditions (15) when the perturbatiomter
P a <1 <Roby d Sq(r, u, 1) and the initial conditions are given.

PAD(cosh) =

d d
ar (r4’7t gnk) = n(n+ 3)nelnk + Anpl o = 0 (19) . ) .
r r 2.3. Solution for the solar torsional oscillations
with the boundary conditions (following from Eg. 15): To find the solution appropriate to the solar torsional destiins
dene as specified by Egs. (1) and (2), it is useful to derive an-alter
d: =0atr =rp, Ro. (20) native expression for the functioggy as follows. Substituting

Eq. (13) into Eqg. (25) and taking into account that the elemen
We shall consider normalized eigenfunctions, i.eafvolumeisdV = —2zr?drdy, the r.h.s. of Eq. (25) can be recast
fr:*opr4§§kdr = 1. The eigenfunctionsx for a fixed n, intheformofa volume integral extended to the solar corwact

form a complete and orthonormal set in the intervgliR,] with Zone.

respect to the weight functigm* that does not depend onWe 11
recall from the theory of the Sturm-Liouville problem thaet Ank = Fn fV(V - T)P§ PV, (27)
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where: Egs. (33) can be used to compute the angular velocity per-
2n+3)(n+2) turbation whenr; is known. Note that in the case in which the
Fns—F—+—+— (28) Lorentz force due to the mean field and the meridional flow are

16n(n+1) the only sources of angular momentum redistribution, E4) (1
is a factor coming from the normalization of the Jacobiarypol gives:
nomials. Itis possible to simplify further Eq. (27) by caaesiing 1 _
the identity: V-t = I Bp - V(r sin6By) + 20Q0(r SinB)Umys, (35)

) LY. 1 — o plhy . . (L)

V- LanPn Tl = LV 1) + 7 VP (29) whereB;, is the mean poloidal magnetic field anghs the com-
Integrating both sides of (29) over the volume of the convepenent of the meridional flow in the direction orthogonalhie t
tion zone and considering that the integral of the l.h.siskes rotation axis. To obtain Eq. (35) we made use of the solehoida
thanks to the Gauss’s theorem and the condition that thalradiature of the mean poloidal field and of the continuity ecurati
component of the stresseg is zero on the boundaries, we findfor the meridional flow.

_ 11
Brk = ~Fn fv T1- V[{nkPg )]d\[ (30) 2.4. Localization of the source of the torsional oscillations in

) ] o the solar convection zone
The time dependence of the solar torsional oscillations-spe

ified in Eq. (1) suggests to consider a similar dependenaéor The results derived above allow us to introduce methods-to lo

perturbation term: calize the torques producing the torsional oscillatiorthécon-
vection zone. Suppose that the observations provide usthéth
T1(r, 1) = 79(r, ) cosrt) + 7(r, ) sin(ort), (381) functionsA©(r, 1) andA®(r, u) appearing in Eq. (1). The func-

. - . . tionsank(t) can be written as:
from which a similar expression for th& follows by substi- ani(t)

tution into Eq. (27). If we put such an expression fk into g, = 5‘.(1? cosrt) + 61,2? sin(ot), (36)
Eq. (26) and perform the integrations with respect to theetim
we find the stationary solution: where the constang” are given by:
0= " o
TR o2 ¢$9=2ﬂﬁlf \flA“$04mﬂ%1—ﬂ5§wP9”dmw 37)
'y -
X { fvgnkPg“) (/lnkV 79—V T(ls)) dV] cosgrt)+ Similarly, we can write:
_ Br(t) = b9 cosgrt) + b sin(ort), (38)
+ Jﬁgmpﬁn(zwv.rﬁ-+av-79)dv]mn@ﬂ} 32) LA
% with the relationships:
This expression can be substituted into Eq. (16) to give tigeia b© = 1.29 + oa®
lar velocity perturbation. It can be written in the form of Eg) "k ki + T8
with: b = 1@l - oa?, (39)

A, =f Gyt it )V -7 — Go(r, v, 1)V - 9] AV, that follow from Eg. (23).
t-1) v[ 1)V 7y 2o 1] The divergence of-(f’s) can be obtained from Egs. (13) and
24) as:
A = [ [Gutrt )75 4 Gt )7 -9 avr, 49

@ay T = A=) ) ) BRI PG, (40)
n k

where the symbotiV’ means that the volume inte/gration is tQvioreover, it is possible to construct a localized estimdtthe
be performed with respect to the variablesand ', and the perturbation termr; by considering a functiofi(r, ) the gradi-

functionsG, andG; are Green functions defined as: ent of which is dfferent from zero only within a given volume
o0 © V;. It can be developed in series of the eigenfunctions in the
Gl(r,ﬂ, r/,ﬂ/) = Z Fn Z 2_n|<2 X form:
T E e (=3 S P (41)
’ ’ 9 = k k ? b
X )PSO ()b P r) o
rory — N N g where the coficientc, are given by:
Gz(r,ﬂ,r,ﬂ)—ZFanX nk g y
n k nk Ro 1
X PE- P )i )P (). (34) Gk =2tFy f f (1= )P Vi (42)
I'n -

The Green functions are continuous with respect to the ar
mentsr, u, r’, i, but their partial derivatives with respectitg
' have discontinuities of the first kind in the points wheeer’ ©9 Vf) qv =
oru = y’. The convergence of the series in Egs. (34), here used Vi (Tl ' -
to represent the Green functions, is assured by the gemheral t

ory of the Green function (see, e.g., Smirnov 1964b) ancsis alzf €9 . v p@1) dv. 43
proven in Appendix A. Vi 1 Zn:zk: R “3)

9%t us consider the equation:
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obtained by means of Eq. (41). Considering Egs. (30) and (38here
Eq. (43) can be recast as:

f (r°9.vf)dv=-3" Fi D cadfd. (44)
Vi no Nk The average dissipation rate of the kinetic energy of thedaal

Moreover, if we introduce the volume average of the modul@scillations due to the turbulent viscosity is:
of the perturbationr;| with respect to the weight functigi f|,

(ATae = g {[517 + [a517). (50)

s d7”
ie. B (e = =2 Z zk] Akl AT ke (51)
09 J, 72V fidv
(7 Dve = —F—77—> (45)
fvf |VfdV 2.6. Torsional oscillations due to mean-field Lorentz force
then Eqg. (44) gives a lower limit for it in the form: Most models of the torsional oscillations assume that they a

due to the Lorentz force produced by the mean field as de-
rived from dynamo models. Therefore, let us consider the cas
in which only the mean-field Maxwell stresses contribute® t
perturbation, i.e.:

Yo & DiCobl?
K, 1Vfldv

79y, > (46)

The minimum dimensions of the volum& are set by the
spatial resolution of the measurements of the angular itgloc;, - _Z(r sin)By Bp. (52)
variations. They depend on the accuracy of the rotatiorat sp M
ting codficients, the inversion technique and the position withi . . ' . .
the convection zone (see, e.g., Schou et al. 1998; Howe etﬁa}.he mean radiak, and toroidal fields, are given by:
2005). The minimum order of the Jacobian polynomisls
needed to reproduce an angular velocity variation with ia latBr
tudinal resolutiomé is Ny, ~ A@. Similarly, the minimum order
of the radial eigenfunctionisy, Is set by the radial resolutior B, = By, cos(%(rt +11y), (53)
asKm ~ @. Therefore, it is possible to truncate the series
in Egs. (44) and (46) to those upper limits foandk because wherell, is the phase lag between the two field components, the
the codficientscyk will decrease rapidly fon > N, andk > K,  components ofy, in Eqg. (31) are:
giving a negligible contribution to the sum.

Bor cos(%(rt),

The statistical errors in the measurements of the angulé® _ —}cosl'[r rsing BorBos
velocity variations can be easily propagated through theali o fa '
equations (37), (39), (40) and (44) to find the errorson thiees (o 1 rsing
mates 01V~T(l°’s) or the average of;. For instance, if we consider ‘1 T 2 sinll; i BorBos- (54)

the standard deviationrs of the datad;, i.e., the rotational split-
tings or the splitting ca@cients from which the internal rotation An estimate ofr(l‘? and T(lf) can be obtained from the method
!s derived, the standard deviation of the integral in Eq. (44) outlined in Sect. 2.4, considering a localization functf@r) that

is: depends only on the radial co-ordinate(. Specif(i%ally, E4) ¢an
1 be used to compute a volume average gfandr:” from which
of = Z [ Z Cﬁkﬁﬁkz CHe (47)  the average stress amplituidgzB,| and plgase Ial?grj[r can be de-
n Nk i termined. Analogous considerations are valid for the menil
where component of the mean fiell, and B,. Adopting a localiza-
R, Al tion functionf(6) depending only o#, it is possible to estimate
oy = Znan f (1= 12)prc (1, 1) nPEOdl (48) |B4By| and the phase lald, betweerB, andB,. Such results are
e J-1 important to constrain mean-field dynamo models of the solar

cycle, as discussed by, e. g., Schlichenmaier & Stix (19883 (

and the functions;(r, 1) are the rotational inversion cfigients also Sect. 3.3).

defined in Eq. (8) of Schou et al. (1998).
Note that a constant relative er e Aw/w in the measure-
ments ofA®9 leads to the same relative error in Eq. (40) and ig.7. Application to solar-like stars

Egs. (44) and (46), given the linear equations that relaetn- f ler i b d h
responding quantities. As a matter of fact, there is alssteay- Sequences of Doppler images can be used to measure the sur-
face diferential rotation of solar-like stars and its time variabil

ti i i i thod related to th knolgke ;
atic error in our inversion method related to the poor knolg ity, as done by, e.g., Donati et al. (2003) anffdes et al. (2007)

f the turbulent vi it that determi the f f the: .
?adia?e?g;eﬁfﬁgcgcl)srfgj y(r) that determines the form o e|n the cases of AB Dor and LQ Hya. Lanza (2006a) discussed

the implications of the observed changes of the surfaerdn-
tial rotation on the internal dynamics of their convectiames,
2.5. Kinetic energy variation and dissipation assuming that the angular velocity is constant over cyiaadir
surfaces co-axial with the rotation axis. The present matiel
lows us to relax the Taylor-Proudman constraint on the irater
angular velocity, but some flierent assumptions must be intro-
duced to obtain the internal torques in those active stae e

- assume that the variation of the surfac@atiential rotation is en-
(AT e zn: ;(A‘Tmoc, (49) tirely due to the Maxwell stresses of the internal magnetids,

The variation of the kinetic energy of rotation associatethw
the torsional oscillations, averaged over the eleven-ggele,
can be computed after Lanza (2006b) and it is:



6 Antonino F. Lanza: Torsional oscillations in the Sun aratsst

localized in the overshoot layer below the convection zase, some average of the internal angular velocity of the star, sa
in the interface dynamo model by, e.g., Parker (1993). The iany(t), can be measured as a function of the time:

terior model of the Sun can be applied also to AB Dor and LQ

Hya because they have a similar relative depth of the colorect,, ) = f f w(r, 1, OW(r, p)drdy, (60)
zone. Therefore, the basic quantities can be scaled aogptali

the stellar parameters, as explained in Lanza (2006apwiolg

Donati et al. (2003), we consider a surfaciatiential rotation wherew is an appropriate weight function that takes into account

the averaging féects of the limited spatial resolution, anglis

of the form: the radius at the base of the stellar convective envelogeud.e
Q. t) = Qeqlt) - dQ(t)? (55) introduce an auxiliary weight function:

w(r,
whereQgq is the equatorial angular velocity ad the latitudi-  wi(r, u) = %, (61)

nal shear, both regarded as time-dependent. S?ﬁéé: 1land

2_ 1, 4p@y) ; i .- which will not diverge toward the poleg & +1) and the surface
’.tlo. 5 +15F5 7, itcan be recastin the form of Eq. (16) Ieadmg{i = 0) because the weight functienis localized into the stellar

interior and goes to zero rapidly enough toward the rotadixia
1

and the stellar surface. We can develop the functipas:
Qeq— 42 = ) coDZo(R), g ?
K Ny Kw
4 wa(r, ) = Wrkdnk(1)PSD (1), (62)
-2d0 = 3 aa(ia(R. (56) Zn: Zk: remEa
K

where the summation can be truncated at some low orders, say,
whereR is the radius of the star. The functiofs(t) can be N, andK,, because the functiom; is not sharply localized in
computed by assuming that the timescale of variation of ihe dthe stellar interior. Considering Eq. (60), we find:
ferential rotatiortpr is significantly shorter than the timescales
for angular momentum transport, as given by. This as- Sy
sumption is justified in the case of rapidly rotat%lg starsthoy wm() = Z Z 2F,, nkke
observed variation timescales of the order of a few years to-
gether with the expected rotational quenching of the visgosFor the sake of simplicity, we assume now that the time scale
(see, e.g., Kichatinov et al. 1994). Therefore, Eq. (23)detd  of variation of the functionan(t) is long with respect td;,} SO
ank(t) = torBnk(t). The angular velocity can be written in a formthat Eq. (23) givesBnk = Ankank. Considering Eq. (30), we find:
similar to Eq. (33) by introducing an appropriate Green fiorc

(63)

X A ! A Ny Ky
For instance, considering the first of Egs. (56), we find: wmlt) = _le {Z Z wnk { P‘l 1)]} (64)
1 3
—-—dQ=— V-11)Gs(R r")dV, 57 . -
“ 5 8n L( T)GR 1) 67 Equation (64) can be used to find a lower limit to the average of
_ |T1| over the convection zone volume. If we indicate My, the
where: maximum of the function:
Gs(r, 1) = ) Gok(r)dow(r”), (58) |y w,
; Z Z 2 [ £uPY) (65)
and the integration is extended over the stellar convectiore. th | fth . find:
Assuming tha¥ - 7, is different from zero only in an overshoot®V€" (N€ Voliume ot the convection zone, we find:
layer of volumeV, and applying considerations similar to those ﬁ/| A\ |w @]
of Sects. 2.3 and 2.4, we find a lower limit for the variation ofiry(t)|) = m (66)

the averaged perturbation term: v L

3. Application to the Sun

(A -T2y, > ( 8 ) (59)

AQeq— TA(AQ)
3tDR ’

VoM

3.1. Interior model, eigenvalues and eigenfunctions

whereAQqandA(dQ) are the amplitudes of variation of the dif-A model of the solar interior can be used to specify the func-
ferential rotation parameters, ahtlis the maximum oGg(R,1’)  tionsp(r) andn(r) that appear in our equations. While the den-
in the overshoot layer. sity stratification can be determined with an accuracy b#isn
This result made use of the limited information we can gé&5%, the turbulent dynamical viscosity is uncertain by astea
from surface dierential rotation. However, in the near futurepne order of magnitude and it is estimated from the mixing-
the observations of the rotational splittings of stellasikestions length theory according to the formula:
promise to give information on the internal rotation angbitssi-
ble time variations. Since only the modes of low degrées 8) 7 = ZamLpucH,, (67)
are detectable in disk-integrated measurements, theabpedo- 3
lution of the derived internal angular velocity profile igydow. whereay is the ratio of the mixing-length to the pressure scale
Lochard et al. (2005) considered the case in which only themmeneightH, andu, is the convective velocity given by:
radial profile ofQ is measurable.
In view of such an additional information accessible thrlmu%{ (aML Lo)

asteroseismology, let us consider a more general case ohw 40712 (68)



Antonino F. Lanza: Torsional oscillations in the Sun andssta 7

outermost layer of the solar convection zone, the momemt-of i
ertia of which is so small that there are no pratical consege®

The eigenvalues,k and the eigenfunction$yx computed by
] sleign2.f have been compared with those computed by means of
i the code introduced by Lanza (2006b). The relatifeedénces
. in the eigenvalues and in the eigenfunctions are lower tha¥h 1
for n < 14,k < 10. However, some problems of convergence
of the numerical algorithm used by sleign2.f have been found
for k > 20, particularly forn > 30, so we decided to limit its
application up tk = 19.

The Jacobian polynomials and the eigenvalues computed by
sleign2.f are very good up to = 30, as it has been found by
ook , , , LT comparison with their analytic expressions upnte= 10 and

0.70 0.75 og0 o8 0.0 0.95 their asymptotic expressions far> 12. We conclude that for
n > 30 andk > 20 it is better to use the asymptotic formulae

Fig.1. The ratio of the density to the density at the base of tf{&2) and (18) instead of the numerically computgdandPS-Y.
convection zoned/po — solid line) and the ratio of the turbulent ~ The eigenvaluelnk gives the inverse of the characteristic
dynamical viscosity to the turbulent viscosity at the bafthe timescale of angular momentum transfer of the mode corre-
convection zonerg/ng — dotted) versus the fractionary radiusponding tal, under the action of the turbulent viscosity. The
r/Re in our solar interior model. The density at the base of tHengest timescale corresponds to the lowest eigenvales, i.
convection zone igy = 0.1875 g cm?® and the turbulent viscos- 4,3 = 0.078 in nondimensional units. It corresponds to a time
ity is np = 2.56x 10'2g cnT! s71, respectively. A linear increase scale of 086 yr with the turbulent viscosity given by the mixing-
of n; between the relative radii 0.673 and 0.713 is assumed|ength theory and to 39 yr with o = 5.62x 10*° g cnr! s71.
account for the #ects of overshooting convection.

(p/po). (n/m0)

3.2. Localization functions for the source of the torsional

wherel,, is the luminosity of the Sun. In our computations we oscillations

adoptay. = 1.5 and assume the solar model S for the interiorhe available data on the torsional oscillations are disgla

quantitie$ (Christensen-Dalsgaard et al. 1996). In that modeith a typical radial resolution of.05 R, and a latitudinal res-

the base of the convection zone israt= 0.713R.. We con- olution of 15 in Howe et al. (2005, 2006). The rotational inver-

sider also the féect of an overshoot layer extending betweesion kernels of Schou et al. (1998) show a higher radial tesol

r = 0.673R, and the base of the convection zone within whiction close to the surface, but, given the small amplitudenef t

the turbulent dynamical viscosity is assumed to increasalily torsional oscillations, the choice of a uniform resolutir0.05

from zero up to the value at the base of the convection zore. TR, seems to be better.

density and the turbulent viscosity are plotted in Fig. 1 ®he  We have found that the best results on the localization of the

their values have been normalized at the values at the bdise ofsource term with the method outlined in Sect. 2.4 are obthine

convection zone, respectively. with localization functions that depend oror  only and that
The basic equations of our model (i.e., 12, 13 and 14) caave a smooth derivative. As a typical function to probe the r

be made nondimensional by adopting as the unit of length thil localization, we adopt:

solar radiusR,, as the unit of densityy, i.e., the density at the

base of the solar convection zone, and as a unit of time 0 ) - . forr <y,
poR2 /10, Wherer is the turbulent viscosity at the base of thd () =4 1+ 5'”[”(@) - §] forry <r<ry, (69)
convection zone. As a matter of fact, the value of thgudion forr > ra.

codficients e_stimated from the mi_xing-leng_th theory leads t0#,is function has zero derivative, except in the interval i
too short period for the solar cycle in mean-field dynamo n&de,, here jts derivative varies smoothly reaching a maximunhén t
Covas et al. (2004) adopted a turbulent magnefitisivity vi = miq of the interval. In Fig. 2 we plot the modulus of the defiva

3 x 10" cn? 571 to get a sunspot cycle of 11 yr. This implies . . . o
Mo ~ pvt = 5.62x 1(?10 genrt 591 in zur model.y P tive ’%’ as given by the sum of the series of the radial eigenfunc-

The radial eigenfunctiong, and the Jacobian polyno-tions truncated & = 19,forthree_ dferentin_tervals cen_tered at
mials PY have been computed from the respective Sturr-725, 85 and 0965Rs, respectively, all with an amplitude of

Liouville problem equations by means of the Fortran 77 subro'2 ~ 1 = 0.05R,. The derivative is well approximated by the

tine sleign2 % (Bailey et al. 2001). For the radial eigenfunction§uncated series, with small sidelobes the amplitude otivhni-

Znk, the Sturm-Lioville problem has been solved with Neumarfri€ases towa[d the surface of the Sun because the eiganhmct

boundary conditions at both ends, set &R, and 099R, to  Scale asqnr)~+, according to the asymptotic expression (22).

avoid divergence at the surface. For the Jacobian polyrismia The performance of the localization method introduced in

limit point boundary conditions have been adopted at+1. Sect. 2.4 has been tested with simulated data in the absénce o
Note that, from a rigorous point of view, it would be better té0ise. The results of two such tests are plotted in Fig. 3 ever

use the helioseismic estimate ¥ atr = 0.99 where we fixed consider the case of a purely radial perturbatier- 7, local-

our outer boundary for the computation of the radial eiganfu ized within aninterval of amplitude 05R.. Its time dependence

tions instead of the stress-free boundary condition thaglisl IS assumed to be purely cosinusoidal and the corresponding c

only at the surface. However, thefidirences are confined to theefficientsgn are computed by means of Eq. (30) up to the orders
n = 38 andk = 19. From theBny, the codicientsany are com-

1 See httpybigcat.ifa.au.dk-jcd/solar modelg puted by means of Eq. (26) and the simulated angular velocity
2 httpy/www.math.niu.ed(BL2/ perturbation follows from Eq. (16).
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Fig.2. The modulus of the radial localization kernel versus thieig. 4. The modulus of the latitudinal localization kernel versus
relative radius for the function (69), as obtained by trumgp u for the function (70), as obtained by truncating the series o
the series of the radial eigenfunctiong@t = 19, for three dif- the Jacobian polynomials &k, = 30, for three dierent inter-
ferentintervals centeredat= 0.725 (upper panel),.85 (middle vals ofu in the Northern hemisphere, i.e., [D26] (upper panel),
panel) and ®65R,, (lower panel), respectively, all with an am-[0.5,0.7] (middle panel) and [87,0.99] (lower panel), respec-
plitude ofr, — r; = 0.05R,. The modulus of the derivative hastively. Note the symmetry of the modulus of the kernel with re

been normalized to its maximum value. spect to the equator. The value’%ﬂ is normalized at its maxi-
mum atu = +1.

o8k 3 inverted value turns out to be the sum of the inverted naisele
: ] value and of the contribution coming from the inversion & th

noise. Their amplitude ratio is equal to the ratio of the atages

of the input noise to the input signal (for constant relasignal

errors), as discussed in Sect. 2.4.

<I7l>y,

Tof — The localization in latitude can be sampled by means of a
08f E localization function of the kind:
£ oo E 0 for—1 < pu < —uo,
Vo 04f [RRRUTR R g : 3 P HHE\ @ _ _
o ; 1+ sm[n(ﬂwl) 2] for —pp < pu <~
b : : ] f(u) =<2 for—up < p < g, (70)
U.g;o 0-75 0.80 0;35 0.90 0-95 1+ Sin[ﬂ - (H_Hl )] for <u=<
: - T : - 5 pr— M1 S p < o,
0 foru, <p < 1.

Fig. 3. Upper panelTest case of the application of the inversio S L
method introduced in Sect. 2.4. An input profile with= 1.07 %uch a function is symmetric with respect to the equator ab th

in nondimensional units between80 and 085 R, (plotted as S der|vat|veg—; is antisymmetric, as it is the source term
the solid line) is used to simulate a noiseless profile of &arguleading to a symmetric perturbation of the angular veloditye
velocity perturbation. The reconstructed lower-limit filmac- localization function has a derivative always equal to zexe
cording to Eq. (46) is plotted as a dotted line in the same Ipaneept in two intervals }- u2, —ua[ and Jug, w2, symmetric with
Lower panel:The same as in the upper panel, but with an inpt@spect to the solar equator. Its representation by meate of
profile localized between 0.775 and 0.825 Jacobian polynomials with degree up b = 30 is given in

Fig. 4. Note that the maximum ct»ﬂﬂ is reached in two sharp

peaks aj: = +1. However, they are so narrow that their contri-

When the interval in whichr; is localized coincides with one bution to the integral in Eq. (46) is modestin comparisomtuse
of the inversion intervalgf, r2], the lower limit for|rs| turns out of the broader peaks in the intervalsyg, —u1] and [ug, u2].
to be~ 80%-90% of the value assumed in the simulation (cfSeveral tests have been performed, as in the case of thé radia
Fig. 3 upper panel). The agreement increases up to-93% localization, to assess the performance of the proposeldauet
if we consider a case in which;, has a constant sign and pufThe results are similar to those obtained for the radial ease
the value of the derivativ%—: in the denominator of Eq. (46) are not discussed here.
instead of its modulus. This happens because the modulbsoft We conclude that our choice df, = 30 andKy = 19 is
derivative increases thefects of the sidelobes by increasing th@erfectly adequate to invert the available data on the gotar
value of the denominator in Eq. (46). When the interval inakhi Sional oscillations to derive information on the locatidntioe
the assumed, is localized does not coincide with an intervaperturbation term within the convection zone.
of the inversion grid, the inversion method still performsliw
_dlstrlbutlng the contrll_)utlons among neighbour intervagarly 3.3. Results on the sources of the torsional oscillations
in the correct proportion (cf. Fig. 3, lower panel). The case
simulations including a noise component is straightfooMar The data plotted in Fig. 4 of Howe et al. (2006) can be used for
treat thanks to the linear character of our inversion metfibé an illustrative application of the inversion methods icinoed
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Fig.5. The isocontours of the functioA.(r, ) as defined by Fig.6. The isocontours ob.(r, 1) as defined by Eq. (72) in the
Eq. (71) in the case ofp = 2.56x 10" g cnT* s7X. The scale case ofj = 2.56x10*2g cn* s71. The phase ranges frorg to

on the left indicates the ranges corresponding to tifierdint 7. The scale on the left indicates the phase ranges corresgpnd
colors and is in units of 10g cnT! s72. The relative statistical to the diferent colors and is in radians.

uncertainty ofA; is of ~ 30%, as it follows from the relative
uncertainty of the data.

Amplitude of the divergence of T4

in Sect. 2.4. They are given with a sampling of lietween
the equator and 60of latitude, i.e., in the range in which the 4, 05
rotational inversion techniques perform better (cf. Schbal.  **
1998). The features distinguishable on the plots indicataa
tual radial resolution of 0.05 R, in agreement with the sam- % < oo
pling adopted in Fig. 3 of Howe et al. (2005). An average sta-, ,,
tistical error of about 30% can be assumed for the amplitude,
whereas the phase errors become very large bel8R),, es- 0 05
pecially at low latitudes, because of the uncertainty in rive
construction of the signal in the deep layers. Note that thar e
intervals reported in Fig. 4 of Howe et al. (2006) indicatdyon O e ogs ofo 0B 0s0  oos
how the particular method solution (here an OLA inversion of (r/Ro)
SoHQMDI data) would vary with a dierent realization of the
input data &ected by a randon Gaussian noise. Unfortunate
they do not give the statistical ranges in which the true eslu
of the amplitude and phase are likely to lie. This is not a maj
limitation in the context of the present study because weaim
illustrating the capabilities of the proposed approacheathan
derive definitive conclusions.

To perform our inversion, we interpolate linearly the value
of the amplitude and phase over the grid used to compute the
radial eigenfunctions and the Jacobian polynomials. Werass 1%}
that the amplitude is zero at the poles and increases lingarl .,
ward 60 of latitude whereas the phase is constant poleward of
60° of latitude.

The divergence of the angular momentum flux perturbation-os?
71 can be obtained from Eq. (40). We define its amplitude and .z
phase as:

31.94

[ig.7. The same as Fig. 5 in the caserpf = 5.62x 10 g
m1s1. The scale on the left is in units of 4§ cn! s72. The
{)elative statistical uncertainty @; is of about 30%.

Phase of the divergence of T,

e

A= IV TP+ [V 19, (71) R -
0.70 0.75 0.80 (Y/R§585 0.90 0.95
v , o o0 !
@, = tan'! el k (72) FJlg]. 8. The same as Fig. 6 in the casepf= 5.62x 10" g cnT
Ty s

They are plotted in Figs. 5 and 6, respectively, in the case of

1o = 2.56x 10?2 g cntt s71. A suitable smoothing has been apamplitude of the perturbation term is higher close to theagou
plied to have a resolution of 0.05 R, in the radial coordinate because the data in Fig. 4 of Howe et al. (2006) mainly sample
and~ 15° in latitude. In order to show theffiect of a smaller the low-latitude branch of the torsional oscillations. Thktive
value of the turbulent viscosity, we plot in Figs. 7 and 8 @i maxima of A, are reached close to the base of the convection
contours ofA, and®, for ; = 5.62x 10'1° g cnt? s1. The zone and at a radius ef 0.85 R, and their locations show only
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a minor dependence on the valuergf Conversely, the value Note that the maximum radial stref&;By| is reduced by a
of no significantly dfects®., as it follows from Eq. (39). When factor of~ 30 wheny, is decreased from26x 10 to 5.62x 10
no is large, the timescales for angular momentum exchange,ggént?® s, whereas the maximum (B,B,| is reduced only by
given by the inverse of the lowest eigenvalues, are sigmifiga a factor of~ 4 (cf. Figs. 9 and 10). This mainly reflects the
shorter than the eleven-year cycle and the perturbati@alar predominance of the radial gradient over the latitudinabiggnt
most in phase with the angular velocity variations. Whygris  of the angular velocity perturbation in the deeper layerthef
sufficiently low, the timescales for angular momentum exchangelar convection zone.
become comparable or longer than the eleven-year cycleeso th The average phase lagk andIl, betweenB; and B, and
torsional oscillations lag behind the perturbations. Geving  the azimuthal field, as derived by the method in Sect. 2.6, are
Fig. 6, we see that the phase is in agreement with that in . 4plotted in Figs. 11 and 12, respectively. It is interestiogiote
Howe et al. (2006), except forZ 0.93 R.. The disagreement in thatB,B, > 0 below~ 0.85R, whenr, = 5.62x101°g cnTts™,
those layers is due to the small value¥ef; close to the surface in agreement with the finding of most dynamo models in which
that makes the corresponding phases uncertain (cf. Fighg). the azimuthal field is produced by the stretching of the dadia
phase lag is apparent by comparing Fig. 8 with Fig. 6, espyeciafield in the low-latitude region, wher% > 0forr < 095R,
close to the equator for. D2 < r/R, < 0.92. It is less evident (cf., e.g., Rudiger & Hollerbach 2004; Schlichenmaier xSt
near the base of the convection zone and in the upper layers d895). Above~ 0.85R,, the phase relationship between the ra-
to the smaller values &f - t1 in those regions. dial and the azimuthal fields leadsBpB,; < O with a phase lag
8f ~ 1, in agreement with the early finding that the photospheric
Zone equatorward of the activity belt is rotating fastenttzat
8} higher latitudes (cf. Rudiger 1989). Note th’},% becomes
negative for > 0.95R; at low latitudes, leading to a reversal
f the phase relationship between the two field components in
Ewe outer layers of the solar convection zone. Our limiteatiap
resolution and the uncertainty of the measurements of the to
sional oscillations inside the Sun might explain why we find t
transition from a mostly positive to a negati2eB, at ~ 0.85
Lower limits for the modulus of the angular momentum fluRs.
vector|ry| can be derived from Eq. (46). From the lower limits  The phase lag betwedj andB, depends remarkably on the
colatitude fory; = 2.56 x 10'2 g cn s71, whereas it is almost
constant fom, = 2.56x 10'2 g cnT! s71, leading in the latter
%ase mostly tayB, < 0. This, together witig—‘; > 0, suggests
that the toroidal field is mainly produced by the stretchifthe
radial field.
On the other hand, if the angular momentum transport lead-
ing to the torsional oscillations is produced only by a pdréu
Yion of the meridional flow, as in the thermal wind model, tlzen
yery small perturbation follows from the lower limit ¢f;|. For
no = 2.56x 10'? g cnT! 571, we find a minimum amplitude of
the meridional flow component oscillating with the eleveray
When the oscillations penetrate down to the base of the carycle of~ 3 cm s at a depth of B5 R, and a latitude of 45
vection zone, the maximum of the perturbation term is redchBlote, however, that if we estimate;| from its divergence and
between B0 and 085R,,. Itis mainly localized into two latitude the typical lengthscale of its variations in Fig. 5, we findsdue
zones, i.e., withint15° from the equator and between°3@nd about one order of magnitude larger, that is in agreemeit wit
60°. Note that our data refer mainly to the low-latitude branctihe estimate by Rempel (2007). A similar argument applies al
of the oscillations, so the possible source at latitud®0® can- to the estimate of the Maxwell stresses made above.
not be detected. When the turbulent dynamical viscositgis r  The average kinetic energy variation associated with the
duced with respect to the mixing-length value, the ampétafl torsional oscillations, as computed from Eq. (49)(18). =
the perturbation term drops, but its radial and latitudioahl-  4.88x10?® erg, whereas the average dissipated powe7igs B
izations are not greatlyfiected, except for a shift of the nearlyerg s, whenn = 2.56 x 102 g cntt s%, and only 15 x 10%°
equatorial band towards higher latitudes. erg st, whenn =5.6x 101°g enrt s,

Under the hypothesis that the Lorentz force is the only saurc When the torsional oscillations are assumed to be confined to

of the torsional oscillations, the amplitude of the Maxvettess shallqwer gnd shallower layers, the location of the P?“ﬂ"m
B.B, can be estimated from the lower limit ffy,| and it turns term is shifted closer and closer to the surface and it besome

P N 5 more and more uniformly distributed in latitude. Its amydié
out to be~ 2.7 x 10° G* in the case ofjo = 256 x 10 g gpy 05 remarkable decrease because of the smaller moment of
cm ™+ s . Considering that the poloidal field; is of the order

of 1— 10 G, this leads to very high toroidal fields in the bulk of"€"i& Of the surface layers.
the convection zone, that would be highly unstable becafise o

magnetic buoyancy. On the other hand, wjgh= 5.62x 10'° g

cm ! s71, the Maxwell stress i8;B,; ~ 8.1x 10° G2 which leads
to a toroidal field intensity of the order of 1@. It may be sta- The results of Sect. 2.7 can be applied to the variation of the
bly stored for timescales comparable to the solar cyclekthém surface diferential rotation observed in, e.g., LQ Hya between

the dfects of the downward turbulent pumping in the convectiat996.99 and 2000.96 (see Table 2 of Donati et al. 2003).
zone (cf., Brandenburg 2005, and references therein). Assuming an internal structure analogous to the solar ode an

It is interesting to note that the dependence of the ampitu
and phase of the torsional oscillations on the turbulergoggy
can lead to its estimate in the framework of mean-field mo
els (see, e. g., Rudiger et al. 1986; Rudiger 1989, forildgta
Specifically, Rempel (2007) finds that a mean turbulent kin
matic viscosity about one order of magnitude smaller than t
mixing-length estimate is needed to reproduce the polardira
of the torsional oscillations.

onl‘r(lc)l andl‘r(ls)|, alower limit on|ry| = 1/[‘r(lc)]2 + [‘r(ls)]2 can be
derived and it is plotted in Figs. 9 and 10 for the radial and |
itudinal localizations described in Sect. 3.2, respebtiv@iven
the uncertainty in the penetration depth of the torsionaillas
tions, in addition to the results for a penetration down tolihse
of the convection zone, we plot also those for penetratiquitde
of 0.80 and 090 R, respectively. They are obtained simply b
assuming that the oscillation amplitude has the value in4~af
Howe et al. (2006) above the penetration depth and dropsdo z
immediately below it.

4. Application to solar-like stars
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Fig.9. Upper panelThe lower limit of the amplitude of the per- Fig. 11. Upper panel:The phase ladl; betweenB, and B, as
turbation term|r,| averaged over spherical shells of thicknesserived by Eqgs. (54) averaged over spherical shells of tiask
0.05 R, versus the relative radius;ftirent linestyles and col- 0.05 R, versus the relative radius. fbérent linestyles are used
ors refer to the depth at which the torsional oscillatioresas- to indicate the results for fierent penetration depths of the tor-
sumed to vanish: black solid line — oscillations extendiog/d sional oscillations, as in Fig. 9. Results are obtainedragsya

to the base of the convection zone; green dotted line — ascilturbulent dynamical viscosity at the base of the convectmme
tions extending down to 0.8R.; red dashed line — oscillationszy = 2.56x 10*? g cnt! s71. Lower panelAs in the upper panel,
extending down to 0.9B,. Results are obtained assuming a tubut forng = 5.62x 101°g cnT! s71.

bulent dynamical viscosity at the base of the convectiorezon

1o = 2.56x 102 g cnt s, Lower panelAs in the upper panel,

but forng = 5.62 x 10'° g cntt s71. The relative statistical un-

certainties are in all the cases of about 30%, as it followmfr -t i E
the uncertainties of the data. oF ! 13
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VieE E derived by Egs. (54) averaged oveffdient latitude zones ver-
oo 02 os  os os 10 sus their average value pf Different linestyles are used to in-

s dicate the results for fierent penetration depths of the torsional

Fig. 10. Upper panel:The lower limit of the amplitude of the ©Scillations, as in Fig. 9. Results are obtained assuming-a t
perturbation ternirg| averaged over dlierent latitude zones ver- bulent dynamlzcal V|7slcoisl|ty at the basg of the corvectiorezon
sus their average value pf Different linestyles are used to in-° ~ 2.56x 10°%g cm OS X Lolwe_zg panelAs in the upper panel,
dicate the results for fierent penetration depths of the torsiona{?Ut forno = 5.62x 10°g et s,

oscillations, as in Fig. 9. Results are obtained assuming-a t

bulent dynamical viscosity at the base of the convectiorezon

1o = 2.56x 10 g cnt s, Lower panel:As in the upper panel,
but forne = 5.62x 10'° g cnt! s71. The relative statistical un-
certainties are in all the cases of about 30%, as it followsfr
the uncertainties of the data.

Bmin = /BpBs ~ 2500 G. However, if we assume a poloidal
field strength of~ 100 G, as indicated by the Zeeman Doppler
imaging, we find an azimuthal field &; ~ 6.2 x 10* G, which

is in the range of the values estimated by Lanza (2006a) in the
. . - framework of the Taylor-Proudman hypothesis. Note that¢he
that the diferent_|al rotation variations observed at the surfa(‘sqm is independent afo in the limit tor < /l;&_ Although this

are representative of those at a depth &R, we can es- ,nyjication is purely illustrative, it suggests that ourthual can
timate a lower limit for|V - 74| in the overshoot layer from o 5hjied to derive estimates of the internal magneticuiesq
Eq. (59). ItB'SB used to estimate the Maxwell stresses by assus \el| as other sources of angular momentum transporth whe
ing that:ro = =~ or|[V - 71|, wherer, = 0.67 Ris the radius asteroseismic results will become available, in combimatiith

of the overshoot layer anét = 0.04 R its thickness. In such surface rotation measurements, to further constrainiootsari-

a way, the minimum magnetic field strength turns out to bations in solar-like stars.
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5. Discussion and conclusions asymptotic limit, those series can be written as:

We introduced a general solution of the angular momentu Fn No(L1 1)

transport equation that takes into account the densityifatea 2 Z ngnk(r)gnk(r )Pg )('“)Pg W) =

tion and the radial dependence of the turbulent viscogitits " _X

main limitation is due to the uncertainty of the turbulergogs- Z hn VERPED (), (A.1)
ity in stellar convection zones. It is interesting to notattthe n

method of the separation of variables to solve Eq. (3) carpbe Ahere:

plied also wheny, is the product of a function of the radius by '

one of the latitude. However, whep depends on the latitude, VFn Ao/

the angular eigenfunctions are no longer Jacobian polyaismi N = Z /l—kfnk(r)fnk(r )Py (). (A.2)
Our formalism can be applied to compute the response ofa K "

turbulent convection zone to prescribed time-dependerdrita From the asymptotic formulae it follows that for a point

, (A.3)

. (A.4)

=

o0
k=1

force and meridional circulation. From the mathematicahpo in the domain fp, Ro] X [rp, Ro]x] — 1,1[, the quantity
of view, it is a general|zat|o_n of that of R(_Jdlg_er etal. (lgsgand |\/F_n§nk(f)§nk(r’)Pﬁl’l)(,u’) is limited with an upper bound inde-
can be easily compared with it by considering (1) = pendent ofn andk. Therefore, the series (A.2) that define the
Fzzdf;;” = — 239 pl(g), whereP, is the Legendre polynomial of coe(ﬁcientlshn are uniformly convergent in that domain if the
degreen andP} = -2 Moreover, our method can be used t§eresky 5 converges. o _ N
estimate the torques leading to the angular momentum reedist ~ This can be proven by considering the inequalities (21) and
bution within the solar (or stellar) convection zone, theseral- the formula:
izing the approach suggested by Komm et al. (2003). The maig . 1/(z2 y y
limitation, in addition to the uncertainty of the turbulesscos- —— =3 (—) g(—) \/j -1
ity, comes from the low resolution and the limited accuraty oics @k +y  2\y/["\a/ YV a
the present data on solar torsional oscillations, pasitylin . :
the deeper layers of the convection zone. Actually, thoge I3VNerez a # 0 andy are real numbers and the functig(x) is
ers are the most important because torsional oscillatighsam d€fined as:
amplitude of~ 0.5%-1% of the solar angular velocity extend- exp(rx) + expEmrx)
ing down to the base of the convection zone lead to MaxwélX) = 7 explrx) — expCnx)
stresses with an intensity of at leas8x 10° G? around 0.8,
or a perturbation of the order of several percents of thednerEg. (A.3) follows from the equality (1.217.1) of Gradshte§n
ional flow speed at the same depth (cf., e.g., Rempel 2007).Ryzhik (1994). In this way, we find:
the torsional oscillations are due solely to the Maxweksses
associated with the mean field of the solar dynamo, we can es- m n(n+ 3)QI? n(n + 3)QI2 1
timate also the phase relationships betwBgrBy andBy. Our  2n(n+3)0 |°|~ 2P V™ p (S
preliminary results indicate th&,B, > O in the layers below
~ 0.85R; andB;B; < 0 in the outer layers which, together with < Z 1 < (A5)
helioseismic measurements of the internal angular veiaig- = Ak ’
gest that the toroidal field is mainly produced by the strieigh
of the poloidal field by the radial shear. M n(n + 3)ql? n(n + 3)ql2

Future helioseismic measurements may improve our knov- 2n(n+ 3)q g 72p ] 72p -1
edge of the torsional oscillations, essentially by extegdhe
time series of the data or by means of space-borne instrgment . - . .
like those foreseen for the Solar Dynamic Observatory (ee, This resultindicates thag, ~ == forn > 1. Since the eigen-
Howe et al. 2006). On the other hand, asteroseismic meastductions VF,P{Y () form an orthonormal set, the conver-
ments may open the possibility of investigating similarpoi®- gence of the series in (A.1) follows by the Riesz-Fisher Taeo
ena in solar-like stars, particularly in those young, rgpidtat- given that the series,,hZ2 ~ 3, m converges. In such a way,
ing objects showing variations of the angular velocity onev®  the uniform convergence of the series in Egs. (34) in the doma
orders of magnitude larger than the Sun. [rb, Ro] X [b, Ro]x] = 1,1[x] — 1, 1[ is proven.
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