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ABSTRACT

Context. The solar torsional oscillations, i.e., the perturbationsof the angular velocity of rotation associated with the eleven-year
activity cycle, are a manifestation of the interaction among the interior magnetic fields, amplified and modulated by thesolar dynamo,
and rotation, meridional flow and turbulent thermal transport. Therefore, they can be used, at least in principle, to putconstraints on
that interaction. Similar phenomena are expected to be observed in solar-like stars and can be modelled to shed light on analogous
interactions in different environments.
Aims. The source of the torsional oscillations is investigated bymeans of a model for the angular momentum transport within the
convection zone.
Methods. A description of the torsional oscillations is introduced,based on an analytical solution of the angular momentum equation
in the mean-field approach. It provides information on the intensity and location of the torques producing the redistribution of the
angular momentum within the convection zone of the Sun alongthe activity cycle. The method can be extended to solar-likestars for
which some information on the time-dependence of the differential rotation is becoming available.
Results. Illustrative applications to the Sun and solar-like stars are presented. Under the hypothesis that the solar torsionaloscillations
are due to the mean-field Lorentz force, an amplitude of the Maxwell stresses|BrBφ| >∼ 8×103 G2 at a depth of∼ 0.85R⊙ at low latitude
is estimated. Moreover, the phase relationship betweenBr andBφ can be estimated, suggesting thatBrBφ > 0 below∼ 0.85 R⊙ and
BrBφ < 0 above.
Conclusions. Such preliminary results show the capability of the proposed approach to constrain the amplitude, phase and location
of the perturbations leading to the observed torsional oscillations.
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1. Introduction

Doppler measurements of the surface rotation of the Sun show
bands of faster and slower zonal flows that appear at midlat-
itudes and migrate toward the equator with the period of the
eleven-year cycle, accompanying the bands of sunspot activity.
The amplitude of such velocity perturbations, called torsional
oscillations, is of∼ 5 m s−1 and faster rotation is observed on
the side equatorward of the sunspot belt (Howard & LaBonte
1980). Helioseismology has revealed that the torsional oscilla-
tions are not at all a superficial phenomenon but involve much
of the convection zone, as shown, for example, by Howe et al.
(2000), Vorontsov et al. (2002), Basu & Antia (2003) and more
recently by Howe et al. (2005, 2006). The amplitude of the an-
gular velocity variation isδΩ/2π ∼ 0.5 − 1 nHz at least down
to 10%−15% of the solar radius, although the precise depth of
penetration of the oscillations is difficult to establish given the
present uncertainties of the inversion methods in the lowerhalf
of the solar convection zone (e.g., Howe et al. 2006). In addition
to such a low-latitude branch of the torsional oscillations, he-
lioseismic studies have detected the presence of a high-latitude
branch (above∼ 60◦ latitude) that propagates poleward and the
amplitude of which is aboutδΩ/2π ∼ 1− 2 nHz (see also, e.g.,
Toomre et al. 2000; Basu & Antia 2001). Such a branch seems to
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propagate almost all the way down to the base of the convection
zone.

A general description of the perturbation of the angular ve-
locity of the torsional oscillations, given the present accuracy
of the observations, is provided by the simple formula (cf.,e.g.,
Vorontsov et al. 2002; Howe et al. 2005):

ω(r, θ) = A(c)(r, θ) cos(σt) + A(s)(r, θ) sin(σt) =

= A(r, θ) sin[σt + φ(r, θ)], (1)

where r is the distance from the centre of the Sun,θ the co-
latitude measured from the North pole,σ the frequency of the
eleven-year cycle,t the time, and the amplitude functionsA(c) ≡
Asinφ, A(s) ≡ Acosφ depend on the amplitudeA and the initial
phaseφ. Moreover, the velocity perturbation is symmetric with
respect to the equator:

ω(r, θ) = ω(r, π − θ). (2)

Several models have been proposed to interpret the torsional
oscillations beginning with the pioneering work by Schüssler
(1981) and Yoshimura (1981) who considered the Lorentz force
associated with the magnetic fields in the activity belts as the
cause of the velocity perturbations observed in the solar photo-
sphere. Later models, based on the effects of the Lorentz force on
the turbulent Reynolds stresses, were proposed, by, e.g., Küker
et al. (1996) and Kichatinov et al. (1999), following an original
suggestion by Rüdiger & Kichatinov (1990). Spruit (2003) pro-
posed that the low-latitude branch of the torsional oscillations is
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a geostrophic flow driven by temperature variations due to the
enhanced radiative losses in the active region belts.

More recent works by Covas et al. (2004, 2005) present mod-
els based on the simultaneous solution of non-linear mean-field
dynamo equations and the azimuthal component of the Navier-
Stokes equation with a uniform turbulent viscosity. They repro-
duce the gross features of the torsional oscillations and ofthe
solar activity cycle with an appropriate tuning of the free param-
eters. Rempel (2006, 2007) considers the role of the meridional
component of the Navier-Stokes equation in mean-field models
and finds that the perturbation of the meridional flow cannot be
neglected in the interpretation of the torsional oscillations. His
models suggest that the low-latitude branch of the torsional os-
cillations cannot be explained solely by the effect of the mean-
field Lorentz force, but that thermal perturbations in the active
region belt and in the bulk of the convection zone do play an
active role, as proposed by Spruit (2003).

In the present study, the angular momentum conservation is
considered and the relevant equation in the mean-field approxi-
mation is solved analytically for the case of a turbulent viscosity
that depends on the radial co-ordinate. A general solution is de-
rived independently of any specific dynamo model, allowing us
to put constraints on the localization of the torques producing the
torsional oscillations. An illustrative application of the proposed
methods is presented using the available data.

The observations of young solar-like stars by means of tomo-
graphic techniques based on high-resolution spectroscopyhave
recently provided evidence for time variation of their surface dif-
ferential rotation (see, e. g., Donati et al. 2003; Jeffers et al.
2007). Lanza (2006a) has recently shown how such variations
can be related to the intensity of the magnetic torque produced
by a non-linear dynamo in their convective envelopes, in thecase
of rapidly rotating stars for which the Taylor-Proudman theorem
applies. In the near future, the possibility of measuring the time
variation of the rotational splittings of p-mode oscillations in
solar-like stars may provide us with information on the changes
of their internal rotation, although with limited spatial resolu-
tion. In the present study, we extend the considerations of Lanza
(2006a) to the case of a generic internal rotation profile, not nec-
essarily verifying the Taylor-Proudman theorem, to obtainhints
on the amplitude of the torque leading to the rotation change.

2. The model

2.1. Hypotheses and basic equations

We consider an inertial reference frame with the origin in the
barycentre of the Sun and thez-axis in the direction of the
rotation axis. A spherical polar co-ordinate system (r, θ, ϕ) is
adopted, wherer is the distance from the origin,θ the co-latitude
measured from the North pole andϕ the azimuthal angle. We as-
sume that all the variables are independent ofϕ and that the solar
density stratification is spherically symmetric.

The equation for the angular momentum conservation in
the mean-field approach reads (e.g., Rüdiger 1989; Rüdiger &
Hollerbach 2004):

∂

∂t
(ρr2 sin2 θΩ) + ∇ ·Θ = 0, (3)

whereρ(r) is the density,Ω(r, θ, t) the angular velocity andΘ the
angular momentum flux vector given by:

Θ = (ρr2 sin2 θΩ)u(m)+

+r sinθ〈ρu′u′ϕ〉 −
r sinθ
µ̃

(BBϕ + 〈B′B′ϕ〉), (4)

whereu(m) is the meridional circulation,u′ the fluctuating ve-
locity field, µ̃ the magnetic permeability,B the mean magnetic
field andB′ the fluctuating magnetic field; angular brackets in-
dicate the Reynolds average defining the mean-field quantities.
The Reynolds stresses can be written as:

〈ρu′i u
′
j〉 = −ηt

(

∂ui

∂x j
+
∂u j

∂xi

)

+ Λi j , (5)

whereu is the mean flow field,ηt(r) is the turbulent viscosity,
assumed to be a scalar function ofr only, andΛi j indicates the
non-diffusive part of the Reynolds stresses due to the velocity
correlations in a rotating star (see Rüdiger 1989; Rüdiger &
Hollerbach 2004, for details). The conservation of the total an-
gular momentum of the convection zone implies:

Θr = 0 for r = rb, R⊙, (6)

whererb is the radius at the lower boundary of the convection
zone andR⊙ is the radius of the Sun.

The equation for the conservation of the angular momentum
can be recast in the form:

∂Ω

∂t
− 1
ρr4

∂

∂r

(

r4ηt
∂Ω

∂r

)

+

− ηt

ρr2

1
(1− µ2)

∂

∂µ

[

(1− µ2)2∂Ω

∂µ

]

= S, (7)

whereµ ≡ cosθ and the source termS is given by:

S = − ∇ · τ
ρr2(1− µ2)

, (8)

andτ is a vector whose components are:

τi = r sinθ

[

Λiϕ −
1
µ̃

(

BiBϕ + 〈B′i B′ϕ〉
)

]

+ ρr2 sin2 θΩu(m)i. (9)

The boundary conditions given by Eq. (6) can be written as:

∂Ω

∂r
= 0 for r = rb, R⊙, (10)

when we assumeτr = 0 at the surface. Note that helioseismic
measurements indicate the presence of a subsurface shear layer
with ∂Ω

∂r < 0 at low latitudes (Corbard & Thompson 2005), but
we prefer to adopt the stress-free boundary condition (10) at the
surface to ensure the conservation of the total angular momen-
tum of the convection zone in our model.

The solar angular velocity can be split into a time-
independent componentΩ0 and a time-dependent componentω,
i.e., the torsional oscillations:

Ω(r, µ, t) = Ω0(r, µ) + ω(r, µ, t). (11)

The equation for the torsional oscillations thus becomes:

∂ω

∂t
− 1
ρr4

∂

∂r

(

r4ηt
∂ω

∂r

)

+

− ηt

ρr2

1
(1− µ2)

∂

∂µ

[

(1− µ2)2∂ω

∂µ

]

= S1, (12)

where the perturbation of the source term is:

S1 = −
∇ · τ1

ρr2(1− µ2)
, (13)
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with

τ1i = r sinθ

[

Λ
(p)
iϕ −

1
µ̃

(

BiBϕ + 〈B′i B
′
ϕ〉

)

]

+ ρr2 sin2 θΩ̄0u(p)
(m)i, (14)

whereΛ(p)
iϕ andu(p)

(m)i are the time-dependent perturbations of the
non-diffusive Reynolds stresses and of the meridional circula-
tion, respectively, and̄Ω0 is the average of the solar angular ve-
locity over the convection zone. Note that the Maxwell stresses
appear in Eq. (14), but not in the corresponding equation forΩ0
because the solar magnetic field has no time-independent com-
ponent. Moreover, in deriving Eq. (14), the variation of thean-
gular velocity over the convection zone has been neglected in
the term containing the perturbation of the meridional circula-
tion since|ω| ≪ Ω0 (cf., e.g., Rüdiger 1989; Rempel 2007).
Eq. (12) must be solved together with the boundary conditions:

∂ω

∂r
= 0 for r = rb, R⊙. (15)

2.2. Solution of the angular momentum equation

The general solution of Eq. (12) with the boundary conditions
(15) can be obtained by the method of separation of the variables
and expressed as a series of the form (cf., e.g., Lanza 2006b,and
references therein):

ω(r, µ, t) =
∞
∑

n=0,2,4,...

∞
∑

k=0

αnk(t)ζnk(r)P(1,1)
n (µ), (16)

whereαnk(t) andζnk(r) are functions that will be specified below
andP(1,1)

n (µ) are Jacobian polynomials, i.e., the finite solutions
of the equation:

d
dµ













(1− µ2)2 dP(1,1)
n

dµ













+ n(n+ 3)(1− µ2)P(1,1)
n = 0, (17)

in the interval−1 ≤ µ ≤ 1 including its ends (cf., e.g., Smirnov
1964a). The Jacobian polynomials form a complete and orthog-
onal set in the interval [−1, 1] with respect to the weight function
(1−µ2). Only the polynomials of even degree appear in Eq. (16)
because the angular velocity perturbation is symmetric with re-
spect to the equator (see Eq. 2). Forn ≫ 1 the asymptotic ex-
pression of the Jacobian polynomials is (see, e.g., Gradshteyn
& Ryzhik 1994):

P(1,1)
n (cosθ) =

cos
[

(n+ 3
2)θ − 3π

4

]

√
πn

[

sin
(

θ
2

)

cos
(

θ
2

)]3/2
+O(n−

3
2 ) (18)

The functionsζnk are the solutions of the Sturm-Liouville
problem defined in the intervalrb ≤ r ≤ R⊙ by the equation:

d
dr

(

r4ηt
dζnk

dr

)

− n(n+ 3)r2ηtζnk + λnkρr
4ζnk = 0 (19)

with the boundary conditions (following from Eq. 15):

dζnk

dr
= 0 atr = rb,R⊙. (20)

We shall consider normalized eigenfunctions, i.e.:
∫ R⊙
rb
ρr4ζ2nkdr = 1. The eigenfunctionsζnk for a fixed n,

form a complete and orthonormal set in the interval [rb,R⊙] with
respect to the weight functionρr4 that does not depend onn. We
recall from the theory of the Sturm-Liouville problem that the

eigenvalues verify the inequality:λn0 < λn1 < ...λnk < λnk+1 < ...
and that the eigenfunctionζnk hask nodes in the interval [rb,R⊙]
for eachn. For n = 0, the first eigenvalue corresponding to the
eigenfunctionζ00 is zero and the eigenfunction vanishes at all
points in [rb,R⊙], as it is evident by integrating both sides of
Eq. (19) in the same interval, applying the boundary conditions
(20) and considering thatζ00 has no nodes. Forn > 0, all the
eigenvaluesλn0 are positive, as can be derived by integrating
both sides of Eq. (19) in the interval [rb,R⊙], applying the
boundary conditions (20) and considering thatζn0 has no nodes.
In view of the inequality given above, all the eigenvaluesλnk are
then positive forn ≥ 0. Moreover, it is possible to prove that
λn′k ≥ λnk if n′ > n and that (see Smirnov 1964b):
(

k2π2

l2

)

p+ n(n+ 3)q

M
≤ λnk ≤

(

k2π2

l2

)

P+ n(n+ 3)Q

m
, (21)

whereP, Q and M are the maximum values of the functions
r4ηt, r2ηt andρr4 in the interval [rb,R⊙], respectively, andp, q
andm their minimum values in the same interval, respectively;
andl ≡

∫ R⊙
rb

√

ρ/ηtdr. For k ≫ 1 the asymptotic expression for
the eigenfunctionζnk is (cf., e.g., Morse & Feshbach 1953):

ζnk(r) ≃ (ρηt)−
1
4 r−2 cos

(

√

λnk

∫ r

rb

√

ρ/ηtdr′
)

. (22)

The time dependence of the solution (16) is specified by the
functionsαnk that are given by:

dαnk

dt
+ λnkαnk(t) = βnk(t), (23)

where the functionsβnk appear in the development of the pertur-
bation termS1:

S1(r, µ, t) =
∑

n

∑

k

βnk(t)ζnk(r)P
(1,1)
n (µ), (24)

and are given by (cf. Lanza 2006b):

βnk =
(2n+ 3)(n+ 2)

8(n+ 1)
×

×
∫ R⊙

rb

∫ 1

−1
ρr4(1− µ2)S1(r, µ, t)ζnk(r)P(1,1)

n (µ)drdµ, (25)

The solution of Eq. (23) is:

αnk(t) = αnk(0)+ exp(−λnkt)
∫ t

0
βnk(t′) exp(λnkt

′)dt′. (26)

which allows us to specify the general solution of Eq. (12)
with the boundary conditions (15) when the perturbation term
S1(r, µ, t) and the initial conditions are given.

2.3. Solution for the solar torsional oscillations

To find the solution appropriate to the solar torsional oscillations
as specified by Eqs. (1) and (2), it is useful to derive an alter-
native expression for the functionsβnk as follows. Substituting
Eq. (13) into Eq. (25) and taking into account that the element
of volume isdV = −2πr2drdµ, the r.h.s. of Eq. (25) can be recast
in the form of a volume integral extended to the solar convection
zone:

βnk = Fn

∫

V
(∇ · τ1)ζnkP

(1,1)
n dV, (27)
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where:

Fn ≡
(2n+ 3)(n+ 2)

16π(n+ 1)
(28)

is a factor coming from the normalization of the Jacobian poly-
nomials. It is possible to simplify further Eq. (27) by considering
the identity:

∇ · [ζnkP
(1,1)
n τ1] = ζnkP

(1,1)
n (∇ · τ1) + τ1 · ∇[ζnkP

(1,1)
n ]. (29)

Integrating both sides of (29) over the volume of the convec-
tion zone and considering that the integral of the l.h.s. vanishes
thanks to the Gauss’s theorem and the condition that the radial
component of the stressesτ1r is zero on the boundaries, we find:

βnk = −Fn

∫

V
τ1 · ∇[ζnkP

(1,1)
n ]dV. (30)

The time dependence of the solar torsional oscillations spec-
ified in Eq. (1) suggests to consider a similar dependence forthe
perturbation term:

τ1(r, µ, t) = τ(c)
1 (r, µ) cos(σt) + τ(s)

1 (r, µ) sin(σt), (31)

from which a similar expression for theβnk follows by substi-
tution into Eq. (27). If we put such an expression forβnk into
Eq. (26) and perform the integrations with respect to the time,
we find the stationary solution:

αnk(t) =
Fn

λ2
nk + σ

2
×

×
{[

∫

V
ζnkP

(1,1)
n

(

λnk∇ · τ(c)
1 − σ∇ · τ

(s)
1

)

dV

]

cos(σt)+

+

[
∫

V
ζnkP

(1,1)
n

(

λnk∇ · τ(s)
1 + σ∇ · τ

(c)
1

)

dV

]

sin(σt)

}

(32)

This expression can be substituted into Eq. (16) to give the angu-
lar velocity perturbation. It can be written in the form of Eq. (1)
with:

A(c)(r, µ) =
∫

V

[

G1(r, µ, r ′, µ′)∇ · τ(c)
1 −G2(r, µ, r ′, µ′)∇ · τ(s)

1

]

dV′,

A(s)(r, µ) =
∫

V

[

G1(r, µ, r ′, µ′)∇ · τ(s)
1 +G2(r, µ, r ′, µ′)∇ · τ(c)

1

]

dV′,

(33)

where the symboldV′ means that the volume integration is to
be performed with respect to the variablesr ′ and µ′, and the
functionsG1 andG2 are Green functions defined as:

G1(r, µ, r ′, µ′) =
∞
∑

n

Fn

∞
∑

k

λnk

λ2
nk + σ

2
×

×ζnk(r)P
(1,1)
n (µ)ζnk(r

′)P(1,1)
n (µ′)

G2(r, µ, r ′, µ′) =
∞
∑

n

Fn

∞
∑

k

σ

λ2
nk + σ

2
×

×ζnk(r)P(1,1)
n (µ)ζnk(r ′)P(1,1)

n (µ′). (34)

The Green functions are continuous with respect to the argu-
mentsr, µ, r ′, µ′, but their partial derivatives with respect tor ′,
µ′ have discontinuities of the first kind in the points wherer = r ′

or µ = µ′. The convergence of the series in Eqs. (34), here used
to represent the Green functions, is assured by the general the-
ory of the Green function (see, e.g., Smirnov 1964b) and is also
proven in Appendix A.

Eqs. (33) can be used to compute the angular velocity per-
turbation whenτ1 is known. Note that in the case in which the
Lorentz force due to the mean field and the meridional flow are
the only sources of angular momentum redistribution, Eq. (14)
gives:

∇ · τ1 = −
1
µ̃

Bp · ∇(r sinθBφ) + 2ρΩ̄0(r sinθ)u(m)s, (35)

whereBp is the mean poloidal magnetic field andu(m)s the com-
ponent of the meridional flow in the direction orthogonal to the
rotation axis. To obtain Eq. (35) we made use of the solenoidal
nature of the mean poloidal field and of the continuity equation
for the meridional flow.

2.4. Localization of the source of the torsional oscillations in
the solar convection zone

The results derived above allow us to introduce methods to lo-
calize the torques producing the torsional oscillations inthe con-
vection zone. Suppose that the observations provide us withthe
functionsA(c)(r, µ) andA(s)(r, µ) appearing in Eq. (1). The func-
tionsαnk(t) can be written as:

αnk = a(c)
nk cos(σt) + a(s)

nk sin(σt), (36)

where the constantsa(c,s)
nk are given by:

a(c,s)
nk = 2πFn

∫ R⊙

rb

∫ 1

−1
A(c,s)(r, µ)ρr4(1− µ2)ζnkP

(1,1)
n drdµ. (37)

Similarly, we can write:

βnk(t) = b(c)
nk cos(σt) + b(s)

nk sin(σt), (38)

with the relationships:

b(c)
nk = λnka

(c)
nk + σa(s)

nk ,

b(s)
nk = λnka

(s)
nk − σa(c)

nk , (39)

that follow from Eq. (23).
The divergence ofτ(c,s)

1 can be obtained from Eqs. (13) and
(24) as:

∇ · τ(c,s)
1 = −ρr2(1− µ2)

∑

n

∑

k

b(c,s)
nk ζnk(r)P

(1,1)
n (µ). (40)

Moreover, it is possible to construct a localized estimate of the
perturbation termτ1 by considering a functionf (r, µ) the gradi-
ent of which is different from zero only within a given volume
Vf . It can be developed in series of the eigenfunctions in the
form:

f (r, µ) =
∑

n

∑

k

cnkζnk(r)P(1,1)
n (µ), (41)

where the coefficientcnk are given by:

cnk = 2πFn

∫ R⊙

rb

∫ 1

−1
f (r, µ)ρr4(1− µ2)ζnkP

(1,1)
n drdµ. (42)

Let us consider the equation:
∫

Vf

(

τ
(c,s)
1 · ∇ f

)

dV =

=

∫

Vf















τ
(c,s)
1 ·

∑

n

∑

k

∇[cnkζnk(r)P
(1,1)
n (µ)]















dV, (43)
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obtained by means of Eq. (41). Considering Eqs. (30) and (38),
Eq. (43) can be recast as:
∫

Vf

(

τ
(c,s)
1 · ∇ f

)

dV = −
∑

n

1
Fn

∑

k

cnkb
(c,s)
nk . (44)

Moreover, if we introduce the volume average of the modulus
of the perturbation|τ1| with respect to the weight function|∇ f |,
i.e.:

〈|τ(c,s)
1 |〉Vf ≡

∫

Vf
|τ(c,s)

1 ||∇ f |dV
∫

Vf
|∇ f |dV

, (45)

then Eq. (44) gives a lower limit for it in the form:

〈|τ(c,s)
1 |〉Vf ≥

∑

n
1
Fn

∑

k cnkb
(c,s)
nk

∫

Vf
|∇ f |dV

. (46)

The minimum dimensions of the volumeVf are set by the
spatial resolution of the measurements of the angular velocity
variations. They depend on the accuracy of the rotational split-
ting coefficients, the inversion technique and the position within
the convection zone (see, e.g., Schou et al. 1998; Howe et al.
2005). The minimum order of the Jacobian polynomialsNm
needed to reproduce an angular velocity variation with a lati-
tudinal resolution∆θ is Nm ∼ 2π

∆θ
. Similarly, the minimum order

of the radial eigenfunctionsKm is set by the radial resolution∆r
asKm ∼ 2(R−rb)

∆r . Therefore, it is possible to truncate the series
in Eqs. (44) and (46) to those upper limits forn andk because
the coefficientscnk will decrease rapidly forn > Nm andk > Km
giving a negligible contribution to the sum.

The statistical errors in the measurements of the angular
velocity variations can be easily propagated through the linear
equations (37), (39), (40) and (44) to find the errors on the esti-
mates of∇·τ(c,s)

1 or the average ofτ1. For instance, if we consider
the standard deviationsσi of the datadi , i.e., the rotational split-
tings or the splitting coefficients from which the internal rotation
is derived, the standard deviationσI of the integral in Eq. (44)
is:

σ2
I ≃

∑

n

1
F2

n

∑

k

c2
nkλ

2
nk

∑

i

e2
inkσ

2
i , (47)

where

eink ≡ 2πFn

∫ R⊙

rb

∫ 1

−1
(1− µ2)ρr4ci(r, µ)ζnkP

(1,1)
n drdµ, (48)

and the functionsci(r, µ) are the rotational inversion coefficients
defined in Eq. (8) of Schou et al. (1998).

Note that a constant relative errorǫ = ∆ω/ω in the measure-
ments ofA(c,s) leads to the same relative error in Eq. (40) and in
Eqs. (44) and (46), given the linear equations that relate the cor-
responding quantities. As a matter of fact, there is also a system-
atic error in our inversion method related to the poor knowledge
of the turbulent viscosityηt(r) that determines the form of the
radial eigenfunctionsζnk.

2.5. Kinetic energy variation and dissipation

The variation of the kinetic energy of rotation associated with
the torsional oscillations, averaged over the eleven-yearcycle,
can be computed after Lanza (2006b) and it is:

〈∆T〉c =
∑

n

∑

k

〈∆Tnk〉c, (49)

where

〈∆Tnk〉c =
1

4Fn

{

[a(c)
nk]2 + [a(s)

nk]2
}

. (50)

The average dissipation rate of the kinetic energy of the torsional
oscillations due to the turbulent viscosity is:

〈dT
dt
〉c = −2

∑

n

∑

k

λnk〈∆Tnk〉c. (51)

2.6. Torsional oscillations due to mean-field Lorentz force

Most models of the torsional oscillations assume that they are
due to the Lorentz force produced by the mean field as de-
rived from dynamo models. Therefore, let us consider the case
in which only the mean-field Maxwell stresses contribute to the
perturbation, i.e.:

τ1 = −
1
µ̃

(r sinθ)Bφ Bp. (52)

If the mean radialBr and toroidal fieldsBφ are given by:

Br = B0r cos(
1
2
σt),

Bφ = B0φ cos(
1
2
σt + Πr), (53)

whereΠr is the phase lag between the two field components, the
components ofτ1r in Eq. (31) are:

τ
(c)
1r = −

1
2

cosΠr
r sinθ
µ̃

B0rB0φ,

τ
(s)
1r =

1
2

sinΠr
r sinθ
µ̃

B0rB0φ. (54)

An estimate ofτ(c)
1r and τ(s)1r can be obtained from the method

outlined in Sect. 2.4, considering a localization functionf (r) that
depends only on the radial co-ordinate. Specifically, Eq. (44) can
be used to compute a volume average ofτ(c)

1r andτ(s)1r from which
the average stress amplitude|BrBφ| and phase lagΠr can be de-
termined. Analogous considerations are valid for the meridional
component of the mean fieldBθ and Bφ. Adopting a localiza-
tion function f (θ) depending only onθ, it is possible to estimate
|BθBφ| and the phase lagΠθ betweenBθ andBφ. Such results are
important to constrain mean-field dynamo models of the solar
cycle, as discussed by, e. g., Schlichenmaier & Stix (1995) (see
also Sect. 3.3).

2.7. Application to solar-like stars

Sequences of Doppler images can be used to measure the sur-
face differential rotation of solar-like stars and its time variabil-
ity, as done by, e.g., Donati et al. (2003) and Jeffers et al. (2007)
in the cases of AB Dor and LQ Hya. Lanza (2006a) discussed
the implications of the observed changes of the surface differen-
tial rotation on the internal dynamics of their convection zones,
assuming that the angular velocity is constant over cylindrical
surfaces co-axial with the rotation axis. The present modelal-
lows us to relax the Taylor-Proudman constraint on the internal
angular velocity, but some different assumptions must be intro-
duced to obtain the internal torques in those active stars. Here we
assume that the variation of the surface differential rotation is en-
tirely due to the Maxwell stresses of the internal magnetic fields,
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localized in the overshoot layer below the convection zone,as
in the interface dynamo model by, e.g., Parker (1993). The in-
terior model of the Sun can be applied also to AB Dor and LQ
Hya because they have a similar relative depth of the convection
zone. Therefore, the basic quantities can be scaled according to
the stellar parameters, as explained in Lanza (2006a). Following
Donati et al. (2003), we consider a surface differential rotation
of the form:

Ω(µ, t) = Ωeq(t) − dΩ(t)µ2, (55)

whereΩeq is the equatorial angular velocity anddΩ the latitudi-
nal shear, both regarded as time-dependent. SinceP(1,1)

0 = 1 and

µ2 = 1
5 +

4
15P(1,1)

2 , it can be recast in the form of Eq. (16) leading
to:

Ωeq−
1
5

dΩ =
∑

k

α0k(t)ζ0k(R),

−
4
5

dΩ =
∑

k

α2k(t)ζ2k(R), (56)

whereR is the radius of the star. The functionsβnk(t) can be
computed by assuming that the timescale of variation of the dif-
ferential rotationtDR is significantly shorter than the timescales
for angular momentum transport, as given byλ−1

nk . This as-
sumption is justified in the case of rapidly rotating stars bythe
observed variation timescales of the order of a few years to-
gether with the expected rotational quenching of the viscosity
(see, e.g., Kichatinov et al. 1994). Therefore, Eq. (23) leads to
αnk(t) ≃ tDRβnk(t). The angular velocity can be written in a form
similar to Eq. (33) by introducing an appropriate Green function.
For instance, considering the first of Eqs. (56), we find:

Ωeq−
1
5

dΩ =
3
8π

∫

V
(∇ · τ1) Gs(R, r ′)dV′, (57)

where:

Gs(r, r
′) =

∑

k

ζ0k(r)ζ0k(r
′), (58)

and the integration is extended over the stellar convectionzone.
Assuming that∇ · τ1 is different from zero only in an overshoot
layer of volumeVo and applying considerations similar to those
of Sects. 2.3 and 2.4, we find a lower limit for the variation of
the averaged perturbation term:

〈∆(∇ · τ1)〉Vo ≥
(

8π
3tDR

)















∆Ωeq− 1
5∆(dΩ)

VoM















, (59)

where∆Ωeq and∆(dΩ) are the amplitudes of variation of the dif-
ferential rotation parameters, andM is the maximum ofGs(R, r ′)
in the overshoot layer.

This result made use of the limited information we can get
from surface differential rotation. However, in the near future,
the observations of the rotational splittings of stellar oscillations
promise to give information on the internal rotation and itspossi-
ble time variations. Since only the modes of low degrees (ℓ ≤ 3)
are detectable in disk-integrated measurements, the spatial reso-
lution of the derived internal angular velocity profile is very low.
Lochard et al. (2005) considered the case in which only the mean
radial profile ofΩ is measurable.

In view of such an additional information accessible through
asteroseismology, let us consider a more general case in which

some average of the internal angular velocity of the star, say
ωm(t), can be measured as a function of the time:

ωm(t) =
∫ R

rb

∫ 1

−1
ω(r, µ, t)w(r, µ)drdµ, (60)

wherew is an appropriate weight function that takes into account
the averaging effects of the limited spatial resolution, andrb is
the radius at the base of the stellar convective envelope. Let us
introduce an auxiliary weight function:

w1(r, µ) ≡ w(r, µ)
(1− µ2)ρr4

, (61)

which will not diverge toward the poles (µ = ±1) and the surface
(ρ = 0) because the weight functionw is localized into the stellar
interior and goes to zero rapidly enough toward the rotationaxis
and the stellar surface. We can develop the functionw1 as:

w1(r, µ) =
Nw
∑

n

Kw
∑

k

wnkζnk(r)P
(1,1)
n (µ), (62)

where the summation can be truncated at some low orders, say,
Nw andKw, because the functionw1 is not sharply localized in
the stellar interior. Considering Eq. (60), we find:

ωm(t) =
Nw
∑

n

Kw
∑

k

1
2πFn

wnkαnk. (63)

For the sake of simplicity, we assume now that the time scale
of variation of the functionsαnk(t) is long with respect toλ−1

nk so
that Eq. (23) gives:βnk ≃ λnkαnk. Considering Eq. (30), we find:

ωm(t) = −
∫

V
τ1 ·















Nw
∑

n

Kw
∑

k

wnk

2πλnk
∇

[

ζnkP
(1,1)
n

]















. (64)

Equation (64) can be used to find a lower limit to the average of
|τ1| over the convection zone volume. If we indicate byMw the
maximum of the function:
∣

∣

∣

∣

∣

∣

∣

Nw
∑

n

Kw
∑

k

wnk

2πλnk
∇

[

ζnkP
(1,1)
n

]

∣

∣

∣

∣

∣

∣

∣

(65)

over the volume of the convection zone, we find:

〈|τ1(t)|〉 ≡

∫

V
|τ1|dV

V
≥ |ωm(t)|

MwV
. (66)

3. Application to the Sun

3.1. Interior model, eigenvalues and eigenfunctions

A model of the solar interior can be used to specify the func-
tionsρ(r) andηt(r) that appear in our equations. While the den-
sity stratification can be determined with an accuracy better than
0.5%, the turbulent dynamical viscosity is uncertain by at least
one order of magnitude and it is estimated from the mixing-
length theory according to the formula:

ηt =
1
3
αMLρucHp, (67)

whereαML is the ratio of the mixing-length to the pressure scale
heightHp anduc is the convective velocity given by:

uc =

(

αML L⊙
40πr2ρ

)
1
3

, (68)
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Fig. 1. The ratio of the density to the density at the base of the
convection zone (ρ/ρ0 – solid line) and the ratio of the turbulent
dynamical viscosity to the turbulent viscosity at the base of the
convection zone (ηt/η0 – dotted) versus the fractionary radius
r/R⊙ in our solar interior model. The density at the base of the
convection zone isρ0 = 0.1875 g cm−3 and the turbulent viscos-
ity is η0 = 2.56×1012 g cm−1 s−1, respectively. A linear increase
of ηt between the relative radii 0.673 and 0.713 is assumed to
account for the effects of overshooting convection.

whereL⊙ is the luminosity of the Sun. In our computations we
adoptαML = 1.5 and assume the solar model S for the interior
quantities1 (Christensen-Dalsgaard et al. 1996). In that model,
the base of the convection zone is atr = 0.713R⊙. We con-
sider also the effect of an overshoot layer extending between
r = 0.673R⊙ and the base of the convection zone within which
the turbulent dynamical viscosity is assumed to increase linearly
from zero up to the value at the base of the convection zone. The
density and the turbulent viscosity are plotted in Fig. 1 where
their values have been normalized at the values at the base ofthe
convection zone, respectively.

The basic equations of our model (i.e., 12, 13 and 14) can
be made nondimensional by adopting as the unit of length the
solar radiusR⊙, as the unit of densityρ0, i.e., the density at the
base of the solar convection zone, and as a unit of timet0 =
ρ0R2

⊙/η0, whereη0 is the turbulent viscosity at the base of the
convection zone. As a matter of fact, the value of the diffusion
coefficients estimated from the mixing-length theory leads to a
too short period for the solar cycle in mean-field dynamo models.
Covas et al. (2004) adopted a turbulent magnetic diffusivity νt =
3× 1011 cm2 s−1 to get a sunspot cycle of∼ 11 yr. This implies
η0 ∼ ρνt = 5.62× 1010 g cm−1 s−1 in our model.

The radial eigenfunctionsζnk and the Jacobian polyno-
mials P(1,1)

n have been computed from the respective Sturm-
Liouville problem equations by means of the Fortran 77 subrou-
tine sleign2.f2 (Bailey et al. 2001). For the radial eigenfunctions
ζnk, the Sturm-Lioville problem has been solved with Neumann
boundary conditions at both ends, set at 0.675R⊙ and 0.99R⊙ to
avoid divergence at the surface. For the Jacobian polynomials,
limit point boundary conditions have been adopted atµ = ±1.

Note that, from a rigorous point of view, it would be better to
use the helioseismic estimate of∂Ω

∂r at r = 0.99 where we fixed
our outer boundary for the computation of the radial eigenfunc-
tions instead of the stress-free boundary condition that isvalid
only at the surface. However, the differences are confined to the

1 See http://bigcat.ifa.au.dk/∼jcd/solar models/
2 http://www.math.niu.edu/SL2/

outermost layer of the solar convection zone, the moment of in-
ertia of which is so small that there are no pratical consequences.

The eigenvaluesλnk and the eigenfunctionsζnk computed by
sleign2.f have been compared with those computed by means of
the code introduced by Lanza (2006b). The relative differences
in the eigenvalues and in the eigenfunctions are lower than 1.5%
for n ≤ 14, k ≤ 10. However, some problems of convergence
of the numerical algorithm used by sleign2.f have been found
for k ≥ 20, particularly forn ≥ 30, so we decided to limit its
application up tok = 19.

The Jacobian polynomials and the eigenvalues computed by
sleign2.f are very good up ton = 30, as it has been found by
comparison with their analytic expressions up ton = 10 and
their asymptotic expressions forn ≥ 12. We conclude that for
n ≥ 30 andk ≥ 20 it is better to use the asymptotic formulae
(22) and (18) instead of the numerically computedζnk andP(1,1)

n .
The eigenvalueλnk gives the inverse of the characteristic

timescale of angular momentum transfer of the mode corre-
sponding toζnk under the action of the turbulent viscosity. The
longest timescale corresponds to the lowest eigenvalue, i.e.,
λ−1

20 = 0.078 in nondimensional units. It corresponds to a time
scale of 0.86 yr with the turbulent viscosity given by the mixing-
length theory and to 39.5 yr with η0 = 5.62× 1010 g cm−1 s−1.

3.2. Localization functions for the source of the torsional
oscillations

The available data on the torsional oscillations are displayed
with a typical radial resolution of 0.05 R⊙ and a latitudinal res-
olution of 15◦ in Howe et al. (2005, 2006). The rotational inver-
sion kernels of Schou et al. (1998) show a higher radial resolu-
tion close to the surface, but, given the small amplitude of the
torsional oscillations, the choice of a uniform resolutionof 0.05
R⊙ seems to be better.

We have found that the best results on the localization of the
source term with the method outlined in Sect. 2.4 are obtained
with localization functions that depend onr or µ only and that
have a smooth derivative. As a typical function to probe the ra-
dial localization, we adopt:

f (r) =



















0 for r ≤ r1,
1+ sin

[

π
(

r−r1
r2−r1

)

− π2
]

for r1 ≤ r ≤ r2,
2 for r ≥ r2.

(69)

This function has zero derivative, except in the interval ]r1, r2[
where its derivative varies smoothly reaching a maximum in the
mid of the interval. In Fig. 2 we plot the modulus of the deriva-

tive
∣

∣

∣

∣

d f
dr

∣

∣

∣

∣

, as given by the sum of the series of the radial eigenfunc-
tions truncated atk = 19, for three different intervals centered at
0.725, 0.85 and 0.965R⊙, respectively, all with an amplitude of
r2 − r1 = 0.05 R⊙. The derivative is well approximated by the
truncated series, with small sidelobes the amplitude of which in-
creases toward the surface of the Sun because the eigenfunctions
scale as (ρηt)−

1
4 , according to the asymptotic expression (22).

The performance of the localization method introduced in
Sect. 2.4 has been tested with simulated data in the absence of
noise. The results of two such tests are plotted in Fig. 3 where we
consider the case of a purely radial perturbationτ1 = τ1r̂ local-
ized within an interval of amplitude 0.05R⊙. Its time dependence
is assumed to be purely cosinusoidal and the corresponding co-
efficientsβnk are computed by means of Eq. (30) up to the orders
n = 38 andk = 19. From theβnk, the coefficientsαnk are com-
puted by means of Eq. (26) and the simulated angular velocity
perturbation follows from Eq. (16).
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Fig. 2. The modulus of the radial localization kernel versus the
relative radius for the function (69), as obtained by truncating
the series of the radial eigenfunctions atKm = 19, for three dif-
ferent intervals centered atr = 0.725 (upper panel), 0.85 (middle
panel) and 0.965R⊙ (lower panel), respectively, all with an am-
plitude of r2 − r1 = 0.05 R⊙. The modulus of the derivative has
been normalized to its maximum value.

Fig. 3. Upper panel:Test case of the application of the inversion
method introduced in Sect. 2.4. An input profile withτ1 = 1.0r̂
in nondimensional units between 0.80 and 0.85 R⊙ (plotted as
the solid line) is used to simulate a noiseless profile of angular
velocity perturbation. The reconstructed lower-limit profile ac-
cording to Eq. (46) is plotted as a dotted line in the same panel.
Lower panel:The same as in the upper panel, but with an input
profile localized between 0.775 and 0.825R⊙.

When the interval in whichτ1 is localized coincides with one
of the inversion intervals [r1, r2], the lower limit for |τ1| turns out
to be∼ 80%−90% of the value assumed in the simulation (cf.
Fig. 3 upper panel). The agreement increases up to 90%−95%
if we consider a case in whichτ1r has a constant sign and put
the value of the derivatived f

dr in the denominator of Eq. (46)
instead of its modulus. This happens because the modulus of the
derivative increases the effects of the sidelobes by increasing the
value of the denominator in Eq. (46). When the interval in which
the assumedτ1 is localized does not coincide with an interval
of the inversion grid, the inversion method still performs well
distributing the contributions among neighbour intervalsnearly
in the correct proportion (cf. Fig. 3, lower panel). The caseof
simulations including a noise component is straightforward to
treat thanks to the linear character of our inversion method. The

Fig. 4. The modulus of the latitudinal localization kernel versus
µ for the function (70), as obtained by truncating the series of
the Jacobian polynomials atNm = 30, for three different inter-
vals ofµ in the Northern hemisphere, i.e., [0, 0.26] (upper panel),
[0.5, 0.7] (middle panel) and [0.87, 0.99] (lower panel), respec-
tively. Note the symmetry of the modulus of the kernel with re-

spect to the equator. The value of
∣

∣

∣

∣

d f
dµ

∣

∣

∣

∣

is normalized at its maxi-
mum atµ = ±1.

inverted value turns out to be the sum of the inverted noiseless
value and of the contribution coming from the inversion of the
noise. Their amplitude ratio is equal to the ratio of the amplitudes
of the input noise to the input signal (for constant relativesignal
errors), as discussed in Sect. 2.4.

The localization in latitude can be sampled by means of a
localization function of the kind:

f (µ) =











































0 for−1 < µ ≤ −µ2,
1+ sin

[

π
(

µ+µ2

µ2−µ1

)

− π2
]

for −µ2 ≤ µ ≤ −µ1,
2 for−µ1 ≤ µ ≤ µ1,
1+ sin

[

π
2 − π

(

µ−µ1

µ2−µ1

)]

for µ1 ≤ µ ≤ µ2,
0 for µ2 ≤ µ < 1.

(70)

Such a function is symmetric with respect to the equator so that
its derivative d f

dµ is antisymmetric, as it is the source termτ1

leading to a symmetric perturbation of the angular velocity. The
localization function has a derivative always equal to zeroex-
cept in two intervals ]− µ2,−µ1[ and ]µ1, µ2[, symmetric with
respect to the solar equator. Its representation by means ofthe
Jacobian polynomials with degree up toN = 30 is given in

Fig. 4. Note that the maximum of
∣

∣

∣

∣

d f
dµ

∣

∣

∣

∣
is reached in two sharp

peaks atµ = ±1. However, they are so narrow that their contri-
bution to the integral in Eq. (46) is modest in comparison to those
of the broader peaks in the intervals [−µ2,−µ1] and [µ1, µ2].
Several tests have been performed, as in the case of the radial
localization, to assess the performance of the proposed method.
The results are similar to those obtained for the radial caseand
are not discussed here.

We conclude that our choice ofNm = 30 andKm = 19 is
perfectly adequate to invert the available data on the solartor-
sional oscillations to derive information on the location of the
perturbation term within the convection zone.

3.3. Results on the sources of the torsional oscillations

The data plotted in Fig. 4 of Howe et al. (2006) can be used for
an illustrative application of the inversion methods introduced
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Fig. 5. The isocontours of the functionAτ(r, µ) as defined by
Eq. (71) in the case ofη0 = 2.56× 1012 g cm−1 s−1. The scale
on the left indicates the ranges corresponding to the different
colors and is in units of 105 g cm−1 s−2. The relative statistical
uncertainty ofAτ is of ∼ 30%, as it follows from the relative
uncertainty of the data.

in Sect. 2.4. They are given with a sampling of 15◦ between
the equator and 60◦ of latitude, i.e., in the range in which the
rotational inversion techniques perform better (cf. Schouet al.
1998). The features distinguishable on the plots indicate an ac-
tual radial resolution of∼ 0.05 R⊙, in agreement with the sam-
pling adopted in Fig. 3 of Howe et al. (2005). An average sta-
tistical error of about 30% can be assumed for the amplitude,
whereas the phase errors become very large below 0.80 R⊙, es-
pecially at low latitudes, because of the uncertainty in there-
construction of the signal in the deep layers. Note that the error
intervals reported in Fig. 4 of Howe et al. (2006) indicate only
how the particular method solution (here an OLA inversion of
SoHO/MDI data) would vary with a different realization of the
input data affected by a randon Gaussian noise. Unfortunately,
they do not give the statistical ranges in which the true values
of the amplitude and phase are likely to lie. This is not a major
limitation in the context of the present study because we aimat
illustrating the capabilities of the proposed approach rather than
derive definitive conclusions.

To perform our inversion, we interpolate linearly the values
of the amplitude and phase over the grid used to compute the
radial eigenfunctions and the Jacobian polynomials. We assume
that the amplitude is zero at the poles and increases linearly to-
ward 60◦ of latitude whereas the phase is constant poleward of
60◦ of latitude.

The divergence of the angular momentum flux perturbation
τ1 can be obtained from Eq. (40). We define its amplitude and
phase as:

Aτ ≡
√

[∇ · τ(c)
1 ]2 + [∇ · τ(s)

1 ]2, (71)

Φτ ≡ tan−1















∇ · τ(c)
1

∇ · τ(s)
1















. (72)

They are plotted in Figs. 5 and 6, respectively, in the case of
η0 = 2.56× 1012 g cm−1 s−1. A suitable smoothing has been ap-
plied to have a resolution of∼ 0.05 R⊙ in the radial coordinate
and≈ 15◦ in latitude. In order to show the effect of a smaller
value of the turbulent viscosity, we plot in Figs. 7 and 8 the iso-
contours ofAτ andΦτ for ηt = 5.62× 1010 g cm−1 s−1. The

Fig. 6. The isocontours ofΦτ(r, µ) as defined by Eq. (72) in the
case ofη0 = 2.56×1012 g cm−1 s−1. The phase ranges from− π2 to
π
2. The scale on the left indicates the phase ranges corresponding
to the different colors and is in radians.

Fig. 7. The same as Fig. 5 in the case ofη0 = 5.62× 1010 g
cm−1 s−1. The scale on the left is in units of 103 g cm−1 s−2. The
relative statistical uncertainty ofAτ is of about 30%.

Fig. 8. The same as Fig. 6 in the case ofη0 = 5.62×1010 g cm−1

s−1.

amplitude of the perturbation term is higher close to the equator
because the data in Fig. 4 of Howe et al. (2006) mainly sample
the low-latitude branch of the torsional oscillations. Therelative
maxima ofAτ are reached close to the base of the convection
zone and at a radius of∼ 0.85 R⊙ and their locations show only
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a minor dependence on the value ofη0. Conversely, the value
of η0 significantly affectsΦτ, as it follows from Eq. (39). When
η0 is large, the timescales for angular momentum exchange, as
given by the inverse of the lowest eigenvalues, are significantly
shorter than the eleven-year cycle and the perturbations are al-
most in phase with the angular velocity variations. Whenη0 is
sufficiently low, the timescales for angular momentum exchange
become comparable or longer than the eleven-year cycle so the
torsional oscillations lag behind the perturbations. Considering
Fig. 6, we see that the phase is in agreement with that in Fig. 4of
Howe et al. (2006), except forr >∼ 0.93R⊙. The disagreement in
those layers is due to the small values of∇·τ1 close to the surface
that makes the corresponding phases uncertain (cf. Fig. 5).The
phase lag is apparent by comparing Fig. 8 with Fig. 6, especially
close to the equator for 0.72 ≤ r/R⊙ ≤ 0.92. It is less evident
near the base of the convection zone and in the upper layers due
to the smaller values of∇ · τ1 in those regions.

It is interesting to note that the dependence of the amplitude
and phase of the torsional oscillations on the turbulent viscosity
can lead to its estimate in the framework of mean-field mod-
els (see, e. g., Rüdiger et al. 1986; Rüdiger 1989, for details).
Specifically, Rempel (2007) finds that a mean turbulent kine-
matic viscosity about one order of magnitude smaller than the
mixing-length estimate is needed to reproduce the polar branch
of the torsional oscillations.

Lower limits for the modulus of the angular momentum flux
vector|τ1| can be derived from Eq. (46). From the lower limits

on |τ(c)
1 | and|τ(s)

1 |, a lower limit on|τ1| =
√

[τ(c)
1 ]2 + [τ(s)

1 ]2 can be
derived and it is plotted in Figs. 9 and 10 for the radial and lat-
itudinal localizations described in Sect. 3.2, respectively. Given
the uncertainty in the penetration depth of the torsional oscilla-
tions, in addition to the results for a penetration down to the base
of the convection zone, we plot also those for penetration depths
of 0.80 and 0.90 R⊙, respectively. They are obtained simply by
assuming that the oscillation amplitude has the value in Fig. 4 of
Howe et al. (2006) above the penetration depth and drops to zero
immediately below it.

When the oscillations penetrate down to the base of the con-
vection zone, the maximum of the perturbation term is reached
between 0.80 and 0.85R⊙. It is mainly localized into two latitude
zones, i.e., within±15◦ from the equator and between 30◦ and
60◦. Note that our data refer mainly to the low-latitude branch
of the oscillations, so the possible source at latitude> 60◦ can-
not be detected. When the turbulent dynamical viscosity is re-
duced with respect to the mixing-length value, the amplitude of
the perturbation term drops, but its radial and latitudinallocal-
izations are not greatly affected, except for a shift of the nearly
equatorial band towards higher latitudes.

Under the hypothesis that the Lorentz force is the only source
of the torsional oscillations, the amplitude of the Maxwellstress
BrBφ can be estimated from the lower limit of|τ1r| and it turns
out to be∼ 2.7 × 105 G2 in the case ofη0 = 2.56 × 1012 g
cm−1 s−1. Considering that the poloidal fieldBr is of the order
of 1− 10 G, this leads to very high toroidal fields in the bulk of
the convection zone, that would be highly unstable because of
magnetic buoyancy. On the other hand, withη0 = 5.62× 1010 g
cm−1 s−1, the Maxwell stress isBrBφ ≃ 8.1×103 G2 which leads
to a toroidal field intensity of the order of 103 G. It may be sta-
bly stored for timescales comparable to the solar cycle thanks to
the effects of the downward turbulent pumping in the convection
zone (cf., Brandenburg 2005, and references therein).

Note that the maximum radial stress|BrBφ| is reduced by a
factor of∼ 30 whenηt is decreased from 2.56×1012 to 5.62×1010

g cm−1 s−1, whereas the maximum of|BθBφ| is reduced only by
a factor of∼ 4 (cf. Figs. 9 and 10). This mainly reflects the
predominance of the radial gradient over the latitudinal gradient
of the angular velocity perturbation in the deeper layers ofthe
solar convection zone.

The average phase lagsΠr andΠθ betweenBr and Bθ and
the azimuthal fieldBφ, as derived by the method in Sect. 2.6, are
plotted in Figs. 11 and 12, respectively. It is interesting to note
thatBrBφ > 0 below∼ 0.85R⊙ whenηt = 5.62×1010 g cm−1 s−1,
in agreement with the finding of most dynamo models in which
the azimuthal field is produced by the stretching of the radial
field in the low-latitude region, where∂Ω

∂r > 0 for r < 0.95 R⊙
(cf., e.g., Rüdiger & Hollerbach 2004; Schlichenmaier & Stix
1995). Above∼ 0.85R⊙, the phase relationship between the ra-
dial and the azimuthal fields leads toBrBφ < 0 with a phase lag
of ∼ π, in agreement with the early finding that the photospheric
zone equatorward of the activity belt is rotating faster than that
at higher latitudes (cf. Rüdiger 1989). Note that∂Ω

∂r becomes
negative forr > 0.95 R⊙ at low latitudes, leading to a reversal
of the phase relationship between the two field components in
the outer layers of the solar convection zone. Our limited spatial
resolution and the uncertainty of the measurements of the tor-
sional oscillations inside the Sun might explain why we find the
transition from a mostly positive to a negativeBrBφ at ∼ 0.85
R⊙.

The phase lag betweenBθ andBφ depends remarkably on the
colatitude forηt = 2.56× 1012 g cm−1 s−1, whereas it is almost
constant forηt = 2.56× 1012 g cm−1 s−1, leading in the latter
case mostly toBθBφ < 0. This, together with∂Ω

∂θ
> 0, suggests

that the toroidal field is mainly produced by the stretching of the
radial field.

On the other hand, if the angular momentum transport lead-
ing to the torsional oscillations is produced only by a perturba-
tion of the meridional flow, as in the thermal wind model, thena
very small perturbation follows from the lower limit of|τ1|. For
η0 = 2.56× 1012 g cm−1 s−1, we find a minimum amplitude of
the meridional flow component oscillating with the eleven-year
cycle of≈ 3 cm s−1 at a depth of 0.85 R⊙ and a latitude of 45◦.
Note, however, that if we estimate|τ1| from its divergence and
the typical lengthscale of its variations in Fig. 5, we find a value
about one order of magnitude larger, that is in agreement with
the estimate by Rempel (2007). A similar argument applies also
to the estimate of the Maxwell stresses made above.

The average kinetic energy variation associated with the
torsional oscillations, as computed from Eq. (49), is〈T 〉c =
4.88×1028 erg, whereas the average dissipated power is 6.7×1026

erg s−1, whenη0 = 2.56× 1012 g cm−1 s−1, and only 1.5× 1025

erg s−1, whenη0 = 5.6× 1010 g cm−1 s−1.
When the torsional oscillations are assumed to be confined to

shallower and shallower layers, the location of the perturbation
term is shifted closer and closer to the surface and it becomes
more and more uniformly distributed in latitude. Its amplitude
shows a remarkable decrease because of the smaller moment of
inertia of the surface layers.

4. Application to solar-like stars

The results of Sect. 2.7 can be applied to the variation of the
surface differential rotation observed in, e.g., LQ Hya between
1996.99 and 2000.96 (see Table 2 of Donati et al. 2003).
Assuming an internal structure analogous to the solar one and
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Fig. 9. Upper panel:The lower limit of the amplitude of the per-
turbation term|τ1r| averaged over spherical shells of thickness
0.05 R⊙ versus the relative radius; different linestyles and col-
ors refer to the depth at which the torsional oscillations are as-
sumed to vanish: black solid line – oscillations extending down
to the base of the convection zone; green dotted line – oscilla-
tions extending down to 0.80R⊙; red dashed line – oscillations
extending down to 0.90R⊙. Results are obtained assuming a tur-
bulent dynamical viscosity at the base of the convection zone
η0 = 2.56×1012 g cm−1 s−1. Lower panel:As in the upper panel,
but for η0 = 5.62× 1010 g cm−1 s−1. The relative statistical un-
certainties are in all the cases of about 30%, as it follows from
the uncertainties of the data.

Fig. 10. Upper panel:The lower limit of the amplitude of the
perturbation term|τ1θ| averaged over different latitude zones ver-
sus their average value ofµ. Different linestyles are used to in-
dicate the results for different penetration depths of the torsional
oscillations, as in Fig. 9. Results are obtained assuming a tur-
bulent dynamical viscosity at the base of the convection zone
η0 = 2.56×1012 g cm−1 s−1. Lower panel:As in the upper panel,
but for η0 = 5.62× 1010 g cm−1 s−1. The relative statistical un-
certainties are in all the cases of about 30%, as it follows from
the uncertainties of the data.

that the differential rotation variations observed at the surface
are representative of those at a depth of 0.99 R, we can es-
timate a lower limit for |∇ · τ1| in the overshoot layer from
Eq. (59). It is used to estimate the Maxwell stresses by assum-
ing that: ro

BpBφ
µ̃
≃ δr |∇ · τ1|, wherero = 0.67 R is the radius

of the overshoot layer andδr = 0.04 R its thickness. In such
a way, the minimum magnetic field strength turns out to be:

Fig. 11. Upper panel:The phase lagΠr betweenBr and Bφ as
derived by Eqs. (54) averaged over spherical shells of thickness
0.05 R⊙ versus the relative radius. Different linestyles are used
to indicate the results for different penetration depths of the tor-
sional oscillations, as in Fig. 9. Results are obtained assuming a
turbulent dynamical viscosity at the base of the convectionzone
η0 = 2.56×1012 g cm−1 s−1. Lower panel:As in the upper panel,
but forη0 = 5.62× 1010 g cm−1 s−1.

Fig. 12. Upper panel:The phase lagΠθ betweenBθ andBφ as
derived by Eqs. (54) averaged over different latitude zones ver-
sus their average value ofµ. Different linestyles are used to in-
dicate the results for different penetration depths of the torsional
oscillations, as in Fig. 9. Results are obtained assuming a tur-
bulent dynamical viscosity at the base of the convection zone
η0 = 2.56×1012 g cm−1 s−1. Lower panel:As in the upper panel,
but forη0 = 5.62× 1010 g cm−1 s−1.

Bmin =
√

BpBφ ∼ 2500 G. However, if we assume a poloidal
field strength of∼ 100 G, as indicated by the Zeeman Doppler
imaging, we find an azimuthal field ofBφ ∼ 6.2× 104 G, which
is in the range of the values estimated by Lanza (2006a) in the
framework of the Taylor-Proudman hypothesis. Note that there-
sult is independent ofη0 in the limit tDR ≪ λ−1

nk . Although this
application is purely illustrative, it suggests that our method can
be applied to derive estimates of the internal magnetic torques
(as well as other sources of angular momentum transport) when
asteroseismic results will become available, in combination with
surface rotation measurements, to further constrain rotation vari-
ations in solar-like stars.
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5. Discussion and conclusions

We introduced a general solution of the angular momentum
transport equation that takes into account the density stratifica-
tion and the radial dependence of the turbulent viscosityηt. Its
main limitation is due to the uncertainty of the turbulent viscos-
ity in stellar convection zones. It is interesting to note that the
method of the separation of variables to solve Eq. (3) can be ap-
plied also whenηt is the product of a function of the radius by
one of the latitude. However, whenηt depends on the latitude,
the angular eigenfunctions are no longer Jacobian polynomials.

Our formalism can be applied to compute the response of a
turbulent convection zone to prescribed time-dependent Lorentz
force and meridional circulation. From the mathematical point
of view, it is a generalization of that of Rüdiger et al. (1986) and
can be easily compared with it by considering that:P(1,1)

n (µ) =
2

n+2
dPn+1

dµ = −
2 sinθ
n+2 P1

n(θ), wherePn is the Legendre polynomial of

degreen andP1
n = −

dPn
dθ . Moreover, our method can be used to

estimate the torques leading to the angular momentum redistri-
bution within the solar (or stellar) convection zone, thus general-
izing the approach suggested by Komm et al. (2003). The main
limitation, in addition to the uncertainty of the turbulentviscos-
ity, comes from the low resolution and the limited accuracy of
the present data on solar torsional oscillations, particularly in
the deeper layers of the convection zone. Actually, those lay-
ers are the most important because torsional oscillations with an
amplitude of∼ 0.5%−1% of the solar angular velocity extend-
ing down to the base of the convection zone lead to Maxwell
stresses with an intensity of at least≈ 8×103 G2 around 0.85R⊙
or a perturbation of the order of several percents of the merid-
ional flow speed at the same depth (cf., e.g., Rempel 2007). If
the torsional oscillations are due solely to the Maxwell stresses
associated with the mean field of the solar dynamo, we can es-
timate also the phase relationships betweenBr, Bθ andBφ. Our
preliminary results indicate thatBrBφ > 0 in the layers below
≈ 0.85R⊙ andBrBφ < 0 in the outer layers which, together with
helioseismic measurements of the internal angular velocity, sug-
gest that the toroidal field is mainly produced by the stretching
of the poloidal field by the radial shear.

Future helioseismic measurements may improve our knowl-
edge of the torsional oscillations, essentially by extending the
time series of the data or by means of space-borne instruments,
like those foreseen for the Solar Dynamic Observatory (see,e.g.,
Howe et al. 2006). On the other hand, asteroseismic measure-
ments may open the possibility of investigating similar phenom-
ena in solar-like stars, particularly in those young, rapidly rotat-
ing objects showing variations of the angular velocity one or two
orders of magnitude larger than the Sun.
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Appendix A: Proof of convergence of the Green
function series

The convergence of the Green function series in Eqs. (34) can
be studied by considering the asymptotic formulae forζnk and
the Jacobian polynomials, i.e., forn ≫ 1 andk ≫ 1. In the

asymptotic limit, those series can be written as:
∑

n

∑

k

Fn

λnk
ζnk(r)ζnk(r ′)P(1,1)

n (µ)P(1,1)
n (µ′) =

∑

n

hn

√

FnP(1,1)
n (µ), (A.1)

where:

hn ≡
∑

k

√
Fn

λnk
ζnk(r)ζnk(r

′)P(1,1)
n (µ′). (A.2)

From the asymptotic formulae it follows that for a point
in the domain [rb,R⊙] × [rb,R⊙]×] − 1, 1[, the quantity
∣

∣

∣

√
Fnζnk(r)ζnk(r ′)P

(1,1)
n (µ′)

∣

∣

∣ is limited with an upper bound inde-
pendent ofn andk. Therefore, the series (A.2) that define the
coefficientshn are uniformly convergent in that domain if the
series

∑

k
1
λnk

converges.
This can be proven by considering the inequalities (21) and

the formula:
∞
∑

k=1

z
ak2 + y

=
1
2

(

z
y

) [

g
(y
a

)

√

y
a
− 1

]

, (A.3)

wherez, a , 0 andy are real numbers and the functiong(x) is
defined as:

g(x) ≡ π
[

exp(πx) + exp(−πx)
exp(πx) − exp(−πx)

]

. (A.4)

Eq. (A.3) follows from the equality (1.217.1) of Gradshteyn&
Ryzhik (1994). In this way, we find:

m
2n(n+ 3)Q















g

[

n(n+ 3)Ql2

π2P

]

√

n(n+ 3)Ql2

π2P
− 1















≤

≤
∞
∑

k=1

1
λnk
≤ (A.5)

≤
M

2n(n+ 3)q



















g

[

n(n+ 3)ql2

π2p

]

√

n(n+ 3)ql2

π2p
− 1



















.

This result indicates thathn ∼ 1√
n(n+3)

for n≫ 1. Since the eigen-

functions
√

FnP(1,1)
n (µ) form an orthonormal set, the conver-

gence of the series in (A.1) follows by the Riesz-Fisher Theorem
given that the series

∑

n h2
n ∼

∑

n
1

n(n+3) converges. In such a way,
the uniform convergence of the series in Eqs. (34) in the domain
[rb,R⊙] × [rb,R⊙]×] − 1, 1[×] − 1, 1[ is proven.
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Küker, M., Rüdiger, G., Pipin, V. V. 1996, A&A, 312, 615
Lanza, A. F. 2006a, MNRAS, 373, 819
Lanza, A. F. 2006b, MNRAS, 369, 1773
Lochard, J., Samadi, R., Goupil, M. J. 2005, A&A, 438, 939
Morse P. M., & Feshbach H., 1953, Methods of Theoretical Physics, McGraw-

Hill, New York
Parker, E. N. 1993, ApJ, 408, 707
Rempel, M. 2006, ApJ, 647, 662
Rempel, M. 2007, ApJ, 655, 651
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