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ABSTRACT

Aims. To investigate the astrometric effects of stellar surface structures as a practical limitation to ultra-high-precision astrometry,
e.g. in the context of exoplanet searches, and to quantify the expected effects in different regions of the HR-diagram.
Methods. Stellar surface structures (spots, plages, granulation, non-radial oscillations) are likely to produce fluctuationsin the in-
tegrated flux and radial velocity of the star, as well as a variation of the observed photocentre, i.e. astrometric jitter. We use the-
oretical considerations supported by Monte Carlo simulations (using a starspot model) to derive statistical relations between the
corresponding astrometric, photometric, and radial-velocity effects. Based on these relations, the more easily observed photometric
and radial-velocity variations can be used to predict the expected size of the astrometric jitter. Also the third momentof the brightness
distribution, interferometrically observable as closurephase, contains information about the astrometric jitter.
Results. For most stellar types the astrometric jitter due to stellarsurface structures is expected to be of order 10 micro-AU or greater.
This is more than the astrometric displacement typically caused by an Earth-size exoplanet in the habitable zone, whichis about
1–4 micro-AU for long-lived main-sequence stars. Only for stars with extremely low photometric variability (< 0.5 mmag) and low
magnetic activity, comparable to that of the Sun, will the astrometric jitter be of order 1 micro-AU, sufficient to allow the astrometric
detection of an Earth-sized planet in the habitable zone. While stellar surface structure may thus seriously impair theastrometric
detection of small exoplanets, it has in general negligibleimpact on the detection of large (Jupiter-size) planets andon the determi-
nation of stellar parallax and proper motion. From the starspot model we also conclude that the commonly used spot fillingfactor is
not the most relevant parameter for quantifying the spottiness in terms of the resulting astrometric, photometric and radial-velocity
variations.
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1. Introduction

The accuracy of astrometric measurements has improved
tremendously in the past decades as a result of new techniques
being introduced, both on the ground and in space. This devel-
opment will continue in the next decade, e.g Gaia is to improve
parallax accuracy by another two orders of magnitude compared
with Hipparcos. As a result, trigonometric distances will be ob-
tained for the Magellanic Clouds, and thousands of Jupiter-size
exoplanets are likely to be found from the astrometric wobbles of
their parent stars. Even before that, ground-based interferometric
techniques are expected to reach similar precisions for relative
measurements within a small field. How far should we expect
this trend to continue? Will nanoarcsec astrometry soon be are-
ality, with parallaxes measured to cosmological distancesand
Earth-size planets found wherever we look? Or will the accu-
racy ultimately be limited by other factors such as variableopti-
cal structure in the targets and weak microlensing in the Galactic
halo? The aim of this project is to assess the importance of such
limitations for ultra-high-precision astrometry. In thispaper we
consider the effects of stellar surface structures found on ordi-
nary stars.

Future high-precision astrometric observations will in many
cases be able to detect the very small shifts in stellar positions
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caused by surface structures. In some cases, e.g. for a rotating
spotted star, the shifts are periodic and could mimic the dy-
namical pull of a planetary companion, or even the star’s par-
allax motion, if the period is close to one year. These shiftsare
currently of great interest as a possible limitation of the astro-
metric method in search for Earth-like exoplanets. We want to
estimate how important these effects are for different types of
stars, especially in view of current and future astrometricexo-
planet searches such as VLTI-PRIMA (Reffert et al. 2005), SIM
PlanetQuest (Unwin 2005) and Gaia (Lattanzi et al. 2005).

Astrometric observations determine the position of the cen-
tre of gravity of the stellar light, or what we call the photocentre.
This is an integrated property of the star (the first moment ofthe
intensity distribution across the disk), in the same sense as the to-
tal flux (the zeroth moment of the intensity distribution) orstellar
spectrum (the zeroth moment as function of wavelength). In stars
other than the Sun, information about surface structures usually
come from integrated properties such as light curves and spec-
trum variations. For example, Doppler imaging (DI) has become
an established technique to map the surfaces of rapidly rotat-
ing, cool stars. Unfortunately, it cannot be applied to mostof the
targets of interest for exoplanet searches, e.g. low-activity solar-
type stars. Optical or infrared interferometric (aperturesynthe-
sis) imaging does not have this limitation, but is with current
baselines (< 1 km) in practice limited to giant stars and other
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extended objects (see Monnier et al. 2006 for a review on recent
advances in stellar interferometry). Interferometry of marginally
resolved stars may, however, provide some information about
surface structures through the closure phase, which is sensitive to
the third central moment (asymmetry) of the stellar intensity dis-
tribution (Monnier 2003; Lachaume 2003; Labeyrie et al. 2006).

Since there is limited information about surface structures
on most types of stars, an interesting question is whether we
can use more readily accessible photometric and spectroscopic
data to infer something about possible astrometric effects. For
example, dark or bright spots on a rotating star will in general
cause periodic variations both in the integrated flux and in the
radial velocity of the star, as well as in the photocentre andthe
asymmetry of the intensity distribution. Thus, we should atleast
expect the astrometric effect to be statistically related to the other
effects.

We show that there are in fact relatively well-defined statis-
tical relations between variations in the photocentre, total flux,
closure phase and radial velocity for a wide range of possible
surface phenomena. These relations are in the following used to
predict the astrometric jitter in various types of stars, without
any detailed knowledge of their actual surface structures.

2. Astrometric limits from previous studies

The discovery of exoplanets by means of high-precision radial
velocity measurements has triggered an interest in how astro-
physical phenomena such as magnetic activity and convective
motions might affect the observed velocities (Saar et al. 2003).
Evidence for dark spots have been seen photometrically and
spectroscopically for many cool stars other than the Sun, and
quantified in terms of an empirically determinedspot filling fac-
tor1 f , ranging from≪ 1% for old, inactive stars to several
percent for active stars. It is therefore natural to relate the ex-
pected radial-velocity effects to the spot filling factor. For exam-
ple, Saar & Donahue (1997) used a simple model consisting of
a single black equatorial spot on a rotating solar-like starto de-
rive the following relation betweenf (in percent), the projected
rotational velocityV sini and the amplitude∆vr of the resulting
radial velocity variations:

∆vr = 0.0065 f 0.9 V sini (1)

In a similar vein, Hatzes (2002) estimated both the radial veloc-
ity amplitude and the corresponding astrometric effect from a
similar model, but assuming a fixed spot size (2◦ radius) and in-
stead varying the number of spots placed randomly on the stellar
surface centred around the equator. For the radial velocityam-
plitude they found

∆vr = (0.0086V sini − 0.0016) f 0.9 (2)

in approximate agreement with (1), while the total amplitude of
the astrometric effect (converted to linear distance) was

∆pos= (7.1× 10−5 AU) f 0.92 (3)

Reffert et al. (2005) discuss the accuracy and limitations of
the PRIMA (Phase-Referenced Imaging and Micro-Arcsecond
Astrometry) facility at the VLT Interferometer in the context of
the search for suitable targets for exoplanetary searches,refer-
ence and calibrations stars. According to their calculations, a
spot filling factor of f = 2% would move the photocentre of

1 f is interpreted as the fraction of the visible hemisphere of the star
covered by spots.

a G0V star by about 3×10−5 AU, roughly a factor 4 less than ac-
cording to (3). They also conclude that the corresponding bright-
ness variation is less than 2%.

But f alone may not be a very good way to quantify the
‘spottiness’. For example, the photometric or astrometriceffects
of a large single spot are obviously very different from those
of a surface scattered with many small spots, although the spot
filling factor may be the same in the two cases. Therefore, more
detailed (or more general) models may be required to explore
the plausible ranges of the astrometric effects.

Bastian & Hefele (2005) give an assessment of the astro-
metric effects of starspots, and conclude that they are hard to
quantify, mostly because of the insufficient statistics. Although
starspots are common among cool stars with outer convective
zones, data are strongly biased towards very active stars. They
conclude that the effects on solar-type stars are likely to be neg-
ligible for Gaia, while much larger spots on K giants may be-
come detectable. For supergiants and M giants, having radiiof
the order of 100R⊙ (or more), the effect may reach 0.25 AU (or
more), which could confuse the measurement of parallax and
proper motion.

Sozzetti (2005) gives an interesting review of the astromet-
ric methods to identify and characterize extrasolar planets. As
an example of the astrophysical noise sources affecting the as-
trometric measurements, he considers a distribution of spots on
the surface of a pre-mainsequence (T Tauri) star. For a star with
radius 1R⊙ seen at a distance of 140 pc, he finds that a variation
of the flux in the visual by∆F/F = 10% (rms) corresponds to
an astrometric variation of∼3 µas (rms), and that the two effects
are roughly proportional.

While the astrometric effects cannot yet be tested ob-
servationally, it is possible to correlate the photometricand
radial-velocity variations for some stars (Queloz et al. 2001;
Henry et al. 2002). From a small sample of Hyades stars
Paulson et al. (2004b) found an approximately linear relation

σvR ≃ 2+ 3600σm [m s−1] (4)

between the RMS scatter in Strömgreny magnitude (σm) and
in radial velocity (σvR). This relation supports the idea that a
large part of the radial-velocity scatter in these stars is caused by
surface structures.

Svensson & Ludwig (2005) have computed hydrodynami-
cal model atmospheres for a range of stellar types, predicting
both the photometric and astrometric jitter caused by granula-
tion. They find that the computed astrometric jitter is almost
entirely determined by the surface gravityg of the atmosphere
model, and is proportional tog−1 for a wide range of models.
This relationship is explained by the increased granular cell size
with increasing pressure scale height or decreasingg. The ra-
dius of the star does not enter the relation, except viag, since
the increased leverage of a large stellar disk is compensated by
the averaging over more granulation cells. For their most ex-
treme model, a bright red giant with logg = 1 (R/R⊙ ≃ 95)
they findσpos ≃ 300µAU. Ludwig & Beckers (2005) extended
this by considering the effects of granulation on interferometric
observations of red supergiants. They show that both visibili-
ties and closure phases may carry clear signatures of deviations
from circular symmetry for this type of stars, and conclude that
convection-related surface structures may thus be observable us-
ing interferometry.

Ludwig (2006) outlines a statistical procedure to characterise
the photometric and astrometric effects of granulation-related
micro-variability in hydrodynamical simulations of convective
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stars. Based on statistical assumptions similar to our model in
Appendix A, he finds the relation

σx

R
≃

1
√

6

σF

〈F〉 (5)

between the RMS fluctuation of the photocentre in one coordi-
nate (x), the radius of the star (R), and the relative fluctuations of
the observed flux (F).

3. Modeling astrometric displacements

3.1. Relations for the astrometric jitter

In a coordinate systemxyz with origin at the centre of the star
and+z away from the observer, letI (r, t) be the instantaneous
surface brightness of the star at pointr = (x, y, z) on the visi-
ble surface, i.e. the specific intensity in the direction of the ob-
server. We are interested in the integrated properties: total flux
F(t), photocentre offsets∆x(t), ∆y(t) in the directions perpen-
dicular to the line of sight, the third central moment of the in-
tensity distributionµ3(t), and the radial velocity offset∆vR(t).
These are given by the following integrals over the visible sur-
faceS (z< 0):

F(t) =
∫

S
I (r, t)µdS (6)

∆x(t) =
1

F(t)

∫

S
I (r, t)xµdS (7)

∆y(t) =
1

F(t)

∫

S
I (r, t)yµdS (8)

µ3(t) =
1

F(t)

∫

S
I (r, t) [x− ∆x(t)]3 µdS (9)

∆vR(t) =
1

F(t)

∫

S
I (r, t) [(ω × r) · ẑ] µdS (10)

whereµ = |z|/R is the geometrical projection factor applied to
the surface element when projected onto the sky,ω is the angu-
lar velocity of the star and ˆz the unit vector along+z. (For the
third moment, only the purex component is considered above.)
Equation (10) assumes that the star rotates as a rigid body, that
rotation is the only cause of the radial-velocity offset, and that
the overall offset can be calculated as the intensity-weighted
mean value of the local offset across the surface. The flux varia-
tion expressed in magnitudes is

∆m(t) = 1.086
F(t) − 〈F〉
〈F〉

(11)

where〈F〉 is the time-averaged flux.
Using a similar statistical method as Ludwig (2006), the

RMS variations (dispersions) ofm(t), ∆x(t), ∆y(t) andµ3(t) can
be estimated from fairly general assumptions about the surface
brightness fluctuations (Appendix A). This calculation is ap-
proximately valid whether the fluctuations are caused by dark
or bright spots, granulation, or a combination of all three,and
whether or not the time variation is caused by the rotation of
the star or by the changing brightness distribution over thesur-
face. The result is a set of proportionality relations involving the
radius of the starR, the limb-darkening factora, and the centre-
to-limb variationc of the surface structure contrast [see (A.5)
and (A.18) for the definition ofa andc]. For a = 0.6 (typical so-
lar limb-darkening in visible light) andc = 0 (no centre-to-limb

variation of contrast) we find

σ∆x = σ∆y ≡ σpos ≃ 0.376Rσm (12)

σµ3 ≃ 0.139R3σm (13)

whereσq designates the dispersion of the quantityq.
For the radial-velocity dispersion, a similar relation canbe

derived under the previously mentioned conditions of a time-
independent, rigidly rotating star. Using that (ω × r) · ẑ = ωxy−
ωyx we have

∆vR(t) = ωx∆y(t) − ωy∆x(t) (14)

and

σ2
vR
= ω2

xσ
2
y + ω

2
yσ

2
x = (ω2

x + ω
2
y)σ2

pos (15)

since∆x(t) and∆y(t) are statistically uncorrelated according to
Eq. (A.7). Noting thatR(ω2

x + ω
2
y)1/2 equals the projected rota-

tional velocityV sini we can also write (15) as

σpos= RσvR/(V sini) (16)

which may be used to predict the astrometric jitter from the ra-
dial velocity variations, if the latter are mainly caused byrota-
tional modulation. Combined with (12) we find under the same
assumption

σvR ≃ 0.376V sini σm (17)

In terms of the rotation periodP = 2π/ω, and assuming random
orientation ofω in space, Eq. (16) can be written

σpos=

√

3
2

P
2π
σvR ≃ 0.195PσvR (18)

3.2. Modeling discrete spots

As a check of the general relations in Sect. 3.1 we have made
numerical simulations with a very simple model, consistingof a
limited number of (dark or bright) spots on the surface of a ro-
tating star. The behaviour of the integrated properties arereadily
understood in this case (cf. Fig. 1):

– the flux is reduced in proportion to the total projected area of
the visible spots (or the spot filling factorf );

– a black spot on, say, the+x side of the star will shift the pho-
tocentre in the−x direction and cause a negative skewness
of the flux distribution along thex direction;

– the apparent radial velocity of the star is modified, depending
on whether the dark spot is located on the part of the disk
moving towards the observer (giving∆vR > 0) or away from
the observer (∆vR < 0) (Gray 2005, p. 496 and references
therein).

Bright spots cause similar effects but with the opposite sign.
Limb darkening of the stellar disk and a possible centre-to-limb
variation of spot contrast will modify the precise amount ofthese
shifts, but not their qualitative behaviour.

We assume a spherical star withN spots that are:

– absolutely black,
– small compared to the stellar radiusR,
– of equal areaA (measured as a fraction of the total surface),
– randomly spread over the whole stellar surface, and
– fixed in position on the surface, while the star rotates.
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Fig. 1. The curves show the effects in magnitude, position, ra-
dial velocity and intensity skewness (third central moment) of a
single dark spot located at latitude 30◦. The star is observed at
inclination i = 90◦ and the limb-darkening parametera = 0.6.
The vertical scale is in arbitrary units for the different effects.

For circular spots of angular radiusρ (as seen from the centre
of the star), we haveA = sin2(ρ/2). The assumption of abso-
lutely black spots is uncritical if we interpretA as theequivalent
areaof the spot, i.e. the area of a completely black spot causing
the same drop in flux. Bright spots can formally be handled by
allowing negativeA.

The star is assumed to rotate as a rigid body with periodP
around an axis that is tilted an anglei to the line of sight (+z).
For the present experiments we take the+y direction to coincide
with the projection of the rotation vectorω onto the sky; thus
ωx = 0,ωy = ω sini, andωz = ω cosi, whereω = 2π/P. Limb
darkening of the form intensity∝ 1− a+ aµ is assumed, where
µ = |z|/R.

To model a rotating spotted star, we place theN spots of the
given sizeA randomly on the surface of a spherical star and tilt
the axis to a certain inclinationi. Letting the star rotate around
its axis we calculate the integrated quantities as functions of the
rotational phase, taking into account the projection effect on the
area of each spot (by the factorµ) as well the limb-darkening
law.

The effects of a single black spot as function of the rotational
phase are illustrated in Fig. 1. It can be noted that the effects
are not unrelated to each other; for example, the radial-velocity
curve mirrors the displacement inx, and both of these curves
look like the derivative of the photometric curve. This is not a
coincidence but can be understood from fairly general relations
like (14). With many spots the curves become quite complicated,
but some of the basic relationships between them remain.

The total equivalent area of the spots isAN (the spot filling
factor f ≃ 2AN). As long asAN≪ 1, all the effects are propor-
tional to A. The dependence onN is more complex because of
the random distribution of spots. For example, the photometric
effect will mainly depend on the actual number of spotsk visible
at any time. For any random realization of the model,k follows
a binomial distribution with parametersp = 0.5 andN; its dis-
persion is therefore

√
N/2. We can therefore expect the RMS

photometric effect to be roughly proportional toA
√

N. Similar
arguments (with the same result) can be made for the other ef-
fects.

 0.01

 0.1

 1

 10

 100

 1  10  100

R
M

S
 e

ffe
ct

s 
[a

rb
itr

ar
y 

un
its

]

Number of spots (N)

m

pos

µ3

vR

Fig. 2.Results of Monte Carlo simulations of rotating stars with
different number (N) of spots, all of the same size (A = 0.0025).
The different graphs refer to (from top to bottom)σm, σpos, σµ3

andσvR, expressed on an arbitrary scale; the dots and error bars
show the mean value and dispersion of theσ values for a set
of simulations with givenN. The dashed lines have slope 0.5,
corresponding toσ ∝

√
N.

Monte Carlo simulations of a large number of cases with
A = 0.0025 (spot radiusρ = 5.73◦) andN in the range from 1 to
50 (assuming random orientation of the rotation axis and a limb-
darkening parametera = 0.6) indeed show that the RMS effects
in magnitude, photocentre displacements, third central moment
and radial velocity are all, in a statistical sense, proportional to√

N (Fig. 2). More precisely we find

σm ≃ (1.17± 0.60) · A
√

N (19)

σpos ≃ (0.57± 0.25) · A
√

N · R (20)

σµ3 ≃ (0.22± 0.09) · A
√

N · R3 (21)

σvR ≃ (0.51± 0.26) · A
√

N · Rω (22)

where the values after± show the RMS dispersion of the pro-
portionality factor found among the different simulations.

The relations (19)–(22) suggest that a measurement of any
one of the four dispersions can be used tostatisticallypredict the
other three dispersions, assuming that we know the approximate
radius and rotation period of the star, and that the different effects
are indeed caused by the rotating spotted surface. An important
point is that it is not necessary to knowA or N in order to do
this. For example, expressing the other effects in terms of the
photometric variation we find

σpos ≃ 0.49Rσm (23)

σµ3 ≃ 0.19R3σm (24)

σvR ≃ 0.43Rωσm (25)

Comparing these relations with the theoretical results in (12)–
(18) we find that the numerical factors from the numerical ex-
periments are systematically some 30–40% larger than accord-
ing to the statistical theory. This discrepancy largely vanishes if
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the models are constrained to high inclinations (i ≃ ±90◦). This
suggests that the discrepancy is mainly caused by the small val-
ues ofσm obtained in models with small inclinations, i.e. when
the star is seen nearly pole-on. The differences in these factors
are in any case well within the scatter indicated in Eq. 23–25,
which emphasizes the statistical nature of the predictionsbased
e.g. on photometric variations.

It should also be noted that there is a considerable scatter
between the different realisations reported in Eqs. (19)–(22),
amounting to about 50% RMS about the mean RMS effect. Thus,
any prediction based on either (12)–(18) or (19)–(22) is only
valid in a statistical sense, with considerable uncertainty in any
individual case. Nevertheless, the overall agreement between the
results of these very different models suggests that the statistical
relations among the different effects have a fairly general valid-
ity. The expressions forσvR are the least general in this respect,
as they obviously break down if the structures change on a time
scale smaller thanP, or if the surface structures themselves have
velocity fields. Equations (12) and (13) do not depend on the
assumption that the variability is caused by the rotation.

When modeling spotted stars, any brightening effect of fac-
ulae is often disregarded (for more details see Aarum-Ulvås
2005); only the darkening effect of spots is computed. For
the Sun, the effect of faculae is known to be comparable and
sometimes even larger than the darkening effect of sunspots
(Eker et al. 2003; Chapman 1984; Chapman & Meyer 1986;
Chapman et al. 1992; Steinegger et al. 1996). However, sincethe
general relationships, e.g. in (12)–(18), are equally valid for
bright and dark spots (or any mixture of them), it should still be
possible to predict the astrometric effects from the photometric
variations.

3.3. Comparison with previous studies and observations

The (near-) proportionality between the observable effects and
the spot filling factorf ∝ AN expressed by Eqs. (1)–(3) is not
supported by our spotted model, which predicts that the effects
are proportional toA

√
N. However, for smallN and a filling fac-

tor of a few percent we have rough quantitative agreement with
these earlier results. We note that (2) and (3) can be combined to
give an approximate relation similar to (17).

Equation (5) derived by Ludwig (2006) is practically identi-
cal to our (12), which is not surprising as they are based on very
similar statistical models.

Both the theoretical result and the result from the simulation
for the relationship between the RMS for the radial velocityand
the RMS for the magnitude shows a distinct relation and this re-
sult is confirmed by observations in the literature (Paulsonet al.
2004b) for a very limited number of stars in the Hyades all hav-
ing rotation period ofP ∼ 8.5 days. These are G0V–G5V stars
and should therefore have approximately the same radii as the
Sun (R∼ 7× 105 km). Equation (25) then gives

σvR ≃ 2600σm [m s−1] (26)

in reasonable agreement with the empirical result in (4). The
simulations by Sozzetti (2005) give an astrometric jitter that is
roughly a factor 2 greater than predicted by (12) or (23).

Thus the results of previous studies generally agree within
a factor 2 or better with the theoretical formulae derived inthis
Section.

4. Application to real stars

In this section we use known statistics about the photometric and
radial-velocity variations of real stars in order to predict the ex-
pected astrometric jitter for different types of stars. Rather than
using angular units, we consistently express the astrometric jitter
in linear units, using the astronomical unit AU, mAU (10−3 AU)
or µAU (10−6 AU). This eliminates the dependence on the dis-
tance to the star, while providing simple conversion to angular
units: 1µAU corresponds to 1µas at a distance of 1 pc. We also
note that 1 mAU≃ 0.215R⊙ and 1µAU ≃ 150 km.

4.1. Pre-Main Sequence (T Tauri) stars

T Tauri stars are low-mass, pre-main sequence stars in a dy-
namic stage of evolution often characterised by prominent dark
spots, bipolar outflows or jets, accreting matter with associ-
ated rapid brightness variations, and in many cases circumstellar
disks extending to a few hundred AU (e.g., Rhode et al. 2001;
Herbst et al. 2002; Sicilia-Aguilar et al. 2005). Taking thestar-
forming region in the Orion nebula as an example, the spectral
types range from G6 to M6, with the large majority in the range
K0 to M4 (Rhode et al. 2001).

Many processes may contribute to the astrometric jitter of
these stars besides their surface structures, e.g. photometric ir-
regularities of the circumstellar disk. The statistical relations
derived in Sect. 3 could therefore mainly set alower limit to
the likely astrometric effects. Herbst et al. (1994) found that the
photometric variability of (weak) T Tauri stars (WTTS) is of
the order of 0.8 mag due to cool spots and occasional flares.
Assuming a typical radius of∼ 2R⊙ (Rhode et al. 2001), Eq. (23)
leads to an estimated astrometric variability of the order of
1R⊙ ∼ 5000µAU.

4.2. Main-Sequence stars

Eyer & Grenon (1997) have used the Hipparcos photometric
data to map the intrinsic variability of stars across the HR dia-
gram. On the main sequence (luminosity class V), stars of spec-
tral type B8–A5 and F1–F8 are among the most stable ones,
with a mean intrinsic variabilityσm < 2 mmag and with only
a few percent of the stars having amplitudes above 0.05 mag.
Early B type stars are nearly all variable with a mean intrinsic
variability of ∼ 10 mmag, and among the cool stars the level
and frequency of variability increases from late G to early M
dwarfs. In the instability strip (A6–F0) the main-sequencestars
are mostly micro-variable withσm up to several mmag. Among
F–K stars the degree of variability is probably also a strongfunc-
tion of age or chromospheric activity (Fekel et al. 2004); e.g.,
the Hyades (age∼ 600 Myr) show variations of about 10 mmag
(Radick et al. 1995).

The Sun (G2V) is located in one of the photometrically most
stable parts of the main sequence, and is one of the (as yet)
few stars for which the micro-variability has been studied in de-
tail. Analysis of the VIRGO/SoHO total solar irradiance data
(Lanza et al. 2003) show variability at the levelσm ≃ 0.25 mmag
(relative variance 5× 10−8) on time scales. 30 days, which
can largely be attributed to rotational modulation. The longer-
term, solar-cycle related variations are of a similar magnitude.
The optical data show a strong wavelength dependence, with
σm ≃ 0.2 mmag at 860 nm increasing to 0.4 mmag at 550 nm
and 0.5 mmag at 400 nm (Lanza et al. 2004). For comparison,
a single large sunspot group (equivalent areaA = 0.05%, cor-
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responding tof = 0.1%) givesσm ≃ 0.6 mmag according to
(19).

The photometric variations of the Sun on short (rotation-
related) timescales appears to be representative for solar-like
stars of similar age and chromospheric activity (Fekel et al.
2004). Thus, we may expectσm . 1 mmag for ‘solar twins’ can-
didates, such as the sample studied by Meléndez et al. (2006).
Inspection of the Hipparcos photometry for these stars (ESA
1997) confirm that most of them show no sign of variability at
the sensitivity limit of a few mmag. Much more detailed and ac-
curate statistics on micro-variability in solar-type stars are soon
to be expected as a result of survey missions such as MOST
(Walker et al. 2003), COROT (Baglin et al. 2002) and Kepler
(Basri et al. 2005).

The increased frequency and amplitude of variations for
late G-type and cooler dwarf stars is at least partly at-
tributable to starspots. Aigrain et al. (2004) estimated stellar
micro-variability as function of age and colour index from a
scaling of the solar irradiance power spectrum based on the
predicted chromospheric activity level. For example, theyfind
σm ≃ 1.5 mmag in white light for old (∼ 4.5 Gyr) F5–K5 stars,
practically independent of spectral type, while for young stars
(∼ 625 Myr)σm increases from 2 to 7 mmag in the same spec-
tral range.

Variability among field M dwarfs has been studied e.g. by
Rockenfeller et al. (2006), who find that a third of the stars in
their sample of M2–M9 dwarfs are variable at the level ofσm ∼
20 mmag. Evidence for large spots has been found for many K
and M stars, yielding brightness amplitudes of up to a few tenths
of a magnitude.

A large body of data on radial-velocity jitter in (mainly) F,G
and K stars has been assembled from the several on-going planet
search programmes and can be used to make statistical predic-
tions as function of colour, chromospheric activity and evolu-
tionary stage. However, since at least part of the radial-velocity
jitter is caused by other effects than the rotation of an inho-
mogeneous surface (e.g., by atmospheric convective motions),
its interpretation in terms of astrometric jitter is not straight-
forward. From the observations of∼450 stars in the California
and Carnegie Planet Search Program, Wright (2005) finds a ra-
dial velocity jitter of∼ 4 m s−1 for inactive dwarf stars of spectral
type F5 or later, increasing to some 10 m s−1 for stars that are ei-
ther active or more evolved. Saar et al. (1998), using data from
the Lick planetary survey, find intrinsic radial-velocity jitters of
2–100 m s−1 depending mainly on rotational velocity (V sini)
and colour, with a minimum aroundB−V ≃ 1.0–1.3 (spec-
tral type∼K5). For a sample of Hyades F5 to M2 dwarf stars,
Paulson et al. (2004a) find an average rms radial velocity jitter
of ∼16 m s−1.

4.3. Giant stars

For giants of luminosity class III, Hipparcos photometry has
shown a considerable range in the typical degree of variabil-
ity depending on the spectral type (Eyer & Grenon 1997). The
most stable giants (σm < 2 mmag) are the early A and late
G types. The most unstable ones are of type K8 or later, with
a steadily increasing variability up to∼ 0.1 mag for late M gi-
ants. The stars in the instability strip (roughly from A8 to F6)
are typically variable at the 5–20 mmag level. As these are pre-
sumably mainly radially pulsating, the expected astrometric jit-
ter is not necessarily higher than on either side of the insta-
bility strip. This general picture is confirmed by other studies.
Jorissen et al. (1997) found that late G and early K giants are

stable at theσm ≤ 6 mmag level; K3 and later types have an
increasing level of micro-variability with a time scale of 5to
10 days, whileb − y = 1.1 (≃M2) marks the onset of large-
amplitude variability (σm ≥ 10 mmag) typically on longer time
scales (∼ 100 days). From a larger and somewhat more sensitive
survey of G and K giants, Henry et al. (2000) found the small-
est fraction of variables in the G6–K1 range, although even here
some 20% show micro-variability at the 2–5 mmag level; giants
later than K4 are all variable, half of them withσm ≥ 10 mmag.
The onset of large-amplitude variability coincides with the coro-
nal dividing line (Haisch et al. 1991) separating the earlier giants
with a hot corona from the later types with cool stellar winds.
This suggests that the variability mechanisms may be different
on either side of the dividing line, with rotational modulation of
active regions producing the micro-variability seen in many gi-
ants earlier than K3 and pulsation being the main mechanism
for the larger-amplitude variations in the later spectral types
(Henry et al. 2000).

Several radial-velocity surveys of giants (Frink et al. 2001;
Setiawan et al. 2004; Hekker et al. 2006) show increasing intrin-
sic radial-velocity variability withB−V = 1.2, with a more or
less abrupt change aroundB−V = 1.2 (≃K3). Most bluer giants
haveσvR ≃ 20 m s−1 while the redder ones often have variations
of 40–100 m s−1.

4.4. Bright giants and supergiants

With increasing luminosity, variability becomes increasingly
common among the bright giants and supergiants (luminosity
class II–Ia). The Hipparcos survey (Eyer & Grenon 1997) shows
a typical intrinsic scatter of at least 10 mmag at most spectral
types, and of course much more in the instability strip (including
the cepheids) and among the red supergiants (including semireg-
ular and irregular variables). Nevertheless there may be a few ‘is-
lands’ in the upper part of the observational HR diagram where
stable stars are to be found, in particular around G8II.

It is clear that pulsation is a dominating variability mecha-
nism for many of these objects. However, ‘hotspots’ and other
deviations from circular symmetry has been observed in inter-
ferometrical images of the surfaces of M supergiants and Mira
varibles (e.g., Tuthill et al. 1997, 1999), possibly being the vis-
ible manifestations of very large convection cells, pulsation-
induced shock waves, patchy circumstellar extinction, or some
other mechanism. Whatever the explanation for these asymme-
tries may be, it is likely to produce both photometric and astro-
metric variations, probably on time scales of months to years.
Kiss et al. (2006) find evidence of a strong 1/ f noise component
in the power spectra of nearly all red supergiant semiregular and
irregular variable stars in their sample, consistent with the pic-
ture of irregular variability caused by large convection cells anal-
ogous to the granulation-inducedvariability background seen for
the Sun.

4.5. Summary of expected astrometric jitter

Table 1 summarises much of the data discussed in this Section
for the main-sequence, giant and supergiant stars, and gives the
corresponding estimates of the astrometric jitter (σpos) based on
theoretical formulae. These estimates are given in three columns
labelled with the corresponding equation number:

– Equation (12) is used to predict the positional jitter from the
typical values of photometric variability in columnσm. This
is based on the assumption that the variability is due either
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to (dark or bright) spots, granulation, or any other surface
features that vary with time. Note that the temporal variation
need not be related to stellar rotation. The resultingσpos are
probably realistic order-of-magnitude estimates except when
the photometric variability is mainly caused by radial pulsa-
tions. In such cases (e.g., for stars in the instability strip and
red supergiants) the values given clearly represent upper lim-
its to the real effect.

– Equation (18) is used to predict the astrometric effect from
the radial-velocity variability in columnσvR. This is only
valid if the radial velocity is rotationally modulated. Since
pulsations, non-radial oscillations, convection and many
other effects may cause radial-velocity variations without a
corresponding astrometric effect, these estimates are again
upper limits. Nevertheless, rotational modulation is im-
portant among active (young) main-sequence stars and M
dwarfs, and for these objects Eq. (18) may provide correct
order-of-magnitude estimates.

– Finally we have included an estimate of the astrometric jitter
based on the following equation

σpos= (300µAU) × 101−logg (27)

with logg taken from Cox (2000). Equation (27) is de-
rived from the inverse relation to surface gravityg found by
Svensson & Ludwig (2005) for a range of hydrodynamical
model atmospheres. Although the authors warn that spheric-
ity effects may render an extrapolation of this relation to su-
pergiants very uncertain, we have applied it to all the stellar
types in the table. Since it only includes the random effects of
stellar granulation, it represents a lower limit to the expected
astrometric jitter.

If the estimates based on the photometric and radial-velocity es-
timates are strictly considered as upper limits, the results in the
table appear rather inconclusive. However, if the likely mech-
anisms of the variabilities are also considered, it is possible to
make some quantitative conclusions. For main-sequence A toM
stars, the expected level of astrometric jitter is generally in the
range 2–20µAU probably depending mainly on the level of stel-
lar activity; old, inactive stars should have less jitter (2–5µAU).
The Sun appears to be more stable than the typical old, solar-like
star, but not by a large factor. The most stable giant stars are the
late F to early K types, were the expected astrometric jitteris of
order 25µAU. Late-type giants and supergiants haveσpos of a
hundred to several thousandµAU.

5. Discussion

5.1. Astrometric signature of exoplanets

The possibility for an astrometric detection of a planet depends
on the angular size of the star’s wobble on the sky relative tothe
total noise of the measurements, including the astrophysically
induced astrometric jitter discussed in the previous section. In
linear measure, the size of the wobble is approximately given
by the semi-major axis of the star’s motion about the common
centre of mass, or theastrometric signature

α =
Mp

M∗ + Mp
a ≃

Mp

M∗
a (28)

(cf. Lattanzi et al. 2000, who however express this as an angle),
whereMp is the mass of the exoplanet,M∗ that of the star, anda
the semi-major axis of the relative orbit. In all cases of interest
here,Mp ≪ M∗, so that the second equality can be used.

It is of interest to evaluate the astrometric signature for the
already detected exoplanets. For most of them we only know
Mp sini from the radial-velocity curve, and we use this as a
proxy for Mp. This somewhat underestimates the astrometric
effect, but not by a large factor since the spectroscopic detec-
tion method is strongly biased against systems with small sin i.
Analysing the current (April 2007) data in the Extrasolar Planets
Encyclopaedia (Schneider 2007) we find a median valueα ≃
1200µAU; the 10th and 90th percentiles are 15 and 10 000µAU.

Future exoplanet searches using high-precision astrometric
techniques may however primarily target planets with masses in
the range from 1 to 10 Earth masses (MEarth ≃ 3 × 10−6M⊙)
in the habitable zone of reasonably long-lived main-sequence
stars (spectral type A5 and later, lifetime<∼ 1 Gyr). For a star
of luminosityL we may take the mean distance of the habitable
zone to bea ∼ (L/L⊙)1/2 AU (Kasting et al. 1993; Gould et al.
2003). In this mass range (∼ 0.2–2M⊙) the luminosity scales as
M4.5
∗ (based on data from Andersen 1991), so we finda ∝ M2.25

∗
and

α ≃ (3 µAU) ×
(

Mp

MEarth

) (

M∗
M⊙

)1.25

(29)

For a planet of one Earth mass orbiting a main-sequence star,this
quantity ranges from about 7µAU for an A5V star to 2.3µAU
for spectral type K0V.

Lopez et al. (2005) have argued that life will have time to de-
velop also in the environments of subgiant and giant stars, during
their slow phases of development. The habitable zone may ex-
tend out to 22 AU for a 1M⊙ star, with a correspondingly larger
astrometric signature. However, the long period of such planets
would make their detection difficult for other reasons.

5.2. Exoplanet detection

The detection probability is in reality a complicated function of
many factors such as the number of observations, their tempo-
ral distribution, the period and eccentricity of the orbit,and the
adopted detection threshold (or probability of false detection). A
very simplistic assumption might be that detection is only pos-
sible if the RMS perturbation from the planet exceeds the RMS
noise from other causes. Neglecting orbital eccentricity and as-
suming that the orbital plane is randomly oriented in space,so
that 〈sin2 i〉 = 2/3, the RMS positional excursion of the star in
a given direction on the sky isα/

√
3. With a sufficiently pow-

erful instrument, so that other error sources can be neglected,
the condition for detection then becomesα/σpos >∼

√
3. In real-

ity, a somewhat larger ratio than
√

3 is probably required for a
reliable detection, especially if the period is unknown. For ex-
ample, Sozzetti (2005) reports numerical simulations showing
thatα/σ >∼ 2 is required for detection of planetary signatures by
SIM or Gaia, whereσ is the single-epoch measurement error,
provided that the orbital period is less than the mission length.
(For the corresponding problem of detecting a periodic signal in
radial-velocity data, Marcy et al. (2005) note that a velocity pre-
cision of 3 m s−1 limits the detected velocity semi-amplitudes to
greater than∼10 m s−1, implying an even higher amplitude/noise
ratio of 3.3.) As a rule-of-thumb, we assume that detection by the
astrometric method is at least in principle possible if

σpos<∼ 0.5α (30)

For old, solar-type stars the expected astrometric jitter is
<∼5 µAU, implying that exoplanets around these stars withα >∼
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Table 1.A summary of typical photometric and spectroscopic variability for different stellar types, and inferred levels of astrometric
jitter (σpos). The jitter is estimated in three different ways: from the photometric variability, using Eq. (12) [this will overestimate
the jitter if part of the variability is due to radial pulsation]; from the radial-velocity variability, using Eq. (18) [this method will
overestimate the jitter if the variability is not caused by rotational modulation]; and from the surface gravity, usingEq. (27) [this
only includes jitter caused by granulation, and is therefore a lower limit]. References to typical observed quantitiesare given as
footnotes. Radii and logg (not shown) are taken from Cox (2000).

Type σm σvR R P σpos (12) σpos (18) σpos (27)
[mmag] [m s−1] [R⊙] [d] [ µAU] [ µAU] [ µAU]

Main sequence stars:
O–B7V 10c 7 120 0.3
B8–A5V <2c 2.5 <9 0.2
A6–F0V 2–8c 1.6 5–20 0.1
F1–F8V <2c 3–100m 1.3 3b <5 1–30 0.1
F9–K5V (young) 5–15a,d,k 16j 1 10a 10–25 18 0.1
F9–K5V (old) 1–3a,d 3–5k 1 25a 2–5 8–14 0.1
G2V (Sun) 0.4i 1 25b 0.7 0.1
K6–M1V 10c 5m 0.6 40a 10 20 0.1
M2–M9V 20l 10m 0.3 0.2–2l 10 0.2–2 0.04

Giants:
O–B7III 4–8c 10 70–140 1
B8–A7III <4c 5 <35 1.5
A8–F6III 5–20c 5 50–200 2
F7–G5III 2–6c <20f 7 10b 25–75 <25 5
G6–K2III <2c,g 20–30e, f ,n 15 30b <50 60 20
K3–K8III 5–10c,h 20–100e, f ,n 25 200–500 50
M0III 20c,h 30–150e, f ,n 40 1400 150
M5III 100c,h 50–300e, f ,n 90 16000

Bright giants and supergiants:
O–AIa,b 4–40c 30 200–2000 25
FIa,b 20–100d 100 4000–20 000 100
GII 2–10c 30 100–500 40
G–KIa,b 10–100c 150 3000–30 000 250
MIa,b,II ∼100c 500 ∼100 000 300–3000

References:aAigrain et al. (2004),bCox (2000),cEyer & Grenon (1997),dFekel et al. (2004),eFrink et al. (2001),f Hekker et al. (2006),gHenry et al. (2002),hJorissen et al. (1997),
iLanza et al. (2004),jPaulson et al. (2004b),kRadick et al. (1995),lRockenfeller et al. (2006),mSaar et al. (1998),nSetiawan et al. (2004)

10 µAU could generally be detected and measured astrometri-
cally. This applies to the vast majority (>90%) of the exoplanets
already detected by the radial-velocity method. Such observa-
tions would be highly interesting for obtaining independent in-
formation about these systems, in particular orbital inclinations
and unambiguous determination of planetary masses.

Exoplanets of about 10MEarth orbiting old F–K main-
sequence stars in the habitable zone (α ≃ 20–50µAU) would
generally be astrometrically detectable. This would also be the
case for Earth-sized planets in similar environments (α ≃ 2–
5 µAU), but only around stars that are unusually stable, such as
the Sun.

5.3. Determination of parallax and proper motion

The primary objective of high-precision astrometric measure-
ments, apart from exoplanet detection, is the determination of
stellar parallax and proper motion. We consider here only briefly
the possible effects of stellar surface structures on the determi-
nation of these quantities.

Stellar parallax causes an apparent motion of the star, known
as the parallax ellipse, which is an inverted image the Earth’s
orbit as viewed from the star. The linear amplitude of the par-
allax effect is therefore very close to 1 AU. (For a space obser-
vatory at the Sun–Earth Lagrangian point L2, such as Gaia, the
mean amplitude is 1.01 AU.) Thus, the size of the astrometric
jitter expressed in AU can directly be used to estimate the min-

imum achievablerelative error in parallax. For main-sequence
stars this relative error is less than 10−4, for giant stars it is of
order 10−4 to 10−3, and for supergiants it may in some cases ex-
ceed 1%. We note that a 1% relative error in parallax gives a 2%
(0.02 mag) error in luminosity or absolute magnitude.

If proper motions are calculated from positional data sep-
arated byT years, the random error caused by the astrometric
jitter, converted to transverse velocity, is≃ σpos

√
2/T. Even for

a very short temporal baseline such asT = 1 yr, this error is usu-
ally very small:∼0.1 m s−1 for main-sequence stars and∼0.5–
5 m s−1 for giants. (Note that 1 AU yr−1 ≃ 4.74 km s−1.) In most
applications of stellar proper motions this is completely negligi-
ble.

6. Conclusions

For most instruments on ground or in space, stars are still unre-
solved or marginally resolved objects that can only be observed
by their disk-integrated properties. The total flux, astrometric po-
sition, effective radial velocity and closure phase are examples of
such integrated properties. Stellar surface structures influence all
of them in different ways. Our main conclusions are:

1. Theoretical considerations allow to establish statistical re-
lations between the different integrated properties of stars.
Under certain assumptions these relations can be used to pre-
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dict the astrometric jitter from observed variations in pho-
tometry, radial velocity or closure phase.

2. The total flux, astrometric position and third central mo-
ments (related to closure phase) are simple moments of the
intensity distribution over the disk, and for these the statis-
tical relations are valid under fairly general conditions –for
example, they hold irrespective of whether the variations are
caused by spots on a rotating star or by the temporal evo-
lution of granulation. By contrast, radial-velocity variations
can only be coupled to photometric and astrometric varia-
tions if they are primarily caused by rotational modulation.

3. The theoretical relations are supported by numerical simula-
tions using a model of a rotating spotted star. In this case the
variations in total flux, position, radial velocity and closure
phase are all proportional toA

√
N, whereA is the equiva-

lent area of each spot andN the number of spots. This means
that, e.g., the astrometric jitter can be (statistically) predicted
from the photometric variability without knowingA andN.
It is noted that the spot filling factor, being proportional to
AN, is not the most relevant characteristic of spottiness for
these effects.

4. Using typical values for the observed photometric and radial-
velocity variations in ordinary stars, we have estimated the
expected size of the astrometric jitter caused by surface
structures (Table 1). The estimates range from below 1µAU
for the Sun, severalµAU for most main-sequence stars, some
tens ofµAU for giants, and up to several mAU for some su-
pergiants.

5. The expected positional jitter has implications for the possi-
ble astrometric detection of exoplanets. While planets heav-
ier than 10 Earth masses may be astrometrically detected in
the habitable zone around ordinary main-sequence stars, itis
likely that Earth-sized planets can only be detected around
stars that are unusually stable for their type, similar to our
Sun.

6. Stellar surface structures in general have negligible impact
on other astrometric applications, such as the determination
of parallax and proper motion. A possible exception are su-
pergiants, where very large and slowly varying spots or con-
vection cells could limit the relative accuracy of parallaxde-
terminations to a few per cent.

Acknowledgements.We give special thanks to Dainis Dravins, Jonas Persson
and Andreas Redfors for helpful discussions and comments onthe manuscript,
and to Hans-Günter Ludwig for communicating his results from simulations of
closure phase. We also thank Kristianstad University for funding the research of
UE and thereby making this work possible.

References
Aarum-Ulvås, V. 2005, A&A, 435, 1063
Aigrain, S., Favata, F., & Gilmore, G. 2004, A&A, 414, 1139
Andersen, J. 1991, A&A Rev., 3, 91
Baglin, A., Auvergne, M., Barge, P., et al. 2002, in ESA SP-485: Stellar Structure

and Habitable Planet Finding, ed. B. Battrick, F. Favata, I.W. Roxburgh, &
D. Galadi, 17–24

Basri, G., Borucki, W. J., & Koch, D. 2005, New Astronomy Review, 49, 478
Bastian, U. & Hefele, H. 2005, in ESA SP-576: The Three-Dimensional

Universe with Gaia, ed. C. Turon, K. S. O’Flaherty, & M. A. C. Perryman,
215–+

Chapman, G. A. 1984, Nature, 308, 252
Chapman, G. A., Herzog, A. D., Lawrence, J. K., et al. 1992, J.Geophys. Res.,

97, 8211
Chapman, G. A. & Meyer, A. D. 1986, Sol. Phys., 103, 21
Cox, A. N. 2000, Allen’s astrophysical quantities, 4th ed. (AIP Press,

2000. Edited by Arthur N. Cox. ISBN: 0387987460)
Eker, Z., Brandt, P. N., Hanslmeier, A., Otruba, W., & Wehrli, C. 2003, A&A,

404, 1107

ESA. 1997, The HIPPARCOS and Tycho catalogues (ESA SP-1200)
Eyer, L. & Grenon, M. 1997, in ESA SP-402: Hipparcos - Venice ’97, 467–472
Fekel, F. C., Henry, G. W., Baliunas, S. L., & Donahue, R. A. 2004, in IAU

Symposium, ed. A. K. Dupree & A. O. Benz, 269–+
Frink, S., Quirrenbach, A., Fischer, D., Röser, S., & Schilbach, E. 2001, PASP,
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Appendix A: Statistical properties of the spatial
moments of the intensity distribution across a
stellar disk

In this Appendix we derive the mean values and variances of the
moments〈xmyn〉 for a spherical star, wherex andy are spatial
coordinates normal to the line-of-sight and〈〉 denotes the instan-
taneous flux-weighted mean. The analysis extends and general-
izes that of Ludwig (2006) by considering also the third moment
(relevant for measurement of closure phase) and a centre-to-limb
variation of the intensity contrast.

Let θ, ϕ be polar coordinates on the stellar surface withθ = 0
at the centre of the visible disk andϕ = 0 along thex axis. With
µ = cosθ we write the instantaneous intensity across the visible
stellar surfaceS as I (µ, ϕ), and introduce the non-normalized
spatial moments

Mmn ≡
∫

S
dS I(µ, ϕ) µ xm yn =

Rm+n+2
∫ 1

0
dµ

∫ 2π

0
dϕ I (µ, ϕ) µ (1− µ2)(m+n)/2 cosmϕ sinnϕ (A.1)

wherex = R(1 − µ2)1/2 cosϕ andy = R(1 − µ2)1/2 sinϕ. The
factorµ in the integrand is the foreshortening of the surface ele-
ment dS = R2dµdϕ when projected normal to the line-of-sight.
The normalized moments are given by

〈xmyn〉 = Mmn

M00
(A.2)

where it can be noted thatM00 equals the instantaneous total
stellar flux.

It is assumed thatI (µ, ϕ) varies randomly both across the
stellar surface (at a given instant), and as a function of time. As a
consequence, the spatial moments (A.1) and (A.2) are also ran-
dom functions of time, and the goal is to characterize them in
terms of their mean values and variances.2 Since we are inter-
ested in quite small effects of the surface structure it is generally
true that the dispersions are small compared with the total flux
and scale of the star, so that for example D[M00] ≪ E[M00]
and D[M10] ≪ RE[M00]. In this case the variability of〈xmyn〉 is
mainly produced by the numerator in (A.2), and we may use the
approximations

E[〈xmyn〉] = E[Mmn]
E[M00]

, D[〈xmyn〉] = D[Mmn]
E[M00]

(A.3)

In the following we therefore focus on deriving the mean values
and dispersions of the non-normalized momentsMmn. The (tem-
poral) mean value and dispersion ofI (µ, ϕ) are assumed to be
independent ofϕ; thus

E[I (µ, ϕ)] = A(µ) , D[I (µ, ϕ)] = σI (µ) (A.4)

whereA(µ) andσI (µ) are functions to be specified.

A.1. Mean value of the moments

We assume a linear limb-darkening law with coefficienta, such
that

A(µ) = (1− a+ aµ)A1 (A.5)

2 We use the notation E[X] for the mean value (expectation) of the
generic random variableX, V[X] = E[(X−E[X])2] for the variance and
D[X] = V[X]1/2 for the rms dispersion.

whereA1 is the mean intensity at the disk centre (µ = 1). From
(A.1) we obtain

E[Mmn] =

Rm+n+2
∫ 1

0
dµ

∫ 2π

0
dϕA(µ) µ (1− µ2)(m+n)/2 cosmϕ sinnϕ (A.6)

which with (A.5) evaluates to

E[Mmn] = 0 (A.7)

if eitherm or n is odd, and to

E[Mmn] = 2πRm+n+2 (m− 1)!!(n− 1)!!
(m+ n)!!

A1Hm+n(a) (A.8)

if both m andn are even.3 Here, we introduced the functions

Hk(a) =
∫ 1

0
dµ (1− a+ aµ) µ (1− µ2)k/2

=































1− a
k+ 2

+
k!!

(k+ 3)!!
a (evenk)

1− a
k+ 2

+
k!!

(k+ 3)!!
π

2
a (oddk)

(A.9)

of which, presently, we only need

H0(a) =
1
2
− a

6
and H2(a) =

1
4
− 7a

60
(A.10)

Thus, the mean total flux is

E[M00] = πR
2 A1

(

1−
a
3

)

(A.11)

and the second moments

E[M20] = E[M02] =
1
4
πR4 A1

(

1− 7a
15

)

(A.12)

The rms extension of the star in either coordinate is given by

s=

(

E[M20]
E[M00]

)1/2

=

(

E[M02]
E[M00]

)1/2

=
R
2

(

1− 7a/15
1− a/3

)1/2

(A.13)

A.2. Dispersion of the moments

In order to compute the dispersion ofMmn we need to introduce
the second-order statistics ofI (µ, ϕ). Following Ludwig (2006)
we divide the visible hemisphere intoN equal surface patches of
size∆A = R2∆θ∆ϕ sinθ = R2∆µ∆ϕ = 2πR2/N, with the centre
of patchk at position (µk, ϕk). Thus the integral over the visible
surface of any functiong(µ, ϕ) can in the limit of largeN be
replaced by a sum:

R2
∫ 1

0
dµ

∫ 2π

0
dϕg(µ, ϕ) ≃

2πR2

N

N
∑

k=1

g(µk, ϕk) (A.14)

In particular, from (A.1) we have

Mmn =
2πRm+n+2

N

N
∑

k=1

Ik µk (1− µ2
k)(m+n)/2 cosmϕk sinnϕk (A.15)

3 The double factorial notation meansk!! = k(k − 2)(k − 4) · · ·2 for
even integerk, andk!! = k(k − 2)(k − 4) · · · 1 for oddk. We have 0!!=
(−1)!! = 1.
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whereIk is the mean value ofI (µ, ϕ) in patchk. This expresses
the moment as a linear combination of the random variablesIk.
If we now assume that the intensity variations∆Ik = Ik−E[Ik] of
the patches are uncorrelated, i.e. E[∆Ik∆Ik′ ] = 0 for k , k′, we
have

V[ Mmn] =

4π2R2m+2n+4

N2

N
∑

k=1

V[ Ik] µ2
k (1− µ2

k)m+n cos2mϕk sin2nϕk (A.16)

For sufficiently large N the patches would resolve even the
smallest surface structures and we would have V[Ik] = σ2

I (µk)
according to (A.4). However, in that case the intensities ofad-
jacent patches would be correlated, so (A.16) would not hold.
For the latter equation we effectively need patches that are larger
than the correlation length of the surface structures. We must
therefore assume thatN is large enough for the discretization
(A.12) to hold, and still small enough that the patches are un-
correlated. In this regime we have V[Ik] < σ2

I (µk), sinceIk is
theaverageintensity in patchk, not thelocal intensity at point
(µk, ϕk). In fact, V[Ik] will depend on the patch size (orN) in
such a way that V[Ik]/N is invariant (Ludwig 2006). (This is
obviously the case for independent patches: grouping them into
larger and fewer patches decreases the variance in proportion to
the resultingN.) We write the invariant quantity as

V[ Ik]
N
= A(µk)

2C(µk)
2 (A.17)

whereA(µ) is the mean intensity as before andC(µ) the centre-
to-limb variation of the contrast (scaled byN−1/2). In analogy
with (A.5) we assume a linear centre-to-limb variation of the
contrast according to

C(µ) = (1− c+ cµ)C1 (A.18)

Inserting (A.17) and (A.18) into (A.16) and using (A.14) to
transform the sum into an integral gives

V[ Mmn] = 2πR2m+2n+4×

×
∫ 1

0
dµ

∫ 2π

0
dϕA(µ)2C(µ)2 µ2 (1− µ2)m+n cos2mϕ sin2nϕ

= 4π2R2m+2n+4 (2m− 1)!!(2n− 1)!!
(2m+ 2n)!!

A2
1C

2
1 Km+n(a, c) (A.19)

where we introduced the functions

Kk(a, c) =
∫ 1

0
dµ (1− a+ aµ)2(1− c+ cµ)2µ2(1− µ2)k (A.20)

Fork = 0, . . .3 we have

K0(a, c) =
1
3
− 1

6
(a+ c) +

1
30

(a2 + 4ac+ c2)

− 1
30

ac(a+ c) +
1

105
a2c2 (A.21)

K1(a, c) =
2
15
− 1

10
(a+ c) +

1
42

(a2 + 4ac+ c2)

− 11
420

ac(a+ c) +
1

126
a2c2 (A.22)

K2(a, c) =
8

105
− 29

420
(a+ c) +

23
1260

(a2 + 4ac+ c2)

− 3
140

ac(a+ c) +
47

6930
a2c2 (A.23)

K3(a, c) =
16
315
− 13

252
(a+ c) +

29
1980

(a2 + 4ac+ c2)

−
25

1386
ac(a+ c) +

38
6435

a2c2 (A.24)

Using (A.3) we obtain the following general expression for the
dispersion of the normalized spatial momentDmn ≡ D[〈xmyn〉]:

Dmn = C1 Rm+n

√

(2m− 1)!! (2n− 1)!!
(2m+ 2n)!!

Km+n(a, c)

H0(a)
(A.25)

Note thatD00 = D[M00]/E[M00] is the relative dispersion of the
total flux, D10 is the dispersion of the photocentre along thex
axis, etc. We have in particular

D00 = C1

√

K0(a, c)
H0(a)

(A.26)

D10 = D01 = C1 R

√

1
2K1(a, c)

H0(a)
(A.27)

D20 = D02 = C1 R2

√

3
8K2(a, c)

H0(a)
(A.28)

D30 = D03 = C1 R3

√

5
16K3(a, c)

H0(a)
(A.29)

A.3. The third central moment

Closure phase is sensitive to the asymmetry of the stellar image,
and the third moments (Mmn for m + n = 3) are intended to
provide a statistical characterization of this asymmetry.These
moments are calculated with respect to thegeometrical centreof
the disk (atx = y = 0). However, intrinsic image properties such
as size, shape and asymmetry are more properly expressed with
respect to thephotocentre, atx0 = M10/M00, y0 = M01/M00, i.e.,
by means of central moments (here denoted with a prime). For
example, the third central moment along thex axis is given by

M′30 =

∫

S
dS I(µ, ϕ) µ (x− x0)3

= M30 − 3x0M20 + 3x2
0M10 − x3

0M00

= M30 − 3
M10M20

M00
+ 2

M3
10

M2
00

(A.30)

It is seen that E[M′30] = 0 as expected. However, to calculate
the variance ofM′30 it is necessary to make some approxima-
tions. First we replace the even moments in the right-hand side
of (A.26) by their mean values and introduce the rms extentsof
the stellar disk from (A.13), yielding

M′30 = M30 − 3M10

(

s2 − 2
3

x2
0

)

(A.31)

The photocentre displacement is normally very small compared
with the size of the disk, so that the second term in the parenthe-
ses can be neglected. Then

V[ M′30] = E[M′230] = E[M2
30] − 6s2E[M10M30] + 9s4E[M2

10]

= V[ M30] − 6s2V[ M20] + 9s4V[ M10] (A.32)

using that E[M10M30] = V[ M20]. Finally, the dispersion of the
normalized third central moment is found to be

D′30 =
C1R3

H0(a)

















5
16

K3(a, c) − 9
8

H2(a)
H0(a)

K2(a, c) +

+
9
8

(

H2(a)
H0(a)

)2

K1(a, c)

















1/2

(A.33)



12 U. Eriksson and L. Lindegren: Limits of ultra-high-precision optical astrometry: Stellar surface structures

A.4. Scaling relations

Since all the dispersions in (A.26) and (A.33) are proportional to
C1 we obtain a set of simple scaling relations that can be used to
predict the dispersion of a certain moment from a measurement
of the dispersion of a different moment (assuming thata andc
are approximately known). The most useful relations allow to
predict the dispersions of the first and third moments from that
of the total flux (zeroth moment). For the first moment (photo-
centre) we have

D[M10]
D[M00]

= R












K1(a, c)
2K0(a, c)













1/2

(A.34)

and for the third central moment

D[M′30]

D[M00]
= R3

















5
16

K3(a, c)
K0(a, c)

−
9
8

H2(a)
H0(a)

K2(a, c)
K0(a, c)

+

+
9
8

(

H2(a)
H0(a)

)2 K1(a, c)
K0(a, c)

















1/2

(A.35)

The numerical factors on the right-hand sides of (A.34) and
(A.35) are graphically shown in Figs. A.1–A.2 as functions of
the structural parametersa andc.

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

D
[M

10
]/R

D
[M

00
]

0 0.2 0.4 0.6 0.8 1

Limb-darkening factor (a)

Fig. A.1. The scaling factor D[M10]/RD[M00] from Eq. (A.34)
between the expected dispersions in photocentre position and to-
tal stellar flux, plotted as function of the limb-darkening param-
etera and the parameter for the centre-to-limb variation of sur-
face structure contrast (c). The different curves represent, from
top to bottom,c=-1, -0.5, 0, 0.5, 1. The solar symbol indicates
the typical value for solar granulation in white light,a = 0.6 and
c = 0.4.
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Fig. A.2. Similar to Fig. A.1 but for the scaling factor
D[M′30]/R

3D[M00] from Eq. (A.35)
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