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Abstract

We use the stochastic approach to investigate the measure for slow roll

eternal inflation. The probability for the universe of a given Hubble radius

can be calculated in this framework. In a solvable model, it is shown that

the probability for the universe to evolve from a state with a smaller Hubble

radius to that of a larger Hubble radius is dominated by the classical probability

without the stochastic source. While the probability for the universe to evolve

from a larger Hubble radius to a smaller one is suppressed by exp(−∆S), where

the de Sitter entropy S arises naturally in this stochastic approach.
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1 Introduction

The inflation paradigm has proven to be remarkably successful in solving the problems

in the standard hot big bang cosmology [1, 2, 3, 4]. Inflation also predicts that

fluctuations of quantum origin were generated and frozen to seed wrinkles in the

cosmic microwave background (CMB) [5, 6] and today’s large scale structure [7, 8, 9,

10, 11].

In a usual inflation model, if the universe starts at a high energy scale, inflation

should be eternal to the future [12, 13, 14]. There are two classes of eternal inflation

models. One of them is characterized by the slow-rolling nature. During the eternal

stage of inflation, the amplitude of quantum fluctuation of the inflaton field is com-

parable to its classical motion. Such large fluctuations make the universe fall into

self-reproduction process and prevent the energy density from decreasing. So infla-

tion will never end globally. Another class of eternal inflation models is characterized

by forming bubbles of one vacuum within another. Once the decay rate of the false

vacuum is smaller than the Hubble scale, the spatial volume of the false vacuum is

increasing faster than the decay of the false vacuum volume. Then inflation becomes

eternal to the future.

It is widely believed that eternal inflation is indeed happening in the universe,

and we just live in a local reheated domain of the eternal inflating universe. So it is

important to study eternal inflation precisely and try to make predictions from the

eternal inflation scenario.

Unfortunately, it is rather difficult to describe eternal inflation precisely. There

are several open problems in the attempts to describing eternal inflation, for example,

the measure problem and the initial condition problem.

The key problem of eternal inflation is how to construct a measure for the eternal

inflation [15, 16, 17, 18, 19, 20, 21]. One of the difficulties is how to construct such a

measure preserving symmetry of general relativity, and staying finite despite the fact

that several kinds of infinities frequently occur in a naive construction. To overcome

this difficulty, people have proposed two kinds of ansatz, namely, the “global” measure

[15, 18] and the “local” measure [16].

In the global approach, infinities are regularized by imposing cutoffs, neverthless
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some cutoff-independent results can be obtained. The global measure encompasses

the physics separated by event horizons, so it contradicts the holographic principle

in a fundamental way [22]. To counter this, a local measure describing the physics

seen by a comoving observer was proposed. This approach is based on the cosmic

complementarity principle and as a bonus, it does not suffer from infinities. The

main proponent of this approach is Bousso [16]. Bousso and collaborators played

their game with models whose dynamics is governed by tunneling processes, they

have not studied a concrete model with a definite Lagrangian.

A second problem of eternal inflation is the initial condition problem. It is shown

that although inflation can be eternal to the future, it can not be eternal to the past

[23]. There have to be an initial condition for eternal inflation. The initial condition

of the universe may be given either at the quantum creation of the universe [24, 25]

or at the start of the eternal inflation [21]. It is not clear whether the measure of

eternal inflation should depend on the initial conditions. Some authors believe that

eternal inflation should be independent of initial conditions [15], while there are also

calculations with results showing dependence on the initial conditions. [16, 19].

In this paper, we use the stochastic method [26, 27] to investigate the measure

for the slow roll eternal inflation. This method provides a possible solution to the

problems listed above. We construct a local measure for the slow roll eternal inflation.

In the model with a scalar potential λϕ4, it can be shown that the measure for the

low energy scale regime of eternal inflation is independent of the initial condition.

On the other hand, when the energy scale of eternal inflation is higher than the scale

where the initial condition is proposed, the measure is initial condition dependent.

The de Sitter entropy arises naturally in this situation.

As an application, this approach can be used to calculate the probability for

the inflaton to fluctuate from one local minimum to another. The probability from

this approach agrees with the tunneling probability due to the Coleman-de Luccia

instanton. Thus , this approach offers a means to deal with the slow roll eternal

inflation and the tunneling eternal inflation in a single framework.

This paper is organized as follows. In Section 2, we review the stochastic approach

[27] to eternal inflation. In Section 3, we calculate the probability for the universe to

have a given Hubble radius, and discuss the physical implications for this probability.
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We conclude in section 4.

2 Gravity and a stochastic scalar field

First, we review briefly the stochastic approach to eternal inflation [27]. The slow-roll

condition can be imposed self-consistently and one of the Friedmann equations takes

the usual form

3H2 = V , (1)

where we have set 8πG = 1. The result of quantum fluctuation of the inflaton field

can be mimicked by a Gaussian white noise

3Hϕ̇+ Vϕ = −H5/2η(t) , (2)

where η(t) is Gaussian and normalized as

< η(t) >= 0 , < η(t)η(t′) >=
9

4π2
δ(t− t′) . (3)

With such a normalization, the expectation value for a quantity O[η] is

< O[η] >=

∫

[dη]O[η] exp

(

−2

9
π2

∫

∞

0

dt1η
2(t1)

)

. (4)

So one can recover the well-known result

< δqϕ
2 >≃ H2

4π2
, (5)

where δqϕ is the quantum fluctuation during one Hubble time and averaged in one

Hubble volume.

For the potential V = λϕ4, there exists an explicit solution to the equations (1)

and (2). We define the Hubble length R ≡ 1/H =
√

3
λ

1
ϕ2 , then the equations (1) and

(2) can be written as

Ṙ − αR = βη(t) , (6)

where α ≡ 8
√

λ/3 and β ≡ 2 4

√

λ/3/3. Given the initial condition R = r0 when t = 0,

the solution to the above equation is

R(t) = r0e
αt + βeαt

∫ t

0

dt1e
−αt1η(t1) . (7)

4



3 The probability density and its implications

We now define and calculate the probability for eternal inflation to enter a given

region in the history space. When we consider a spacially flat universe, using the

slow-roll approximation, and averaging the inflaton field over one Hubble volume, the

history space is parameterized by one single parameter. For simplicity, we choose

this parameter as the Hubble length R = 1/H . Then the probability dPR0
for eternal

inflation to enter a region with the Hubble length from R0 to R0+dR0 can be written

as

dPR0
= P (R0)dR0 . (8)

The probability density P (R0) counts the number of times the universe crosses the

R(t) = R0 surface during a infinite length of time. So for a given function η(t), it is

proportional to an integration of delta functions. Since η(t) is stochastic, we average

over all possible η(t) with the appropriate weight. Then P (R0) takes the form

P (R0) ∼
∫

[dη] exp

(

−2

9
π2

∫

∞

0

dt1η
2(t1)

)
∫

∞

t=0

dt δ (R(t)− R0) . (9)

Each time the universe across R(t) = R0, the probability density P (R0) picks up a

contribution of delta function.

We pause to comment that in the above definition, R0 can be replaced by any

other physical quantity if we are interested in computing the probability distribution

of this quantity.

It is in general not straightforward to calculate the functional integration (9).

While the calculation becomes relatively easy when we consider the λϕ4 theory. In this

case, we make use of the integration expression for delta function, and approximate

the continuous variable t by a infinite number of small time intervals ∆t. In the last

step we integrate out the Gaussian integrals and take the ∆t → 0 limit. Then the

probability density takes the form

P (R0) ∼
∫

∞

0

dt

√

8π

e2αt − 1
exp






−8π2r20

(

eαt − R0

r0

)2

e2αt − 1






. (10)

When R0 6= r0, the integration (10) is finite, and the function

“

eαt
−

R0

r0

”

2

e2αt
−1

on the

expontential has two saddle points eαt = R0

r0
and eαt = r0

R0

. We shall investigate
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separately the R0 > r0 and R0 < r0 behavior of the integration except the region

where R0 − r0 is much smaller than the Planck length.

When R0 > r0, let e
αt = R0

r0
(1 + x), then the integration becomes

P (R0) ∼
∫

dx
2
√
2π

α (1 + x)

√

(1 + x)
(

R0

r0

)2

− 1

exp






−8π2r20

x2

(1 + x)2 −
(

r0
R0

)2






.

(11)

Since the integration is suppressed by a large exponential factor −8π2r20,and r0 need

to be larger than 1 in the Planck units in order to neglect effects of quantum gravity.

So the integral is sharply peaked at the saddle point. So this integration can be

approximated by

P (R0) ∼
∫

dx
2
√
2π

α

√

(

R0

r0

)2

− 1

exp






−8π2r20

x2

1−
(

r0
R0

)2






. (12)

It can be checked that the next to leading order correction (of the form x2) from

(11) is suppressed by a factor 1/(8π2r20). So (12) is a good approxiamtion to (11).

The integral (12) can be worked out to be

P (R0) ∼
1

αR0
. (13)

The probability density (13) is independent of the initial condition r0. This result

is in agreement with [15]. There are also some results in which the probability dis-

tribution depends on the initial condition [16, 19]. However the methods and models

used there are different from ours.

Note that the R0 > r0 region is allowed by the classical motion without the random

source η(t). So it makes sense to compare the result (13) with the pure classical result.

In the case without the noise, the probability is

Pcl(R0) ∼
∫

∞

t=0

dt δ(R(t)− R0) . (14)

where R(t) = r0e
αt. The function R(t) always increases with t, and one obtain

Pcl(R0) ∼
1

∂tR(t0)
=

1

αR0

. (15)
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This classical result is natural because Pcl(R0)dR0 just measures the proper time for

the universe to stay between R0 and R0+ dR0. Nevertheless one should not take this

for granted for other models.

The probability distribution with the random source (13) is the same as the clas-

sical probability density (15) in a good approximation. So in this classically allowed

region, the quantum fluctuations do not change the result very much. This result

is in agreement with [27], in which the quantities such as the e-folding number with

quantum fluctuations are calculated and it is shown that the quantum corrections are

small.

On the other hand, when R0 < r0, let e
αt = r0

R0
(1+x), then using a similar saddle

point approximation,

P (R0) ∼
∫

dx
2
√
2π

α

√

(

r0
R0

)2

− 1

exp






−8π2R2

0







(

r0
R0

)2

− 1 +
x2

1−
(

R0

r0

)2












, (16)

and (16) can be integrated out to give

P (R0) ∼
1

αr0
e−8π2(r2

0
−R2

0
) . (17)

This result also has interesting physical implications. Note that 8π2R2 is just the

entropy of the de Sitter space with Hubble radius R. So from the probability density

(17), we see that the probability for the universe to fluctuate from a high de Sitter

entropy state to a low entropy state is suppressed by the exponential of the minus

entropy difference. This result is in agreement with the generalized second law of

thermodynamics and the calculation made in [16]. And as in [28], it provides another

operational meaning to the de Sitter entropy.

As a special case, let us consider the probability for the universe to tunnel from

one λϕ4 like minimum to another (see Fig. 1). Initially, the universe stays near one

minimum of the potential. If r0 ≫ R0, the probability for the inflaton to randomly

climb up the potential and get to the other minimum is suppressed by the factor

exp(−8π2r20). This agrees with the calculation using the Coleman de Luccia instanion

[29].
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Figure 1: Scalar field dynamics in the double well potential. Around each minimum,

the potential looks like λ(ϕ− ϕi)
4 (i = 1, 2). The probability for a stochastic scalar

field to climb from one minimal to another agrees with the quantum calculation using

the Coleman de Luccia instanton.

4 Conclusion

In this paper, we used a stochastic source to simulate the quantum fluctuation of

the inflaton. We defined the probability for the universe to be at any given Hubble

radius. It is shown in a concrete model that the probability can be calculated when

the difference between r0 and R0 is larger than the Planck length.

When R0 > r0, the probability is dominated by the classical probability without

the random source, and the quantum correction is suppressed by the factor 1/(8π2r20).

While in the classical forbidden region r0 > R0, the probability is suppressed by the

exponential of the minus entropy difference.

Our definition of the measure and the calculation of the probability offers a possi-

ble solution to the measure problem in inflation, and may lead to some insight to the

physical meaning for the entropy of the de Sitter space. Although explicit calcula-

tions are performed in a single field inflation model with a λϕ4 potential, the results

have clear physical meaning, thus appear quite general, it remains an open problem

whether the stochastic multi-field model with more general potentials share the nice
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features demonstrated in this paper.
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