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Abstract: We present some recent developments in the theory of particle acceleration at shock fronts in
the presence of dynamical reaction of the accelerated particles and self-generation of magnetic field due
to streaming instability. The spectra of accelerated particles, the velocity, magnetic field and temperature
profiles can be calculated in this approach anywhere in the precursor and in the downstream region. The
implications for the origin of cosmic rays and for the phenomenology of supernova remnants will be
discussed.

Introduction

The paradigm of supernova remnants as sources of
the galactic component of cosmic rays heavily re-
lies on the fact that the mechanism of particle ac-
celeration at collisionless shocks should take place
in the nonlinear regime. The nonlinearity mani-
fests itself in at least two respects: 1) the efficiency
of acceleration necessary to explain the origin of
cosmic rays needs to be large enough that the dy-
namical reaction of the accelerated particles is not
negligible; 2) the accelerated particles are respon-
sible for the self-generation of the magnetic distur-
bances which in turn scatter the particles thereby
allowing their acceleration to the maximum ener-
gies observed in cosmic ray data, most notably the
KASCADE data in the knee region [1].

A special emphasis should be given to the fact that
protons may be energized to energies of105 − 106

GeV only if the magnetic field in the shock vicinity
is amplified by a factor few hundreds and reorga-
nized in the form of a flat power spectrum which
may lead to Bohm diffusion. Such amplification
may take place through streaming instability in-
duced by the super-Alfvenic drift of accelerated
particles in the frame of the plasma upstream of
the shock [2, 3, 4]. Magnetic field amplification
may also take place due to firehose instability [5].

A comprehensive theory of particle acceleration in
the nonlinear regime, with both dynamical reaction
of the accelerated particles and magnetic amplifi-
cation taken into account has been recently formu-
lated in [6, 7]. In [8] the calculation of the maxi-
mum momentum for the nonlinear regime was pre-
sented.

Here we illustrate the basic formalism and the phe-
nomenological implications of the theoretical ap-
proach of [7].

The formalism

The two basic equations needed in this section are
the equation of conservation of momentum and the
transport equation for the accelerated particles. In
the upstream plasma, conservation of momentum
reads:

ξc(x) = 1+
1

γgM2
0

−U(x)−
1

γgM2
0

U(x)−γg , (1)

where ξc(x) = PCR(x)/ρ0u
2
0 and U(x) =

u(x)/u0 and we used conservation of massρ0u0 =
ρ(x)u(x) (hereρ0 andu0 refer to the density and
plasma velocity at upstream infinity, whileρ(x)
andu(x) are the density and velocity at the loca-
tion x upstream.M0 is the sonic Mach number
at upstream infinity). The pressure in the form of
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accelerated particles is defined as

PCR(x) =
1

3

∫ pmax

pinj

dp 4πp3v(p)f(x, p), (2)

andf(x, p) is the distribution function of acceler-
ated particles. Herepinj andpmax are the injection
and maximum momentum. The functionf van-
ishes at upstream infinity. The distribution function
satisfies the following transport equation in the ref-
erence frame of the shock:

∂

∂x

[

D(x, p)
∂

∂x
f(x, p)

]

− u
∂f(x, p)

∂x
+

1

3

(

du

dx

)

p
∂f(x, p)

∂p
+Q(x, p) = 0.

[6] and [9] showed that an excellent approximation
to the solutionf(x, p) has the form

f(x, p) = f0(p) exp

[

−
q(p)

3

∫ 0

x

dx′
u(x′)

D(x′, p)

]

,

(3)
wheref0(p) = f(x = 0, p) is the cosmic rays’
distribution function at the shock andq(p) =

−
d ln f0(p)
d ln p is its local slope in momentum space.

The functionf0(p) can be written in a very general
way as found by [10]:

f0(p) =

(

3Rtot

RtotUp(p)− 1

)

ηn0

4πp3inj
×

exp

{

−

∫ p

pinj

dp′

p′
3RtotUp(p

′)

RtotUp(p′)− 1

}

.

Here we introduced the functionUp(p) = up/u0,
with

up = u1 −
1

f0(p)

∫ 0

−∞

dx(du/dx)f(x, p) , (4)

where u1 is the fluid velocity immedi-
ately upstream (atx = 0−). We used
Q(x, p) =

ηngas,1u1

4πp2
inj

δ(p − pinj)δ(x), with

ngas,1 = n0Rtot/Rsub the gas density imme-
diately upstream (x = 0−) and η the fraction
of the particles crossing the shock which are
going to take part in the acceleration process.
In the expressions above we also introduced the
compression factor at the subshockRsub = u1/u2

and the total compression factorRtot = u0/u2.

If the upstream plasma only evolves adiabatically,
the two compression factors are related through
the following expression ([10]):

Rtot = M
2

γg+1

0

[

(γg + 1)R
γg

sub − (γg − 1)R
γg+1
sub

2

]
1

γg+1

,

(5)
whereM0 is the Mach number of the fluid at up-
stream infinity andγg is the ratio of specific heats
for the fluid. The parameterη in Eq. 4 contains the
very important information about the injection of
particles from the thermal pool. The injection is
modelled as proposed in [11]:

η =
4

3π1/2
(Rsub − 1)ξ3e−ξ2 . (6)

Here ξ is a parameter that identifies the injec-
tion momentum as a multiple of the momentum
of the thermal particles in the downstream sec-
tion (pinj = ξpth,2). The latter is calculated self-
consistently from the Rankine-Hugoniot relations
at the subshock. For the numerical calculations
that follow we always useξ = 3.5, that corre-
sponds to a fraction of order10−4 of the particles
crossing the shock to be injected in the accelerator.

The scattering properties of the backgroundplasma
are described by the scalar functionD(p), the dif-
fusion coefficient. OnceF(x, k) is known, the dif-
fusion coefficient is known in turn ([2]):

D(x, p) =
4

π

rL v

3 F
. (7)

From the latter equation, whererL stands for the
Larmor radius of particles of momentump, it is
clear that the diffusion coefficient tends to Bohm’s
expression forF → 1. The expected saturation
level for the overall energy density of the perturbed
magnetic field can be easily evaluated from the fact
that

B2
0

8π

∫

dk

k
σ F(k, x) = vA

dPCR

dx
. (8)

Integration of this equation is straightforward
when non-linear effects on the fluid are neglected
so thatu andvA are both spatially constant. One
obtainsδB2/8π = (vA/u)PCR, or, in terms of
amplification of the ambient magnetic field:

(

δB

B0

)2

= 2MA
PCR

ρ0u2
0

, (9)
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Figure 1: Spectrum and slope at the shock loca-
tion as functions of energy forpmax = 105mc and
magnetic field at upstream infinityB0 = 1µG. The
curves refer to Mach numbers at upstream infin-
ity ranging fromM0 = 4 to M0 = 200: dotted
for M0 = 4, dashed forM0 = 10, dot-dashed for
M0 = 50, solid forM0 = 100 and dot-dot-dashed
for M0 = 200.

with MA = u0/vA the Alfvénic Mach number.

It is worth stressing that forPCR/ρ0u
2
0 ∼ 1 and

MA ≫ 1, the predicted amplification of the mag-
netic field exceeds unity. CLearly this implies that
the quasi-linear theory used here loses validity and
that a more accurate description, though very diffi-
cult to achieve should be sought.

The set of equations of conservation of momentum
and transport equation with a diffusion coefficient
determined as described above can be solved by
using the iterative procedure described in detail in
[6, 7].

Results

The spectra of the accelerated particles for Mach
numbers at upstream infinity ranging fromM0 = 4
toM0 = 200 are shown in Fig. 1 for a background
magnetic field at upstream infinityB0 = 1µG (the
result is however independent of the strength of the
background magnetic field). In the bottom part of
the same figure we plot the slope of the spectrum
as a function of momentum.

For low Mach numbers and at givenpmax the mod-
ification of the shock due to the reaction of the

accelerated particles is small (see for instance the
caseM0 = 4). For the strongly modified case (e.g.
M0 = 200) the asymptotic spectrum of the accel-
erated particles is very flat, tending top−α with
α = 3.1− 3.2 for p → pmax.

We need to comment on the issue of the shape
of the spectrum of cosmic rays accelerated in su-
pernova remnants: the spectra illustrated in Fig.
1 are the spectra in proximity of the shock sur-
face and therefore the ones which are relevant for
the calculation of the spectra of secondary radia-
tion produced by the accelerated particles. In gen-
eral the spectra that are observed by an observer
far upstream are more complex to determine: at
each time during the supernova evolution parti-
cles at the maximum momentum can escape to up-
stream infinity (this is a peculiar aspect of non-
linear theory) carrying away a sizeable fraction
of the total energy (due to the flat spectra). At
each time the instantaneous spectrum that escapes
to upstream infinity is a narrow function centered
aroundpmax(t), wheret is the age of the rem-
nant. If the maximum momentum decreases with
time (in the Sedov phase this is the case) then a
spectrum is built due to the overlap of many delta-
function-like spectra leaving the acceleration re-
gion from upstream. In the simple model con-
sidered in [12] this overlap leads to a power law
spectrump−4, despite the fact that the spectrum at
the shock may be concave as illustrated in Fig. 1.
In addition to these particles that leave the system
from upstream, the distant observer will also mea-
sure the cosmic ray spectrum which is kept in the
supernova shell and is eventually liberated at later
times, possibly suffering adiabatic energy losses.
The spectrum observed at the Earth is likely to be
a complex superposition of the particles escaping
from upstream, those leaving the system at the end
of the supernova evolution, and summed over all
supernova events occurred during a confinement
time of cosmic rays in the Galaxy.

The diffusion coefficient associated with the self-
generated waves is given by Eq. 7. We plot this
diffusion coefficient at the shock location in Fig. 2
for Mach numbersM0 = 10 (dashed lines) and
M0 = 100 (solid lines). For comparison, we also
plot the corresponding Bohm diffusion coefficient
DB(p) ∝ v(p)p in the unperturbed magnetic field
B0, for B0 = 1µG andB0 = 10µG.
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Figure 2: The self-generated diffusion coefficient
at the shock locationx = 0− as a function of the
particle momentum for Mach numbersM0 = 10
(dotted line),M0 = 100 (dashed line) andM0 =
200 (solid line). Also plotted is the Bohm diffusion
coefficient corresponding toB0 = 1µG (solid line
with triangles) andB0 = 10µG (solid line with
diamonds). They-axis is in units ofcm2s−1.

As stressed above, in the regime we considered, the
fluctuations in the magnetic field become strongly
non linear. The dynamical role of the amplified
field remains however negligible as the highest val-
ues ofδB2/8πρ0u

2
0, reached close to the shock

front, are of the order of10−2 − 10−3.

Conclusions

We developed a mathematical formalism that al-
lows us to calculate the spectrum of particles ac-
celerated at a collisionless non-relativistic shock
taking into acount both the nonlinear dynamical
reaction of the accelerated particles and the mag-
netic field amplification by streaming instability.
The approach has also recently been generalized
to allow us to determine self-consistently the max-
imum momentum reached by the particles in this
fully nonlinear acceleration regime [8].
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