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ABSTRACT

Statistical properties of the intensity in adaptive optics images are usually modeled with a

Rician distribution. We study the central point of the image, where this model is inappropriate

for high to very high correction levels. The central point is an important problem because it

gives the Strehl ratio distribution. We show that the central point distribution can be modeled

using a non-central Γ distribution.

Subject headings: instrumentation: adaptive optics, instrumentation: high angular resolution

1. Introduction

In this Letter, we study the statistics of the light intensity at the central point of adaptive optics (AO)

images in the case of a high to very high AO correction. This problem corresponds to the statistical properties

of the “instantaneous” Strehl Ratio (SR) (Fusco & Conan 2004). The regime that we consider is relevant to

current or future AO systems.

Outside the central point, the statistical properties of the light intensity constrain the detection limits of

faint companions to nearby stars. It can be described by a Rician distribution, both in the case of a partial

AO correction (Canales & Cagigal 1999a), and in the case of a high or very high (Aime & Soummer 2004).

This model has been successfully verified in Lick AO data by Fitzgerald & Graham (2006), and the case of

coronagraphic images is detailed in Soummer et al. (2007).

The intensity distribution at the center of AO-corrected images was previously studied by Cagigal & Canales

(1998); Canales & Cagigal (2001) at very low correction levels, for SR in the 10%−20% regime. They showed

a good agreement between the Rician model, numerical simulations (Canales & Cagigal 1999b), and exper-

imental data (Cagigal & Canales 2001). At high to very high AO correction levels, however, the Rician

distribution fails to model successfully the statistics of the intensity at the central point. Gladysz et al.

(2006) provided evidence of this problem in short exposure Lick AO images, and we further verify this issue

using numerical simulations (Sec.3). Gladysz et al. (2006) modeled the observed SR distribution using the
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statistical properties of the atmospheric seeing. In this paper, we describe an alternative approach based

solely on image formation and considering stationary phase properties. The model consists of a non-central

Γ distribution for the opposite of the modulus of the complex amplitude. Recently, Gladysz (2006) and

Christou et al. (2006) independently developed similar approaches to modeling stationary processes, based

on a model of the variance of the phase.

2. Statistical properties of the intensity

We briefly recall the derivation of the statistical properties of AO images. A detailed presentation is

given by Aime & Soummer (2004) and Soummer et al. (2007), based on results known in the context of

holography by Goodman (1975, 2006). In this section we use a one-dimensional formalism for clarity, but

the results are valid in the general case. The complex amplitude in the focal plane is the Fourier transform

of the pupil plane complex amplitude:

Ψ(r) =

∫

P (x)(A + a(x)) e−2ıπx rdx, (1)

where P (x) denotes the pupil function, normalized such as
∫

P (x)dx = 1. A corresponds to the deterministic

perfect part of the wave, and a(x) is the zero-mean complex error term: A+a(x) = eıφ(x), with A = E[eıφ(x)],

where E denotes the expectation value. φ(x) denotes the phase of the wavefront in the pupil plane, assuming

a zero-mean Gaussian, with a constant variance σ2
φ. We use the classical definition of SR as the ratio

between the central point intensities in the actual and ideal case (Hardy 1998). Using the extended Maréchal

approximation (SR ≈ e−σ2

φ), A becomes A = e−σ2

φ/2, which is approximately the square root of SR.

Outside the central point of the image, the distribution of the complex amplitude can be approximated

using known results from signal processing. Assuming that the complex amplitude a(x) can be represented

by discrete values, and that the correlation between two points in the pupil plane decreases with their relative

distance, the probability density function (PDF) of the complex amplitude in the focal plane for the random

part of Eq.1 is an asymptotically circular Gaussian (Brillinger 1981). We recall that for a scalar circular

Gaussian distribution, i.e. z ∼ Nc(0, σ
2), the real and imaginary parts are independent and have the same

variance. We will consider that for r 6= 0, Ψ follows a decentered Gaussian distribution Ψ ∼ Nc(C, Is), where

C is the complex amplitude in the focal plane corresponding to the perfect part of the wave A (see Fig.2 of

Aime & Soummer (2004)). The corresponding intensity follows a Rician distribution:

pI(i) =
1

Is
exp

(

− i+ Ic
Is

)

I0

(

2
√
i
√
Ic

Is

)

, i > 0, (2)

where Ic = |C|2, and I0 denotes the zero-order modified Bessel function of the first kind. This model has

been verified outside the central point of the image in simulations (Soummer et al. 2007) and in real adaptive

optics data (Fitzgerald & Graham 2006).

The central point of the image is a particular case, which gives a natural estimator of the SR. We tested

the Rician distribution at this location with a numerical simulation, using PAOLA (Jolissaint et al. 2006)

to generate independent instantaneous intensity values. We chose the parameters of the AO systems to

generate several sets of data with SR ranging between 50% and 95%. We used a maximum likelihood (ML)

estimation of the parameters Ic and Is, assuming Eq.2. The Likelihood is computed for the unbinned data

and maximized using optimization routines of Mathematica. The starting parameters are obtained from

the moments method. We performed both the χ2 test and the Kolomogorov-Smirnov (KS) test on these
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results, using 10 identical bins for the χ2 test, and a Monte-Carlo estimation of the KS distribution, since

the parameters are estimated from the data (Jenkins 2003). Both tests conclude that the Rician model is

incompatible with the data at the central point, with respective right tail values of 3.8 10−4 and 1.6 10−2.

This is confirmed by reproducing these tests for a few independent sets of simulated data. We illustrate the

histogram of the simulation and the best fit obtained with the Rician model in Fig.1. This result is not
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Fig. 1.— Histogram of the central point intensity ( SR) for a numerical simulation of 1000 independent

PAOLA phase screens with a SR of 85%. The error bars assume statistical Poisson noise. The best fit of

a Rician PDF is obtained for Ic = 0.83, Is = 3 10−5 and is superimposed to the Histrogram. The Rician

model fails to describe these data according to the χ2 and Kolomogorov-Smirnoff tests.

surprising since the skewness of the Rician distribution is (2 + 3λ)(1 + λ)−3/2, which is positive, whereas

the data histogram clearly exhibits a negative skewness. Observations based on real AO data, carried out

at Lick Observatory (Gladysz et al. 2006) and Palomar Observatory (R. Soummer & J.P. Lloyd 2007, in

preparation), also reported negatively skewed SR distributions.

3. Central point: Strehl Ratio distribution

At the center of the image, the Fourier phase term of Eq.1 vanishes and the complex amplitude is simply

the integral of the pupil complex amplitude, Ψ(0) =
∫

P (x) eıφ(x)dx. At low correction levels, the phase φ(x)

is large, and the vectors eıφ(x) take any orientation in the complex plane. The sum of a large number of these

vectors over the aperture produces a random walk, and the corresponding complex amplitude distribution is

asymptotically Gaussian, according to a central limit theorem. At high correction levels, the phase φ(x) is

small and the vectors eıφ(x) are not oriented randomly in the complex plane. Their sum does not produce a

random walk, and the corresponding distribution is not circular Gaussian. This is the case that we study in

this section. When moving outside of the center, however, the Fourier phasors rotate the vectors eıφ(x) in the

complex plane, and the sum of the resulting vectors produces a random walk. This explains qualitatively why

we obtain a circular Gaussian distribution outside the central point, for r > λ/D, even at very high correction

levels. Fig.2 shows the histogram of independent realizations of the complex amplitude, at the central point

where it is clearly not circular Gaussian, and in the transition region (r ≪ λ/D) where the circularization

occurs. This phenomenon can also be understood qualitatively by considering a Taylor expansion of the

phase term eıφ(x) (Perrin et al. 2003). At a very high SR, the expansion is mainly dominated by the first

oder term ıφ(x) and the resulting distribution is an approximately imaginary Gaussian (see Fig.2, left most

panel). Fig.3 illustrates the complex amplitude histogram for a SR of about 80% where the effect of higher

order terms is clearly visible, when compared to the left panel of Fig.2. At a high or very high SR, we can
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Fig. 2.— Histogram of independent realizations of the complex amplitude in the focal plane for a SR of

approximately 95% at three locations indicated in each panel. Left: The complex amplitude at the central

point is not a circular Gaussian distribution. When moving away from the center, the distribution becomes

progressively circular, and is fully circularized for positions r > λ/D (not represented here).
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Fig. 3.— Histogram of independent realizations of the complex amplitude at the central point in the focal

plane, for a SR of 80%. The corresponding distribution of intensity is negatively skewed. This can be seen

by looking closely at the distribution of the modulus, along the real axis for example.
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limit the expansion of eıφ(x) to the second term (Sivaramakrishnan et al. 2002) and we obtain the intensity:

I =

(

1−
∫

P (x)
φ(x)2

2
dx

)2

+

(
∫

P (x)φ(x)dx

)2

(3)

The second term corresponds to the mean of the phase residuals over the pupil. It seems reasonable to neglect

this term compared to the first term, assuming the phase to be zero mean1. Given that 1 >
∫

P (x)φ(x)
2

2 dx,

we can revert to the complex amplitude:

Ψ(0) ≈
(

1−
∫

P (x)
φ(x)2

2
dx

)

eϕ, (4)

by introducing a random phase term ϕ. Note that ϕ is different from the pupil phase φ.

The square of the phase φ(x)2 is proportional to a χ2
1 distributed random variable: φ(x)2 = σ2Q(x)

where Q(x) ∼ χ2
1. The integral U =

∫

P (x)φ(x)2dx can be reasonably approximated by the discrete sum:

U = σ′2
∑k

i=1 Q(xi), where the number of discrete samples can be assumed as large as necessary, and where

σ′2 = δσ2 with δ the uniform integration step. The variable
∑k

i=1 Q(xi) ∼ χ2
k, where k denotes the degree

of freedom of the χ2 distribution (here corresponding to the number of discrete samples). The distribution

of U is a Γ-distribution Γ(k/2, 2σ′2) (Johnson et al. 1994):

pU (u) =
(2σ′2)−k/2uk/2−1e−u/2σ′2

Γ(k/2)
, u > 0. (5)

The opposite of the modulus of the complex amplitude A = U/2− 1 defined as Ψ(0) = −A eϕ thus follows

a three-parameter non-central Gamma distribution Γ(k/2, σ′2,−1). The approximation of Eq.4 sets an

arbitrary constraint on the mean of the distribution: E(|Ψ(0)|) = 1− σ2
φ/2, which corresponds to the regime

of Maréchal’s approximation (Hardy 1998). The constraint on the mean can be released without changing

the statistical model by relaxing the third parameter. Finally, we model A by the Γ(α, β, γ) distribution

defined as:

pA(a) =
(a− γ)α−1 exp (−(a− γ)/β)

βαΓ(α)
, α > 0, β > 0, a > γ. (6)

The mean and variance of this distribution are:

E[A] = αβ + γ, var[A] = αβ2. (7)

The skewness of the distribution is 2/
√
α which is indeed negative for

√
I = −A. Estimations of the three

parameters can be obtained by a moments method (Johnson et al. 1994):

α̂ = 4
µ3
2

µ2
3

, β̂ =
µ3

2µ2
, γ̂ = µ1 −

2µ2
2

µ3
, (8)

where µk is the classical empirical estimator of the kth centered moment. Johnson et al. (1994) gives an

algorithm for the computation of the ML estimation of α, β, and γ together with their asymptotic variance.

The SR can be expressed directly using the mean and variance of the distribution (Eq.7):

SR = E[A2] = αβ2 + (αβ + γ)2. (9)

1Note that whereas this term can be neglected in the intensity, it cannot be neglected in the second order approximation of

the complex amplitude, because it corresponds to the imaginary part, which cannot be neglected compared to the real part.
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We obtain a new estimator of the SR by substituting the parameters in Eq.9 with their estimated values, using

the moments method or the ML. Using the moments method, the estimation of the SR is: SR = µ2
1 + 2µ2

2.

Fig.4 shows the results of numerical simulations for SR ≈ 90%, including 2000 independent realizations of

phase and amplitude screens, corresponding to the atmospheric corrected wavefronts and to the atmospheric

scintillation. We perform a ML estimation of the three parameters α, β, and γ, using the moments method

to set the initial values. The estimated SR (89, 58%) from Eq.9 matches the simulation parameters very well

(SR = 89.50%).
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Fig. 4.— Numerical simulation for SR≈ 90%. The simulation include both amplitude and phase screens.

The figure shows the histogram of
√
I and the proposed model. Both methods (moments, and maximum

likelihood) give almost identical results.

We can derive an analytical expression for the PDF of the intensity I = A2, using pA(a) from Eq.6:

pI(i) =
1

2
√
i

(

pA(
√
i) + pA(−

√
i)
)

, i > 0 (10)

Fig.5 shows two typical PDF for the intensity, where the parameters have been estimated from simulated

data, using the Gamma distribution for the modulus.
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Fig. 5.— Examples of two analytical PDF models for the intensity for estimated SR of 89, 58% and 94.50%.

The skewness of the distribution decreases with SR and is almost zero at very high SR.
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4. Conclusion

The Rician distribution, which describes successfully the statistics of AO images outside of the central

point, is not appropriate for the central point of the image at high correction levels. This specific location is

particularly important as it corresponds to the SR. At high SR levels, the complex amplitude at the central

point is not described by a circular Gaussian distribution, which can be explained by the role of Fourier

phasors that vanish at the central point and circularize the distribution outside the center. Numerical

simulations support this conclusion.

We propose an alternative approach, based on a model of the modulus of the complex amplitude, well

described by a non-central Gamma distribution. Our method enables the use of standard algorithms for the

estimation of the parameters of this well known distribution. When the parameters have been estimated

from the PDF of the modulus, it is possible to revert to the PDF for the intensity by the appropriate

transformation. Application to real data sets is under study. It would be interesting to compare the approach

based on the seeing statistics (Gladysz et al. 2006) or on the model of the phase variance (Christou et al.

2006), with our results which do not require fluctuations of the seeing.
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