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ABSTRACT:  An important feature of Kaluza-Klein theories is their ability to relate 

fundamental physical constants to the radii of higher dimensions.  In previous Kaluza-Klein 

theory, which unifies the electromagnetic field with gravity as dimensionless components of a 

Kaluza-Klein metric, i) all fields have the same physical dimensions, ii) the Lagrangian has no 

explicit dependence on any physical constants  except mass, and hence iii) all physical constants 

in the field equations except for mass originate from geometry.  While it seems natural in 

Kaluza-Klein theory to add fermion fields by defining higher dimensional bispinor fields on the 

Kaluza-Klein manifold, these Kaluza-Klein theories do not satisfy conditions (i), (ii), and (iii).  

In this paper, we show how conditions (i), (ii), and (iii) can be satisfied by including bispinor 

fields in a tetrad formulation of the Kaluza-Klein model, as well as in an equivalent teleparallel 

model.  This demonstrates an unexpected feature of Dirac’s bispinor equation, since conditions 

(i), (ii), (iii) imply a special relation among the terms in the Kaluza-Klein or teleparallel 

Lagrangian that would not be satisfied in general.     

 

 

1.  INTRODUCTION  

 

An important feature of Kaluza-Klein theories is their ability to relate fundamental physical 

parameters such as Newton’s gravitational constant and the charges associated with gauge fields 

to the radii of higher dimensions [1] − [6].  In previous Kaluza-Klein theory, which unifies 

gravity with electromagnetism, the formula, δπκ16q 0
ˆ/= , allows the electric charge q  to be 

expressed as a function of Newton’s constant 0κ  and the radius δ̂  of an extra dimension [2], [3], 
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[6].  (Note that with the speed of light c  and Planck’s constant h  set equal to one, 0κ  and δ̂  

have units of length.)  This formula requires Newton’s constant to define the electric charge in 

terms of the higher dimensional radius.  Nevertheless, it can be easily shown that by unifying the 

electromagnetic field with gravity as dimensionless components of a Kaluza-Klein metric, both 

Newton’s constant and the electric charge can be replaced in the Kaluza-Klein equations by the 

higher dimensional radius δ̂  (see Section 2).  

 

A reasonable goal for a Kaluza-Klein model is that all fields have the same physical 

dimensions, as well as that all physical constants should originate from geometry in a unified 

field theory.  With this in mind, we define a “geometric model” to be one in which all fields (like 

the gravitational field) are dimensionless, and with no physical constants (except mass) 

appearing explicitly in the Lagrangian.  (It is assumed in this definition that no special choices of 

units are made beyond setting the speed of light c  and Planck’s constant h  equal to one.)  It is 

natural in Kaluza-Klein theory to add fermion fields by simply defining higher dimensional 

bispinor fields on the Kaluza-Klein manifold [2], [7], [8].  These Kaluza-Klein theories, 

however, do not satisfy the two conditions for a “geometric model” just stated.  In this paper, we 

show that these conditions can be satisfied by including bispinor fields in a tetrad formulation of 

the Kaluza-Klein model [9] − [12].  This unexpected feature of Dirac’s bispinor equation is 

nontrivial, since we show in Sections 2 and 3 that the two conditions taken together imply a 

special relation among the terms in the Kaluza-Klein Lagrangian that would not be satisfied in 

general.  

 

For example, simple rescaling of the fields will not eliminate Newton’s constant from the 

usual Einstein-Maxwell-Dirac Lagrangian when all interaction terms are included.  That is, 

assuming a unit electric charge, the interaction term α
α jV is linear in the electromagnetic 

gauge potential αV  and the fermion current αj , and hence quadratic in the bispinor field Ψ .  

Also, there are non-interacting terms quadratic in αV and quadratic in Ψ .  Thus, Newton’s 

constant cannot be eliminated from the usual Einstein-Maxwell-Dirac Lagrangian by simply 

rescaling αV and Ψ .  As another example, consider a Kaluza-Klein tetrad model in which the 
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Kaluza-Klein metric depends on a tetrad and a scalar field [9].  For this case, as well as its 

teleparallel equivalent, the elimination of Newton’s constant along with all coupling constants is 

possible only when a special relation holds between various terms in the Lagrangian (see 

Sections 2 and 3).   

 

The Kaluza-Klein tetrad model presented here requires mapping bispinor fields into their 

tensor equivalents.  We shall briefly review this map to clarify the technical development in the 

following sections.  Using geometric algebra, Hestenes showed in 1967 that a bispinor field on a 

Minkowski space-time is equivalent to an orthonormal tetrad of vector fields together with a 

complex scalar field, and that fermion plane waves can be represented as rotational modes of the 

tetrad [13].  As stated by Takahashi, who in 1983 derived the tensor form of the Dirac bispinor 

Lagrangian in terms of Hestenes’ tetrad and scalar field, and who is well known for his work in 

quantum field theory [14] − [16], “…. a tetrad in a Minkowski space implies the existence of a 

spinor, and the [spinor] orthogonality and completeness conditions are automatically satisfied, 

when the tetrad is expressed in terms of the spinor.” [14]  These orthogonality and completeness 

conditions give rise to the oscillator modes that lead directly to fermion creation and annihilation 

operators [17].  Indeed, the oscillator modes of a bispinor field are precisely the oscillator modes 

of a tetrad field.  From this point of view, as recognized by both Hestenes and Takahashi, there 

can be no difference between the bispinor and tensor theories for establishing the quantum field 

theory of fermions. 

 

However, there are two assumptions which underlie Takahashi’s claim that Hestenes’ 

tensor fields are equivalent to bispinors and that they describe fermions.  The first assumption is 

that global tetrad fields exist on the space-time.  This assumption is satisfied if the space-time is 

four-dimensional, admits spinor structure, and is non-compact [18] − [23].  On such space-times, 

spinor structures and homotopy classes of global tetrad fields are synonymous [20].  The second 

assumption, required for a consistent interpretation within quantum mechanics, is that we restrict 

to solutions of the tensor Dirac equation having “unique continuation” [17], [24], [25].  That is, 

for any observer, the history of a tetrad field in the past must uniquely determine its evolution 

into the future [24] − [29].  Non-unique continuation of solutions occurs in other areas of 
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physics, such as in fluid dynamics, but is not considered to be appropriate for quantum 

mechanics.  Note that there can be a bispinor field having unique continuation, whose tetrad field 

cannot be uniquely predicted into the future [17], [26], [27].  However, in a Minkowski space-

time, continuation of the tetrad field is unique if we restrict to physically realizable bispinor 

solutions of the Dirac equation whose energy spectrum is bounded from below [17], [24], [25], 

[28], [29].  For example, the thought experiment [26] proposed by Y. Aharonov and L. Susskind 

to observe the sign change of bispinors under 2π rotations is not physically realizable, because 

the bispinor field would have to have an unbounded energy spectrum stretching from negative 

infinity to positive infinity.  This could only be achieved by superposition of particle and anti-

particle solutions, which is forbidden by a superselection rule in quantum mechanics [17]. 

 

In this paper, we treat a bispinor field Ψ  as a classical field, rather than as a quantum 

mechanical wave function as in the discussion above.  It has been shown that every bundle of 

spin frames on a non-compact four-dimensional space-time with spinor structure is trivial [20], 

[23].  Hence, on any open subset U  of the space-time where a reference tetrad is defined, 

bispinor fields Ψ  can be simply expressed as maps 4CU:Ψ → , where 4C  is a four-

dimensional complex vector space [20].  Furthermore, in a non-compact four-dimensional space-

time with spinor structure, the Einstein-Dirac equations depend only on a tetrad and a scalar field 

[30], [31].  This can be demonstrated by an appropriate choice of reference tetrad [12].  The 

appropriate choice is provided by Hestenes’ orthonormal tetrad of vector fields, denoted as α
ae , 

where α = 0, 1, 2, 3 is a space-time index and a = 0, 1, 2, 3 is a tetrad index [13].  Relative to this 

special reference tetrad, a bispinor field Ψ  is “at rest” at each space-time point and has 

components given as follows [12]: 

 

                                   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

]s[Imi
0

]s[Re
0

Ψ                                 (1.1)  
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where s  is a complex scalar field [12], [13].  Note that Hestenes’ tetrad α
ae  and the complex 

scalar field s  are smoothly defined locally in open regions about each space-time point where 

s  is nonvanishing.  In each open region, the Dirac bispinor Lagrangian depends only on the 

reference tetrad α
ae  and on the bispinor field Ψ . [32] – [38]  It was shown previously [12], using 

formula (1.1), that the Einstein-Dirac Lagrangian can be expressed entirely in terms of the tensor 

fields, α
ae  and s , once Hestenes’ tetrad has been chosen as the reference. 

 

Whenever Ψ  vanishes, both s  and its first partial derivatives vanish.  Setting s  and its 

first partial derivatives to zero in the tensor form of Dirac’s bispinor equation shows that α
ae  can 

be chosen arbitrarily at all space-time points where Ψ  vanishes.  Thus, all aspects of Dirac’s 

bispinor equation are faithfully reflected in the tensor equation [12].  Since the tetrad α
ae  is 

unconstrained by the Dirac equation when Ψ  vanishes, a gravitational field exists even if the 

fermion field vanishes.  Thus, the gravitational field αβg  and the bispinor field Ψ   (which 

together have 10 + 8 = 18 real components), are represented accurately by Hestenes’ tensor 

fields α
ae  and s   (which also have 16 + 2 = 18 real components) [9] − [12].   

    

The Kaluza-Klein tetrad model is based on a constrained Yang-Mills formulation of the 

Dirac theory [9] − [12].  In this formulation Hestenes’ tensor fields )s,e( α
a  are mapped 

bijectively onto a set of )1(U)R,2(SL ×  gauge potentials K
αF  and a complex scalar field ρ .  

Thus we have the composite map ),F( )s,(e  K
a ρ→→Ψ α
α .  The fact that α

ae  is an orthonormal 

tetrad of vector fields imposes an orthogonal constraint on the gauge potentials K
αF  given by 

[12]: 

 

                      αβ
2

βK
K
α gρFF =                              (1.2) 
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where αβg  denotes the space-time metric.  The gauge index K = 0, 1, 2, 3 is lowered and raised 

using a gauge metric JKg  and its inverse JKg  (see Section 2).  Repeated indices are summed.  It 

was shown previously that via the map )ρ,F(   Ψ K
α→  the Dirac bispinor Lagrangian equals a 

constrained Yang-Mills Lagrangian in the limit of an infinitely large Yang-Mills coupling 

constant [9] − [12].    In both Lagrangians we may include an electromagnetic gauge field αV  

interacting with the fermion field )ρ,F( K
α .  It was shown previously [10] that )V,F( α

K
α  are 

gauge potentials for a Lie group that is a semi-direct product of fermion and electromagnetic 

gauge groups with self-coupling constants g  and q .  The Yang-Mills Lagrangian for the semi-

direct product gauge potentials )V,F( α
K
α  and the complex scalar field ρ  is given by [10], [12]: 

 

                      )μρ(D)μρ(D
g
1FF

g4
1VV

4
1L α

α
0

αβ
K

K
αβ

αβ
αβYM ++++−=              (1.3) 

 

where )V,F( K
αβαβ  are the components of the Yang-Mills field tensor associated with )V,F( α

K
α , 

and αD  is the Yang-Mills covariant derivative acting on the complex scalar field ρ  and mass 

parameter μ .  Both ρ and μ are coupled to the )1(U  fermion gauge potential 3
αF  with coupling 

constant g2
3g0 = , and the fermion mass is given by μg2

1m 00 = .  In the limit that g  becomes 

infinitely large, the Yang-Mills Lagrangian (1.3) equals precisely Maxwell’s Lagrangian for the 

)1(U  electromagnetic gauge potential αV  plus Dirac’s Lagrangian for a bispinor field Ψ  

interacting with αV .  Note that both the orthogonal constraint (1.2) and the limit are explicated 

in a Kaluza-Klein model [9], [10]. 

 

 As discussed above, the elimination of Yang-Mills coupling constants along with 

Newton’s constant in Kaluza-Klein theory, which includes fermion fields, is a significant, new 

result.  Previously coupling constants were eliminated only with fermion fields excluded from 
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the Kaluza-Klein model.  Based on the Yang-Mills Lagrangian (1.3) this elimination is nontrivial 

because it requires use of the following four conditions: 

 

a) The semi-direct product structure of the fermion and boson gauge potentials   

b) The multiple coupling constants g , 0g , and q  for the semi-direct product gauge 

group 

c) The orthogonal constraint, which forces the fermion gauge potentials K
αF  to be 

related to the  scalar field ρ  in formula (1.2)  

d) The non-standard form of the Yang-Mills Lagrangian in formula (1.3) including the 

specific coefficients multiplying each term  

 

For example, simply replacing 0g  with unity in the Lagrangian (1.3), without introducing a new 

constant in the orthogonal constraint (1.2), would make it impossible to eliminate explicit 

dependence of the Kaluza-Klein Lagrangian on Newton’s constant and all Yang-Mills coupling 

constants. We show in Sections 2 and 3 that eliminating explicit dependence of the Lagrangian 

on these constants in a Kaluza-Klein tetrad model is only possible when the terms are multiplied 

by specific coefficients as in the Lagrangian (1.3).   

 

2. THE ORIGIN OF PHYSICAL CONSTANTS IN THE KALUZA-KLEIN TETRAD 

MODEL    

 
Let G×X=M be the Kaluza-Klein manifold, with X  a four-dimensional space-time, 

and G  a Lie group.  On the space-time X, we assume the existence of a global, nonsingular 

tetrad of smooth one-forms Kβ  with K = 0, 1, 2, 3.  (This assumption simplifies the derivations 

in this section, but is stronger than necessary, since it is possible to allow tetrads to be singular at 

exceptional points [12].)  The gravitational field on X, which we denote as β , is defined to be 

the unique metric tensor with the Minkowski signature, for which the tetrad Kβ  is orthonormal:   

                 KJ
JK ββgβ ⊗=                               (2.1) 
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where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
==

1000
0100
0010
0001

gg JK
JK                                      (2.2) 

 

Repeated indices J, K, L, M are summed from 0 to 3.  The components of Kβ  with respect to 

local coordinate one-forms αdx  are denoted by K
αβ .  That is, αK

α
K dxββ = .  Note that Kβ  and 

αdx  have units of length, whereas the components K
αβ  are dimensionless.  Also note that in 

formula (2.1) the metric components JKg  are dimensionless.   

      

We consider as a Lie group the semi-direct product of the )1(U  electromagnetic gauge 

group with the fermion )1(U)R,2(SL ×  gauge group [10].  However, the action of this boson 

)1(U  gauge group on the fermion )1(U)R,2(SL ×  gauge group in the semi-direct product is 

nontrivial, and to simplify, notation will be handled as follows.  First, we enlarge the boson )1(U  

gauge group to an )1(U)R,2(SL ×  group by embedding it as a )1(U  subgroup of )R,2(SL .  

Then, we consider the semi-direct product of the boson and fermion )1(U)R,2(SL ×  gauge 

groups, with the boson gauge group acting on the fermion gauge group by the adjoint 

representation [10].  Later, to recover the exact Einstein-Maxwell-Dirac Lagrangian, we will 

restrict the boson gauge group to just the )1(U  electromagnetic gauge group acting on the 

fermion gauge group. 

 

On this eight-dimensional Lie group, denoted as G , we fix two nonsingular tetrads that 

form a basis of right invariant one-forms Kα  and Kα̂  with K = 0, 1, 2, 3.  The two tetrads of 

right invariant one-forms Kα  and Kα̂  define a right invariant metric on the Lie group G  given 

by: 

)α̂α̂αα(gα KJKJ
JK ⊗−⊗=                                          (2.3) 
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where JKg  is the Minkowski metric in the definition (2.2).  The basis of right invariant one-

forms )α̂,α( KK  uniquely determines a dual basis of right invariant vector fields )â,a( KK  on 

G .  From formula (2.3) the right invariant vector fields )â,a( KK  form an orthonormal basis for 

the Lie algebra of G .  We can choose the basis of right invariant one-forms Kα  and Kα̂  so that 

the vector fields Ka  and Kâ  satisfy the following semi-direct product commutation relations: 

 

            

[ ]

L
L
JK

1
KJ

L
L
JK

1
KJ

L
L
JK

1
KJ

âfδ̂]â,â[

afδ̂]a,â[

afδa,a

−

−

−

=

=

=

                             (2.4) 

 

where δ  and δ̂  are length parameters and L
JKf  are the Lie algebra structure constants for the Lie 

group )1(U)R,2(SL × .  Note that formula (2.4) leads to a different choice of Lie algebra basis 

for the boson gauge group than previous work [10].  Also, note that while δ  and δ̂  are the radii 

of )1(U  subgroups of the )R,2(SL  factors of G , the commutation relations (2.4) do not depend 

on the radii 0δ  and 0δ̂  of the )1(U  factors of G . Recall that G  has two )1(U  factors, generated 

by the vector fields 3a  and 3â , since G  is the semi-direct product of )1(U)R,2(SL ×  with 

itself.    

 

As on any physical manifold, the one-forms Kα  and Kα̂  carry units of length, so that 

their dual vector fields Ka  and Kâ  carry units of mass (i.e., inverse length).  Note that the 

structure constants L
JKf  are dimensionless, so that the length parameters δ  and δ̂  are required in 

formula (2.4) to balance the dimensions.  

 

Thus on the Kaluza-Klein manifold GXM ×= , we can define a dynamic tetrad of one-

forms Kβ  and two fixed (constant) tetrads of one-forms Kα  and Kα̂ , induced from the 
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projections of GXM ×=  onto its factors X  and G .  ( Kβ , Kα , and Kα̂  on GXM ×=  are the 

pullbacks of Kβ  on X , and Kα  and Kα̂  on G , by the projection maps XM →  and 

GM → .)    The Kaluza-Klein metric on M  is defined to be: 

 

         )ν̂ν̂ννββ(gγ KJKJKJ
JK ⊗−⊗+⊗=                                 (2.5) 

 

where the two tetrads of one-forms Kν  and Kν̂  are defined on M  by: 

 

             
JK

J
KK

KKK

βωα̂ν̂

βσαν

−=

−=

                                       (2.6) 

 

where σ  is a complex dimensionless scalar field and K
Jω  is a matrix of real dimensionless scalar 

fields on M .  The Kaluza-Klein metric γ  depends only on the fields Kβ , σ , and K
Jω  for its 

dynamics, since )α̂,α( KK  is the fixed basis of one-forms chosen for the dual of the Lie algebra 

of G .  Note from formulas (2.5) and (2.6) that the Kaluza-Klein metric γ  does not depend on 

any physical constants, such as Newton’s constant or electric charge.  For vector fields v  and w  

on M , we will denote the inner product with respect to the metric γ  by >< w,v .       

 

Associated with the metric γ  is an orthonormal basis of vector fields )â,a,v( KKK  that 

are dual to the one-forms )ν̂,ν,β( KKK  on GXM ×= .  With respect to the basis 

)â,a,v( KKK , the Kaluza-Klein metric γ  in formula (2.5) becomes: 

 

        
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

JK

JK

JK

g00
0g0
00g

γ                              (2.7) 
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Note that the vector fields Kv  are horizontal vector fields that are orthogonal to the vertical 

vector fields )â,a( KK  on the Kaluza-Klein manifold GXM ×= . 

 

 Our goal in this section is to derive the usual Einstein-Maxwell-Dirac Lagrangian from 

the following Lagrangian for the dimensionless field components )ω,σ,β( K
J

K
α : 

 

                       )φσ(v)φσ(vR
2
1L K

Kv +++=                             (2.8) 

 

where vR  is the sum of sectional curvatures over the four-dimensional horizontal subspaces 

spanned by the orthonormal tetrad Kv  in each tangent space of M : 

 

                   ><= MLKJ
KMJL

v v,v)v,v(RggR                                  (2.9) 

 

where ),(R  is the curvature two-form [40] associated with the Kaluza-Klein metric γ , and the 

dimensionless mass parameter φ  in the Kaluza-Klein Lagrangian L  acts as a complex scalar Higgs 

field on M  that generates the fermion mass 0m . 

 

The Kaluza-Klein manifold GXM ×=  has a natural right action of G  defined by 

)gh,x()g,x(h =  for each M)g,x( ∈  and Gh∈ , which allows for dimensional reduction of the 

Kaluza-Klein equations [1] − [10].  For Kaluza-Klein solutions of interest, the Kaluza-Klein 

metric γ  is right invariant [9], [10].  For γ  to be right invariant, it is necessary and sufficient 

that Kβ , σ , and K
Jω  which occur in the components of γ  depend only on the space-time 

points Xx∈ .  Since σζ =  depends only on Xx∈ , we consider Kaluza-Klein solutions for 

which the complex scalar field CM:σ → , where C  is a one-dimensional complex vector space, 

has the following equivariant form [10]:   

 

                  )0δ̂/ŷ0δ/y(ie)x(ζ)ŷ,y,x(σ +
=                                      (2.10) 
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where y  and ŷ  are global coordinates of the two )1(U  factors of the gauge group G  generated 

by y/3a ∂−∂=  and ŷ/3â ∂−∂= .  The complex scalar field CM:σ →  in formula (2.10) 

commutes with the action of G  on M  and C , as required for the equivariant scalar fields 

defined on the principal G-bundle GXM ×=  in Yang-Mills theory [39].  Similarly, we 

consider a dimensionless mass parameter φ  having the following equivariant form [10]: 

 

       
)0δ̂/ŷ0δ/y(i

0 eφ)ŷ,y(φ +
=                                          (2.11) 

 

where 0φ  is a dimensionless constant.  To derive this as a solution from a Kaluza-Klein Lagrangian, 

we subtract a quartic Higgs potential containing φ  from the Lagrangian L of the form [12]:  

 

                                                      

22

0
0 1

φ
φQ)φ(Q

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=                                                (2.12) 

 

where 0Q  can be any sufficiently large positive constant having units of curvature.   

 

The complex scalar fields CM:σ →  and CM:φ →  in formulas (2.10) and (2.11) 

commute with the action of G  on M  and C , as required for all scalar fields defined on the principal 

G -bundle GXM ×=  in Yang-Mills theory [39].  It can be shown that right invariant metrics and 

equivariant scalar fields on GXM ×=  are solutions of the Kaluza-Klein equations, which allow 

dimensional reduction.  Restricted to these solutions, Kaluza-Klein theory reduces to Yang-Mills 

theory [9], [10].  

 

Let γd  denote the volume form on GXM ×=  defined by the Kaluza-Klein metric γ .  

(We do not confuse the symbol “ d ” with exterior differentiation since the metric γ  is not a 

differential form.)  Similarly let αd  and d β  denote the volume forms defined by the metrics 
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α  and β  on the manifolds G  and X , respectively.  Since the one-forms )ν̂,ν,β( KKK  are 

orthonormal, we see from formulas (2.3), (2.5), and (2.6) that 

 

                                                             αdβdγd ∧=                                                    (2.13) 

 

Therefore, the action for the dimensionless field components )ω,σ,β( K
J

K
α  associated with the 

Lagrangian (2.8) is given by 

 

             αdβd)ω,σ,β(L
πκ8
1S K

J
K
α

0
∧= ∫                           (2.14) 

 

where 0κ  is Newton’s constant.  

 

THEOREM:  The Kaluza-Klein Lagrangian L  in the action (2.14) has no explicit dependence 

on any physical constants other than for generating mass.  Furthermore, the reduction of the 

Kaluza-Klein Lagrangian L  to precisely the usual Einstein-Maxwell-Dirac Lagrangian is 

accomplished in five steps as follows:  

 

(1) Define the ratio of the fermion radii  δδ0 /  to equal 32 / .  

(2) Scale the dimensionless fields K
Jω , σ , and φ  by the factors 2/1

0κ
− , 3/1

0 )δκ( − , and 

1δ− , respectively, whose units are mass.  (Note the very different mass scalings for the 

three fields.)   

(3) Dimensionally reduce the Lagrangian L)πκ8( 1
0

−  from the Kaluza-Klein manifold M  to 

the space-time X .   

(4) Take the limit as δ  goes to zero.   

(5) Restrict the boson )1(U)R,2(SL ×  gauge group to the electromagnetic )1(U  subgroup.      
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PROOF:  The horizontal vector fields Kv  in the Kaluza-Klein Lagrangian (2.8) have no 

explicit dependence on any physical constants.  Hence, the Lagrangian (2.8) has no explicit 

dependence on any physical constants other than for generating mass.  Note that the appearance 

of Newton’s constant 0κ  dividing the total action in formula (2.14) plays no role classically, 

since it can be replaced by any constant of dimension length squared.      

 

To prove the rest of the theorem, we first derive a local expression for the Lagrangian 

(2.8).  Let XU ⊂  be an open chart of the space-time X  on which coordinates denoted as αx  

with α = 0, 1, 2, 3 are defined.  The gravitational field β  can then be expressed locally on 

MGU ⊂×  as follows: 

 

                     βα
αβ

KJ
JK dxdxgββgβ ⊗=⊗=                        (2.15) 

 

where αdx  denote the one-forms on GU×  induced by the projection map UGU →×  from the 

coordinate one-forms αdx  defined on U .  Repeated space-time coordinate indices α, β, γ, δ are 

summed from 0 to 3.  Since αK
α

K dxββ =  and α
α
KK bb ∂= , where )â,a,b( KKK  are the 

vector fields dual to the one forms )α̂,α,β( KKK  and )â,a,( KKα∂  are the vector fields dual 

to the one forms )α̂,α,dx( KKα  on GU× , we obtain from formula (2.15): 

 

     
β
K

α
J

JKαβ

K
β

J
αJKαβ

bbgg

ββgg

=

=

                                      (2.16) 

 

where αβg  denotes the inverse of the metric tensor αβg .  Note that like JKg  and JKg , the 

components αβg  and αβg  of the gravitational field are dimensionless. 
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Define constants κ , λ , λ̂ , g , 0g , q , and 0q  in terms of Newton’s constant 0κ  and the 

higher dimensional radii δ , 0δ , δ̂ , and 0δ̂  as follows: 

                                    

0

2/1
0

0

3/1
0

2/13/1

2/13/1

0

δ̂
κq2,

δ
)κδ(g

δ̂
κq2,

δ
)κδ(g

κλ̂,)κδ(λ

κ
3
π16κ

==

==

==

=

                            (2.17) 

Then define the boson and fermion fields )ρ,F,V( K
α

K
α  and mass parameter μ  on GU×  as 

follows: 

                                                         

J
α

K
J

1K
α

K
α

1K
α

1

1

βωλ̂V

βσλF

σλρ

φλμ

−

−

−

−

=

=

=

=

                                                 (2.18) 

Note that by formulas (2.16) and (2.18) the fermion gauge potentials K
αF  satisfy the orthogonal 

constraint (1.2).  Let δ
3
2δ0 = .  Then, by formulas (2.17) and (2.18), the fermion mass in the 

Yang-Mills Lagrangian (1.3) is given by φδ
4
3μg

2
1m 1

00
−== .  Thus, apart from a numerical 

factor close to one, the dimensionless scalar field φ  is scaled by the mass factor 1δ−  to obtain 

the fermion mass 0m .  Similarly from formulas (2.17) and (2.18), apart from numerical factors 

close to one, the dimensionless fields σ  and K
Jω  are scaled by the mass factors 3/1

0 )δκ( −  and 
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2/1
0κ
−  to obtain )ρ,F( K

α  and K
αV , respectively.  Note that this scaling of the dimensionless 

scalar fields σ  and φ  is performed prior to taking the limit in which δ  goes to zero in Step (4), 

since these scalings depend on δ .   

 

Define a local coordinate tetrad  K
K
αα vβv =   on MGU ⊂×  that spans the same four-

dimensional horizontal distribution over the Kaluza-Klein manifold GU×  as Kv .  Using 

formula (2.18) we have:  

 

                     K
K
αK

K
ααα âVλ̂aFλv ++∂=                                  (2.19)       

 

Then, substituting α
α
KK vbv =  into vR  in formula (2.9) and using formula (2.16), the sum of 

sectional curvatures over the horizontal distribution spanned by Kv  becomes:    

 

             δγβα
βδαγ

v v,v)v,v(RggR =                (2.20) 

 

and using formulas (2.17) and (2.18), the Lagrangian (2.8) equals: 

 

                  )()( μρvμρv
g
πκ8

R
2
1L α

α
0

0
v +++=                (2.21) 

 

The sum of horizontal sectional curvatures vR  in formula (2.20) is evaluated using the vector 

fields )â,a,v( KKα  as a basis on GU× .  Note that with respect to this basis, the Kaluza-Klein 

metric (2.5) has the following components: 

 

     
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

JK

JK

αβ

g00
0g0
00g

γ                                      (2.22) 
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The local expressions of αv , vR , and γ  given in formulas (2.19), (2.20), and (2.22) are equal to 

the usual expressions in Kaluza-Klein theory [1], [4].  That is, γ  is precisely the Kaluza-Klein 

metric for the gravitational field αβg  and the semi-direct product gauge potentials )V,F( KK
αα .   

   

We dimensionally reduce the Lagrangian L)πκ8( 1
0

−  with L  given in formula (2.21) by 

substituting K
αF  and KVα  depending only on space-time points Xx∈ , and also substituting the 

scalar fields σλρ 1−=  and φλμ 1−=  where the scalar fields σ  and φ have the equivariant 

forms given in formulas (2.10) and (2.11), respectively.  These substitutions commute with the 

Euler-Lagrange equations.  Using these substitutions we first evaluate αv  in formula (2.19) on 

the scalar fields σ  and φ .  We next obtain the commutators for the basis )â,a,v( KKα  using 

formula (2.4), and then express vR  in formula (2.20) using these commutators and γ  as in 

formula (2.22).  Using formula (2.17) we define the constants λ , λ̂ , g , 0g , q , and 0q  in terms 

of Newton’s constant 0κ  and the higher dimensional radii δ , δ̂ , 0δ , and 0δ̂ .  Then with these 

substitutions, evaluation of L  as expressed in formula (2.21) shows that the dimensionally 

reduced Lagrangian L)πκ8( 1
0

−  is exactly equal to the Einstein-Hilbert Lagrangian for the 

gravitational field αβg  plus the Yang-Mills Lagrangian YML  given in formula (1.3) for the 

boson and fermion fields K
αV , K

αF , and ρ .  Furthermore, formula (2.17) gives: 

 

                   δ̂
g

q2δ 2/3 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=                                       (2.23) 

 

Thus in the limit required to obtain Dirac’s equation, that is, as the fermion coupling constant g  

becomes infinitely large, the fermion radius δ  must become vanishingly small compared to the 

boson radius δ̂ .  The same is true for the fermion radius δ)3/2(δ0 = .  Finally, to obtain the 

Einstein-Maxwell-Dirac Lagrangian we restrict the boson gauge potentials K
αV  to the )1(U  
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electromagnetic gauge group by setting 0VVV 3
α

2
α

1
α === , in which case only the 

electromagnetic gauge potential 0
αα VV =  is non-vanishing.  Q.E.D. 

 

3. CONCLUDING REMARKS 

 

Formulas (1.3) and (2.8) set three conditions for exact equality of Yang-Mills and 

Kaluza-Klein Lagrangians.  The first condition is that only horizontal vector fields, defined on 

the Kaluza-Klein manifold G×X=M , occur in the Kaluza-Klein Lagrangian [5], [39].  The 

second condition is that the scalar curvature vR  in the Kaluza-Klein Lagrangian be restricted to 

the horizontal subspace of each tangent space of M.  The third condition is that there exist 

solutions derived from the Kaluza-Klein Lagrangian for which the scalar fields, defined on M, 

transform equivariantly under the gauge group [39].  Unlike previous theories that do not satisfy 

the requirement that every term in a Kaluza-Klein theory correspond to an  exactly equivalent 

term in a Yang-Mills theory [5], the Kaluza-Klein Lagrangian (2.8), after dimensional reduction 

and multiplying by a constant, equals exactly the Yang-Mills Lagrangian (1.3) plus a term 

describing purely gravity.  

 

By formulating the Kaluza-Klein Lagrangian (2.8) with the horizontal vector fields Kv , 

the orthogonal constraint (1.2) is eliminated.  Furthermore, in the theorem of Section 2, we see 

that the horizontal vector fields Kv  have no explicit dependence on any physical constants.  

(Note that to accomplish this, the vertical vector fields in formula (2.4) are chosen differently 

than in previous work [10].)  The higher dimensional radii of the Kaluza-Klein manifold show 

up in the unified Lagrangian (2.8) only implicitly when computing the horizontal scalar 

curvature vR  through the commutators of the vector fields Kv .  Note that the appearance of 

Newton’s constant 0κ  dividing the total action in formula (2.14) plays no role in the classical 

field equations.  From the proof of the theorem in Section 2, it is clear that the elimination of 

Newton’s constant along with all coupling constants is only possible because the three 

constants λλ ˆ, , and 001 gπκ8κ /=  in the Kaluza-Klein Lagrangian (2.19) − (2.21) are 
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related by the relation 2
1 λκ = .  Note that the orthogonal constraint (1.2) determines that there 

can be only two independent constants 11 ˆ, −− λλ  in formula (2.18), and not three.  This relation 

is also expressed by the specific coefficients multiplying each term in the Yang-Mills 

Lagrangian (1.3).  It is a nontrivial property of Dirac’s bispinor equation that precisely these 

coefficients occur in the Yang-Mills Lagrangian (1.3). 

 

Since Newton’s constant can be eliminated from the classical Kaluza-Klein equations, 

what then is the physical origin of Newton’s constant?  The answer lies in quantum mechanics.  

Although the appearance of Newton’s constant dividing the total action in formula (2.14) plays 

no role in the classical equations, in quantum mechanics, changing the action would affect the 

normalization of the fermion and boson fields.  In quantum mechanics, solutions of Dirac’s 

bispinor equation are normalized to be unit vectors in a Hilbert space with time as a parameter.  

This normalization of the bispinor fields imposes a non-classical normalization of the tensor 

fields representing the bispinor fields in the Kaluza-Klein Lagrangian (2.8).  Since the 

transformation to the tensor fields involves Newton’s constant and the higher dimensional radii, 

the normalization of the tensor fields depends on these constants.  Thus, in lieu of Newton’s 

constant, a fundamental set of constants can be chosen to be the higher dimensional radii and a 

quantum mechanical normalization constant.  The higher dimensional radii are geometrical, 

whereas, the non-classical normalization of the tensor fields finds its origin in the Hilbert space 

formulation of quantum mechanics.   

 

We will conclude with an application of the Kaluza-Klein tetrad Lagrangian (2.8) to a 

topic of current interest [41] − [47], which involves finding a unified theory of “distant 

parallelism” or teleparallel theory that would include bispinor fields.  For example, a teleparallel 

form of Dirac’s bispinor equation gives an alternative interpretation of neutron interferometry 

experiments viewed from a rotating frame in a Minkowski space-time [42].  Recently Vassiliev, 

modeling neutrinos with a teleparallel tetrad field, derived a tensor Lagrangian equivalent to the 

Weyl spinor Lagrangian [43].  According to Mosna and Pereira, seeking a unified teleparallel 

theory is motivated by the following argument: “Let M be a 4-manifold representing our 

physical space-time.  It is well known that, if we want to introduce spinors in this context, the 
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existence of a global moving frame (or tetrad) 3
0aae =}{  on M must be assumed. … The global 

basis of vector fields }{ ae  gives rise to both a Riemannian and a teleparallel structure on M.” 

[46]    

 

For the usual Einstein-Maxwell-Dirac equations, in a non-compact four-dimensional 

space-time with spinor structure, the teleparallel covariant derivatives can be defined on the 

Kaluza-Klein manifold GXM ×=  with respect to the global moving frame )ˆ,,( KKK aav .  

The Lagrangian L′ , which is the teleparallel equivalent of the unified Kaluza-Klein Lagrangian 

(2.8), is then given as follows.  

 

Replacing the constant κ  with the constant κ=κ′ 3  in formulas (2.17) − (2.20), it 

can be shown that the Lagrangian (2.21) equals up to a divergence: 

 

                               )()( φσvφσv
3
1T

2
1L K

Kv +++=′                             (3.1) 

where  

 

><><−><><+><= L
LKJ

JK
JLK

LJK
JK

JKv v,Tv,Tv,Tv,T
2
1T,T

4
1T  

                                                                                                                                              (3.2) 

 

where ),( KJJK vvTT = is the teleparallel torsion tensor restricted to horizontal vector fields 

Kv .  We see in formula (3.1) that the horizontal teleparallel scalar torsion vT  replaces the 

horizontal Riemannian scalar curvature vR  in the Kaluza-Klein Lagrangian (2.8).  Note that 

unlike current theories [44] − [47] for which the teleparallel covariant derivatives are defined 

differently for gravitational, electromagnetic, and bispinor fields, the torsion tensor ),T(  is 

defined using a single definition of teleparallel covariant derivative on GXM ×= .  It can be 

shown that the Lagrangian (3.1) reduces to the teleparallel equivalent of the Einstein-Hilbert 

Lagrangian for gravity [41], when both electromagnetic and bispinor fields vanish.  Thus, the 
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Lagrangian (3.1) extends the teleparallel equivalent of general relativity, for gravity alone, to the 

electromagnetic and bispinor fields, and is equal (up to a divergence) to the Kaluza-Klein 

Lagrangian (2.8).      
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