arXiv:0706.1751v3 [cs.IT] 28 Nov 2007

MacWilliams Identity for Codes with the Rank

Metric

Maximilien Gadouleau and Zhiyuan Yan
Department of Electrical and Computer Engineering
Lehigh University, Bethlehem, Pennsylvania 18015, USA

E-mail: {magc, yan@lehigh.edu

Abstract

The MacWilliams identity, which relates the weight distrilon of a code to the weight distribution
of its dual code, is useful in determining the weight disitibn of codes. In this paper, we derive the
MacWilliams identity for linear codes with the rank metramd our identity has a different form than
that by Delsarte. Using our MacWilliams identity, we alsgide related identities for rank metric codes.
These identities parallel the binomial and power momenttitles derived for codes with the Hamming

metric.

. INTRODUCTION

The MacWilliams identity for codes with the Hamming metrid,[which relates the Hamming weight
distribution of a code to the weight distribution of its dualde, is useful in determining the Hamming
weight distribution of codes. This is because if the dualecéihs a small number of codewords or
equivalence classes of codewords under some know perowtgtoup, its weight distribution can be
obtained by exhaustive examination. It also leads to ottientities for the weight distribution such as
the Pless identities [1], [2].

Although the rank has long been known to be a metric impjicithd explicitly (see, for example,
[3]), the rank metric was first considered for error controtles (ECCs) by Delsarte [4]. The potential
applications of rank metric codes to wireless communicatifs], [6], public-key cryptosystems [7],

and storage equipments [8], [9] have motivated a steadwrstref works [8]—[20] that focus on their

The material in this paper was presented in part at the IEE&rational Symposium on Information Theory, Nice, France
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properties. The majority of previous works focus on rankatise properties, code construction, and
efficient decoding of rank metric codes, and the seminal wamk[4], [9], [10] have made significant
contribution to these topics. Independently in [4], [9]0]la Singleton bound (up to some variations)
on the minimum rank distance of codes was established, ataka of codes achieving the bound with
equality was constructed. We refer to this class of codes asid@lin codes henceforth. In [4], [10],
analytical expressions to compute the weight distributdtinear codes achieving the Singleton bound
with equality were also derived. In [8], it was shown that (8lakin codes are optimal for correcting
crisscross errors (referred to as lattice-pattern ermoi8]). In [9], it was shown that Gabidulin codes
are also optimal in the sense of a Singleton bound in crissoneeight, a metric considered in [9], [12],
[21] for crisscross errors. Decoding algorithms were idtreed for Gabidulin codes in [9], [10], [22],
[23].

In [4], the counterpart of the MacWilliams identity, whicklates the rank distance enumerator of
a code to that of its dual code, was established using aseocischemes. However, Delsarte’s work
lacks an expression of the rank weight enumerator of the dodé as a functional transformation of
the enumerator of the code. In [24], [25], Grant and Varada$ined adifferentrank weight enumerator
and established a functional transformation between thk waeight enumerator of a code and that of
its dual code.

In this paper we show that, similar to the MacWilliams idgnfior the Hamming metric, the rank
weight distribution of any linear code can be expressed ametibnal transformation of that of its dual
code. It is remarkable that our MacWilliams identity for ttenk metric has a similar form to that for
the Hamming metric. Similarly, an intermediate result of ptoof is that the rank weight enumerator of
the dual of any vector depends on only the rank weight of theoveand is related to the rank weight
enumerator of a maximum rank distance (MRD) code. We alsiveladditional identities that relate
moments of the rank weight distribution of a linear code tosth of its dual code.

Our work in this paper differs from those in [4], [24], [25] Beveral aspects:

« In this paper, we consider a rank weight enumerator diffefiemm that in [24], [25], and solve the
original problem of determining the functional transfotioa of rank weight enumerators between
dual codes as defined by Delsarte.

« Our proof, based on character theory, does not require teefassociation schemes as in [4] or
combinatorial arguments as in [24], [25].

« In [4], the MacWilliams identity is given between the ranlstdince enumerator sequences of two

dual array codes using the generalized Krawtchouk polyatsmOur identity is equivalent to that in
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[4] for linear rank metric codes, although our identity ipeessed using different parameters which
are shown to be the generalized Krawtchouk polynomials ds We also present this identity in
the form of a functional transformation (cf. Theoréim 1). trtls a form, the MacWilliams identities
for both the rank and the Hamming metrics are similar to eahbro

o The functional transformation form allows us to derive figrt identities (cf. Section V) between

the rank weight distribution of linear dual codes. We wouike lto stress that the identities between
the moments of the rank distribution proved in this paperreneel and were not considered in the
aforementioned papers.

We remark that both the matrix form [4], [9] and the vectomfigjl0] for rank metric codes have been
considered in the literature. Following [10], in this paplee vector form oveGF(¢™) is used for rank
metric codes although their rank weight is defined by theiresponding codematrices ov@i'(q) [10].
The vector form is chosen in this paper since our results beid terivations for rank metric codes can
be readily related to their counterparts for Hamming metades.

The rest of the paper is organized as follows. Secfibn |lengsi some necessary background. In
Sectiorll, we establish the MacWilliams identity for thenk metric. We finally study the moments of

the rank distributions of linear codes in Sectiod IV.

[I. PRELIMINARIES
A. Rank metric, MRD codes, and rank weight enumerator

Consider anr-dimensional vectox = (zg,z1,...,2,—1) € GF(¢™)". The field GF(¢™) may be
viewed as anm-dimensional vector space ove€fF(q). The rank weight ofx, denoted ask(x), is
defined to be thenaximumnumber of coordinates i& that are linearly independent ov&it' (¢) [10].
Note that all ranks are with respect €@F(q) unless otherwise specified in this paper. The coordinates
of x thus span a linear subspace®¥F(¢"), denoted asS(x), with dimension equal tek(x). For all
x,y € GF(¢™)", it is easily verified thatlz(x,y) def rk(x —y) is a metric over GFRg™)™ [10], referred
to as therank metrichenceforth. Theminimum rank distancef a codeC, denoted asiz(C), is simply
the minimum rank distance over all possible pairs of distcmdewords. When there is no ambiguity
aboutC, we denote the minimum rank distancedas

Combining the bounds in [10] and [26] and generalizing gligto account for nonlinear codes, we
can show that the cardinaliti of a codeC over GF(¢™) with lengthn and minimum rank distanceé;
satisfies

K < min {qm(n—dR—H)’qn(m—dR—Fl)} ‘ 1)
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In this paper, we call the bound ifil (1) the Singleton bounddodes with the rank metric, and refer
to codes that attain the Singleton bound as maximum rankrdist (MRD) codes. We refer to MRD
codes ovelGF(¢™) with lengthn < m and with lengthn > m as Class-I and Class-Il MRD codes
respectively. For any given parameter gein, anddg, explicit construction for linear or nonlinear MRD
codes exists. Fon < m anddg < n, generalized Gabidulin codes [16] constitutesubclassof linear
Class-1 MRD codes. For > m anddg < m, a Class-Il MRD code can be constructed by transposing a
generalized Gabidulin code of length and minimum rank distancé; over GK¢™), although this code
is not necessarily linear over Gf*). Whenn = im (I > 2), linear Class-Il MRD codes of length and
minimum distancely can be constructed by a cartesian prool_f;ﬂcgf G x...x G of an(m,k) linear
Class-I| MRD codgj [26].

For allv € GF(¢™)" with rank weightr, the rank weight function ot is defined asfz(v) = y"z"".
Let C be a code of lengtlh over GF(¢™). Suppose there ard; codewords inC with rank weighti
(0 < i < n), then the rank weight enumerator ©f denoted a3V (x,y), is defined to be

def - i n—i
WE(z,y) Y falv) =Y Awyla" "
=0

vel

B. Hadamard transform
Definition 1 ( [1]): LetC be the field of complex numbers. Lete GF(¢™) and let{1, a1, ..., @m—1}
be a basis set o:F(¢™). We thus haver = a9 + a11 + ... + apm—104,—1, Wherea; € GF(q) for
0 <i<m— 1. Finally, let¢ € C be a primitiveg-th root of unity, x(a) def ¢% mapsGF(¢™) to C.
Definition 2 (Hadamard transform [1]):For a mappingf from GF(¢™)"™ to C, the Hadamard trans-
form of f, denoted ag, is defined to be

FVE Y xev)f), )

ueGF(gm)n

whereu - v denotes the inner product of andv.

C. Notations

In order to simplify notations, we shall occasionally denthte vector spac&F(¢"™)" asF. We denote
the number of vectors of rank (0 < v < min{m,n}) in GF(¢™)"™ as N, (¢"™,n). It can be shown that
Nu(g™,n) = ["]a(m,u) [10], wherea(m,0) L1 and a(m,u) &' T[2L(g™ — ¢') for u > 1. The ["]
term is often referred to as a Gaussian polynomial [27], eefias|”] % (n, u) /a(u, u). Note that["]

is the number of.-dimensional linear subspaces@F(q)". We also defingi(m, 0) E| andjg(m, ) def
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[T [™] for u > 1. These terms are closely related to Gaussian polynomigis; u) = ["] 5(u, u)

and B(m + u,m +u) = ["F*] B(m,m)B(u, w). Finally, o; &' =1 for ; > 0,

[1l. MACWILLIAMS IDENTITY FOR THE RANK METRIC
A. g-product, ¢-transform, andg-derivative

In order to express the MacWilliams identity in polynomiatrh as well as to derive other identities,
we introduce several operations on homogeneous polynemial

Let a(z,y;m) = Yi_gai(m)y'a""" and b(z,y;m) = >5_obj(m)y’z*~7 be two homogeneous
polynomials inz andy of degrees- and s respectively with coefficients;(m) andb;(m) respectively.
a;(m) andb;(m) for i, j > 0in turn are real functions af,, and are assumed to be zero unless otherwise
specified.

Definition 3 @-product): The g-productof a(x,y; m) andb(z, y; m) is defined to be the homogeneous

polynomial of degredr + s) c(z,y;m) d:efa(a:, y;m) x bz, y;m) = S 018 ¢ (m)yta" ST, with

cu(m) =" g a;i(m)by—i(m —i). 3
=0

We shall denote the-product by henceforth. Fom > 0 the n-th g-power ofa(x,y; m) is defined
recursively:a(z,y;m)”) = 1 anda(z, y;m)™ = a(z,y; m)!" U x a(z,y;m) for n > 1.

We provide some examples to illustrate the concept. It iy éawerify thatx x y = yzx, y x r = qyz,
yr*x = qyz?, andyz * (¢™ — 1)y = (¢™ — q)y*z. Note thatz x y # y = z. It is easy to verify that the
g-product is neither commutative nor distributive in geherowever, it is commutative and distributive
in some special cases as described below.

Lemma 1:Supposex(z,y; m) = a is a constant independent from, thena(z,y;m) * b(x,y;m) =
b(x,y;m) * a(x,y;m) = ab(z,y;m). Also, if deg[c(x,y;m)] = degla(z,y;m)], then [a(z,y;m) +
c(@,y;m)] * bz, y;m) = a(z, y;m) = b(z, y;m) + c(z, y;m) = b(z, y;m), andb(z, y;m) = [a(z,y;m) +
c(x,y;m)] = b(z,y;m) * a(z,y; m) + b(z,y;m) * c(z,y;m).

The homogeneous polynomials(z, y;m) &' [z + (g™ — 1)y and b(z,y:m) & (& — »)l are
very important to our derivations below. The following lemmrovides the analytical expressions of
ai(z,y;m) andby(z, y; m).

Lemma 2:Forl > 0, we haveyl! = ¢°y andz[!! = z!. Furthermore,
I

auaim) =3 | atm, et @
u=0
LT
bi(w,y;m) =) M (—1)“q ey el (5)
u=0
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Note thata;(x,y; m) is the rank weight enumerator 6fF(¢™)!. The proof of Lemmal2, which goes
by induction oni, is easy and hence omitted.

Definition 4 @-transform): We define they-transformof a(z,y;m) = >°i_, ai(m)y‘z"~* as the ho-
mogeneous polynomial(z, y;m) = S°7_ a;(m)yld x zlr=i.

Definition 5 @-derivative [28]): For ¢ > 2, the g-derivative atz # 0 of a real-valued functiorf(x)

is defined as

FO () % flaz) — flz)

( T
For any real numbet, [f(z)+ag(z)]M = fO(z)+ag™ (z) for = # 0. Forv > 0, we shall denote the
v-th g-derivative (with respect ta) of f(z,y) as f*)(z,y). The0-th ¢-derivative of f(z, y) is defined
to be f(x,y) itself.
Lemma 3:For0 < v <1, (z")) = (I, v)2!=". Thev-th g-derivative of f(z,y) = S°1_, fiy'a" " is
given by f®)(z,y) = 3128 fi8(i, v)y'a" "7V, Also,
ol N (wyim) = B v)ar,(w,y;m) (6)
b, ysm) = ALy (e, ym). (7
The proof of Lemma]3, which goes by induction onis easy and hence omitted.

Lemma 4 (Leibniz rule for the-derivative): For two homogeneous polynomiaf§z,y) and g(x,y)

with degrees- and s respectively, the/-th (v > 0) g-derivative of theirg-product is given by

[f () * gl )]V =Y m gD O (@, )« o@D (, y). ®)
The proof of Lemmal4 is given in Apé):eondiz] A.
The ¢~ !-derivative is similar to the-derivative.
Definition 6 ¢ !-derivative): For ¢ > 2, the ¢~ !-derivative aty # 0 of a real-valued functiog(y) is

defined as
-1
def
g{l}(y) de 9(g y) — (y)‘

(' =1y
For any real numbet, [f(y) + ag(y)]?'} = fI(y) + agtlt(y) for y # 0. Forv > 0, we shall denote

the v-th ¢~ !-derivative (with respect tg) of g(z,y) asg*}(z,y). The0-th ¢~ !-derivative ofg(z,y) is
defined to bey(z,y) itself.

Lemma 5:For 0 < v < [, the v-th ¢~ !-derivative ofy! is (')} = ¢*(=)+ov 3(1, v)y! 7. Also,

{ }(ac y;m) = Blv)g " a(m,v)a_,(z,y;m —v) 9)

b (@, yim) = (=) B v)biy (g m). (10)
The proof of Lemmal5 is similar to that of Lemrha 3 and is hencéteth
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Lemma 6 (Leibniz rule for the~!-derivative): For two homogeneous polynomigiéz, y; m) andg(x, y; m)
with degrees: and s respectively, the/-th (v > 0) ¢~ !-derivative of theirg-product is given by

v
14

[f (2, y;m) = gz, y;m)] = M g B (@, ysm) « g (@, ysm 1), (11)
=
The proof of Lemma6 is given in AppoendIZ B.

B. The dual of a vector

As an important step toward our main result, we derive thé raeight enumerator o(v>l, where
v € GF(¢™)™ is an arbitrary vector andv) aef {av : a € GF(¢™)}. Note that(v) can be viewed as
an (n,1) linear code ovelGF(q") with a generator matriw. It is remarkable that the rank weight
enumerator of v)" depends on only the rank of

Berger [14] has determined that linear isometries for thek rdistance are given by the scalar mul-
tiplication by a non-zero element &F(¢™), and multiplication on the right by an nonsingular matrix
B € GF(q)"*™. We say that two code§ andC’ are rank-equivalent if there exists a linear isometry
for the rank distance such th#{C) = C".

Lemma 7:Supposev has rankr > 1, Then£ = (v)* is rank-equivalent t& x GF(¢"™)"~", where

Cis an(r,r —1,2) MRD code andx denotes cartesian product.

Proof: We can expressy asv = vB, wherev = (vg,...,v,-1,0...,0) has rankr, andB €
GF (q)"*™ has full rank. Remark that is the parity-check of x GF (¢"™)"~", whereC = ((vg, ..., v,_1))"
is an(r,r — 1,2) MRD code. It can be easily checked thate £ if and only if u ®©uBT € w)* .
Therefore,(v)" = £B7, and henceC is rank-equivalent tqv)™ = C x GF(¢™)"". m

We hence derive the rank weight enumerator ofam — 1,2) MRD code. Note that the rank weight
distribution of linear Class-l MRD codes has been derivein [10]. However, we shall not use the
result in [4], [10], and instead derive the rank weight entate of an(r,r — 1,2) MRD code directly.

Proposition 1: Supposev,, € GF(¢™)" has rankr (0 < r < m). The rank weight enumerator of

L= <v>L depends on only and is given by

WE (2,y) =" {[o+ (" = Dyl + (" = D@ - )"} (12)
Proof: We first prove that the number of vectors with rankn £,, denoted as4,. ., depends only

onr and is given by

AT’,T’ = q_m[a(ma T) + (qm - 1)(_1)qur] (13)

by induction onr (r > 1). Eq. [13) clearly holds for = 1. Suppose[(13) holds far =7 — 1.
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We consider all the vectora = (ug,...,ur—1) € L7 such that the first — 1 coordinates ofu are
linearly independent. Remark that_; = —fug_ll f;g u;v; is completely determined by, ..., u7_o.
Thus there aréVy_;(¢",7 — 1) = a(m, 7 — 1) such vectorsi. Among these vectors, we will enumerate
the vectorst whose last coordinate is a linear combination of the fitrst 1 coordinates, i.e.t =
(to, .- tr2, Y i—¢ ait;) € Lr wherea; € GF(q) for 0 <i <7 — 2,

Remark that € L if and only if (¢, ..., t7—2) - (vo + agVs_1,...,v5—2 + ar—ovs—1) = 0. It iS easy
to check thatv(a) = (vg + agvr—1,...,vr—2 + ar—ovr—1) has ranki — 1. Therefore, ifag, ..., a7_o are
fixed, then there arels_; >—; such vectors. Also, supposezz;_g tiv; + vp_q Z;:g b;t; = 0. Hence
Zf:‘g(ai — b;)t; = 0, which impliesa = b sincet,’s are linearly independent. That igy(a))* N
(v(b))* = {0} if a # b. We conclude that there arf'A; ;1 vectorst. Therefore, A;; =
alm,7—1) — ¢ A1 721 = ¢ "a(m,7) + (¢™ — 1)(=1)"¢°"].

Denote the number of vectors with rapkn £, as A, ,. We have4, , = [;] A, [10], and henced,. |, =
g™ la(m, p)+(a™ 1) (~1)Pq" ). TRUSWE, (,y) = Yo Arpa™ Py = ™ { [0 + (g™ — 1)yl +
(" = 1)@~y }. .

We comment that Propositidn 1 in fact provides the rank wed$tribution of any(r,» — 1,2) MRD
code.

Lemma 8:LetCy C GF(¢™)" be a linear code with rank weight enumeralgf (z,y), and fors > 0,

let W& (z,y) be the rank weight enumerator Gf def Co x GF(¢™)*. ThenW§ (z,y) is given by

WE (x,y) = WE (z,y) * [z + (g™ — 1)y]1*. (14)

Proof: Fors > 0, denoteW§ (z,y) = SrES By a ™t % We will prove that

u
- s . .
Bsu = E q"°Bo [u _ J a(m —i,u—1) (15)
=0

by induction ons. Eq. [15) clearly holds fos = 0. Now assume[(15) holds for = 5 — 1. For any
x5 = (0,...,Tr+5-1) € C5, we definexs;_1 = (g, ..., Zr1+5-2) € C5—1. Thenrk(xz) = w if and only if
eitherrk(xs—1) = v andz,45-1 € &(x5-1) or rk(xz—1) = u— 1 andz,15-1 ¢ &(xs-1). This implies
Bsu=q"Bs—1u+ (@™ — ¢“ ) Bs—1u—1 = > 104" Bo,i[,” ;]alm —i,u — ). u
Combining Lemmé 17, Proposition 1, and Lemina 8, the rank weggtumerator Of(v)J‘ can be
determined at last.
Proposition 2: For v € GF(¢"™)" with rankr > 0, the rank weight enumerator df = (v)" depends

on only r, and is given by

W(z,y) =q ™ {[w + (™ = Dy + (¢™ = D@ — ) [z + (¢ = 1)y ["_“} . (1)
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C. MacWilliams identity for the rank metric

Using the results in Sectidn_1liB, we now derive the Mac¥Withs identity for rank metric codes.
Let C be an(n, k) linear code oveiGF(¢™), and letWg(z,y) = > i, Aiy'z"~" be its rank weight
enumerator andV?, (z,y) = Z?:o Bjyiz"~J be the rank weight enumerator of its dual catte

Theorem 1:For any(n, k) linear codeC and its dual cod€~ over GF(¢™),

,%,Wé* (4 (@™ — Doz —y), (17)

whereW} is the g-transform of Wg. Equivalently,

WE.(z,y) =

Y Biyla" =g A(x = y) o (¢ - Dyl (18)
§=0 i=0
Proof: We haverk(Au) = rk(u) for all A € GF(¢™)* and allu € GF(¢")". We want to determine
fa(v) for all v e GF(¢™)". By Definition[2, we can split the summation il (2) into two fsar
= Z x(u-v)fr(u) + Z x(u-v)fa(u),
uel ueFr\L

wherel = (v)™". If u € £, theny(u-v) = 1 by Definition[1, and the first summation is equali@(z,y).
For the second summation, we divide vectors into groups ®ffthm {\u; }, where\ € GF(¢™)* and
u; - v = 1. We remark that fomm € F\L (see [1, Chapter 5, Lemma 9])

Y xQu V) fsQu) = few) D> x(N) = — fe(w).

AEGF (qm)* AEGF (gm)*

Hence the second summation is equal—tgan}Tle’i\ﬁ(x,y). This leads tofx(v) = qm—l[ "WE(z,y) —
WE(x,y)]. Using W&(z,y) = [z + (¢" — 1)y]l") and Propositiofi]2, we obtaifis(v) = (z — y)I")
[z + (¢™ — 1)y]"", wherer = rk(v).
By [1, Chapter 5, Lemma 11], any mappirfgfrom F to C satisfiesy .. f(v) = ﬁ > vee f(v).
Applying this result tofxz(v) and using Definition 4, we obtaif (17) arid [18). [ |
Also, B;'s can be explicitly expressed in terms df’s.

Corollary 1: We have

B = % ™ APy (i m,n), (19)
i=0
where
J
d:ef tyn—t l o l(n—i) 7

(i;m,n) ; H [] _J )'q%'q am—1,7—1). (20)
Proof: We have(z — )l « (z + (¢™ — 1)y)!"~1 = 27 Pj(i;m,n)y’z"~7. The result follows
Theoren{1L. [
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10

Note that although the analytical expression[in (19) is lsintb that in [4, (3.14)],P;(i; m, n) in (20)
are different frompP; (i) in [4, (A10)] and their alternative forms in [29]. We can shdvat

Proposition 3: P;(z; m,n) in (20) are the generalized Krawtchouk polynomials.

The proof is given in AppendiXIC. Propositibh 3 shows tRatz; m,n) in (20) are an alternative form
for P;(i) in [4, (A10)], and hence our results in Corolldry 1 are eql@mato those in [4, Theorem 3.3].
Also, it was pointed out in [29] tha% is actually a basic hypergeometric function.

I[V. MOMENTS OF THE RANK DISTRIBUTION
A. Binomial moments of the rank distribution

In this section, we investigate the relationship betweemerats of the rank distribution of a linear
code and those of its dual code. Our results parallel tho$g, ip. 131].

Proposition 4: For0 < v < n,

n—v

3 [“ B Z] A; = gn) [” —J ] B;. (21)
P v = n—v
Proof: First, applying Theorernl1 t6+, we obtain

Z Agfan " = gtk Z Bjbj(z,y;m) * an—j(x,y;m). (22)
i=0 =0

Next, we apply theg-derivative with respect ta: to (22) v times. By Lemmd 13 the left hand side
(LHS) becomesy ;= B(n — i,v) A;y'a"~"~", while the RHS reduces tg"*~™) 3" | B;¢;(z,y) by

Lemmal4, where

v

def Y v (e v
iz, y) S [y (@, y;m) * anj(z,y;m)] ) =) Mq( NG00 (@, y) x al ) (x, yim).
=0

By LemmalB,b\ (z, y;m) = B(j, 1)z — )V~ andal” ) (z,y;m) = B(n — j,v — an_j—ya(w, y; m).
It can be verified that for any homogeneous polynorbfal y; m) and for anys > 0, (b*as)(1,1;m) =
¢™b(1,1;m). Also, forz =y =1, b§l)(1, 1;m) = B(4,7)6;,- We hence havey;(1,1) = 0 for j > v,
andy;(1,1) = [4]8(4,4)8(n — j,v — j)g™"¥) for j < v. Sincef(n— j,v - j) = [} 4] B(v = j,v — )
and B(v,v) = [1]8(j, /)B(v — j,v — ), ¥;(1,1) = [ 2] B(v,v)g™" ). Applying z = y = 1 to the
LHS and rearranging both sides usifgr — i,v) = [ '] 3(v,v), we obtain[(21L). |

Propositio 4 can be simplified if is less than the minimum distance of the dual code.

Corollary 2: Let d], be the minimum rank distance . Ifo<v< dy, then
> [" - } Ay = g m . (23)
i—0 1% 14
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Proof: We haveBy=1andB; =...= B, =0. [ |
Using theq—!-derivative, we obtain another identity.

Proposition 5: For0 < v < n,

n

i1 o= 4, = =05 [P 9] C1yigmiaim — v — 3B,
ZZ:;|:I/:|Q Ai=q jzz:o[n_y]( 1)q a(m 7,V j)q BJ. (24)

The proof of Proposition]5 is similar to that of Propositidnafd is given in AppendikxD. Following
[1], we refer to the LHS of Eqs[(21) and _(24) as binomial moteesf the rank distribution of’.
Similarly, when eitherv is less than the minimum distane® of the dual code, ov is greater than
the diameter (maximum distance between any two codewdfdsf the dual code, Propositidn 5 can be
simplified.

Corollary 3: If 0 < v < dJ, then

n

> m ¢4 = g m a(m,v). (25)
Foré, < v <mn, V
3 L:L:;] (—1)iq% a(m —i,v —i)g"=D 4; = 0. (26)
Proof: Apply PropoéﬁioorDS toC, and useB; = ... = B, = 0 to prove [25). Apply Propositionl 5
to C*, and useB, = ... = B, = 0 to prove [Z6). |

B. Pless identities for the rank distribution

In this section, we consider the analogues of the Plessiigsnftl], [2], in terms of Stirling numbers.

The ¢-Stirling numbers of the second kirt}, (v, 1) are defined [30] to be

l v
def ¢~ 7 i UL
Sl = gy 2 H [ 1 } | @D
and they satisfy
m v z
| =T esiwnsom. (28)
1=0
The following proposition can be viewed asgaanalogue of the Pless identity with respectit¢2,
P].
Proposition 6: For0 < v < n,
¢ {”1‘@] A=) B, [” ﬂ/f(l,nsq(u, Dgm. (29)
i=0 =0 1= "7
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Proof: We have

Z["IZ} 4 = ZA qus (1) { } (30)
1=0
_ quﬁzz Z[”_Z]Az
=0
_ Zmﬂll Zl:|:n_]] (31)
a q = n—1
= meB Z{ ]‘”ﬁll) o Dg™™,
where [(30) follows[(28) and (81) is due to Propositidn 4. [ |

Propositior 6 can be simplified whenis less than the minimum distance of the dual code.

Corollary 4: For0 < v < df,

—mk - n—1 Y _ - —ml+o;
" [ . ] A = > B DSy, g™ (32)
=0 =0
_ q—mn; [”1_@} [ﬂa(m,i). (33)
Proof: SinceBy=1andB; =--- = B, =0, (29) directly leads td(32). Since the right hand side

of (32) is transparent to the code, without loss of gengrali choos& = GF(¢™)™ and [33) follows
naturally. |

Unfortunately, ag-analogue of the Pless identity with respecut§2, P;] cannot be obtained due to
the presence of the”(%) term in the LHS of [Z4). Instead, we derive i§s'-analogue. We denote
P def ¢! and define the functions,,(m,u), [Z]p, Bp(m,u) similarly to the functions introduced in
Sectior 1I-C, only replacing by p. It is easy to relate thesg !-functions to their counterpartaim, u) =
p~ T (=1) (M, u), [Z] = puln—u) [Z]p, andg(m,u) = p‘“(m_“)_"“ﬂp(m,u).

Proposition 7: For0 < v < n,

n—j . .
mkz[ ] ZBp?(m+n 7) Zﬁpl S 1) [n—ﬂ ap(m — 3,1 — j). (34)
p
The proof of ProposnloE]? is given in Append]} E.

Corollary 5: For0 < v < df,

pm’fzm Zﬂpnl (v, Dy (m, 1)(—1).. (35)

=0 p
Proof: By By =...=B, =0. [ |
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C. Further results on the rank distribution

For nonnegative integers p, andv, and a linear codé with rank weight distribution{ A;} we define

df—m VTLZ
T (C) ’“ZH (i), (36)

whose properties are studied below. We refer to
def _m - v(n—1i
Toou(C) = q ™) q"" 04 (37)

as thev-th g-momentof the rank distribution ofC. We remark that for any codé, the 0-th order
g-moment of its rank distribution is equal to We first relateT’, ; ,(C) and Ty, (C) to Ty, (C).

Lemma 9: For nonnegative integers, u, andv we have

A

Tau(C) = mg[ﬂ( D! q" DT 0,2 11(C) (38)

T1,,C) = (1—q) “Z( ) )44 T.0.—a(C). (39)
The proof of Lemma[9 is given in Appena_ F. We now consider ¢thse where’ is less than the
minimum distance of the dual code.

Proposition 8: For 0 < v < df,

v

Tyou(C) = Z[;]a<n,j>q-mj (40)
=0
= q_mnzma(mﬂ)q”m g (41)
=0
= 3 [} |atm e, 2)

=0

The proof of Propositioh]8 is given in Appencﬁ G. Proposifd hence shows that theth ¢-moment
of the rank distribution of a code is transparent to the colerw < d/,. As a corollary, we show that
Tx1,(C) andTy ., (C) are also transparent to the code witefi \, u < v < d..

Corollary 6: For0 < \, u <v < df,

Th1,(C) = ¢™ [Z] z’l: [?:;\] " Da(m, i) (43)
=
Ty pp(C) = ¢ ™ z”: i] “qy("_i) {ﬂ a(m, ). (44)

Proof: By Lemmal9 and Propositidd 87;7 »(C) andT ,,(C) are transparent to the code. Thus,
without loss of generality we assunde= GF(¢")" and [43) and(44) follow. [ |
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D. Rank weight distribution of MRD codes

The rank weight distribution of linear Class-I MRD codes wgagen in [4], [10]. Based on our results
in Section[IV-A, we provide an alternative derivation of trenk distribution of linear Class-l MRD
codes, which can also be used to determine the rank weigtibdison of Class-1l MRD codes.

Proposition 9 (Rank distribution of linear Class-l MRD cajleLet C be an(n, k,dg) linear Class-I
MRD code overGF(¢™) (n < m), and letW&(z,y) = >, A;y'z"" be its rank weight enumerator.
We then havedy =1 and for0 < i < n — dg,

Adori = [ ; ] Sty [dR N ﬂ (qm0*) -1). (45)

dr +1 = dr +j
Proof: It can be shown that for two sequences of real numl{egs}gzo and {b;}!_, such that
aj=57_, [ll:;] b; for 0 < j <1, we haveb; = Z;:O(—l)i—jq"H ["]a; for 0 <i <.

By Corollary(2, we have~7_ [" =" ~"] Ay yi = [, i ] (¢mU+Y) — 1) for 0 < ji < n—dx. Applying

the result above td=n — ds, a; = [, _7 ] (¢™U+Y) — 1), andb; = Agq;, We obtain
! i o | o J[dr+1 -
Agri =) _(=1) Jq””[ } [ ] gmuth —1).
RY 32:%( ) dg + 1| |dg + ( )

[ |
We remark that the above rank distribution is consistent whtat derived in [4], [10]. Since Class-
MRD codes can be constructed by transposing linear ClasBiD Modes and the transposition operation

preserves the rank weight, the weight distributions Cla$4RD codes can be obtained accordingly.

APPENDIX

The proofs in this section use some well-known propertieSatdissian polynomials [27];] = [ ", ],
(1] = [1][7=5), and

HIR i i <46>
= [" . 1} + [Z: ﬂ (47)
ey ®
- L) (49)
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A. Proof of Lemmé&l4

We consider homogeneous polynomidle, y;m) = >_1_, fiy'a"* andu(z,y;m) = > wiy'a™
of degreer as well asg(z,y;m) = > 7, g;jv/z*7 andv(z,y;m) = Y °_,vy72°~ of degrees. First,
we need a technical lemma.

Lemma 10:If «, = 0, then

Lt ysm) ol yim) = BB gy m), (50)
If v3 =0, then
%(U(:ﬂ,y;m) *v(x,y;m)) = u(x, qy;m) * W (51)

Proof: Supposeu, = 0, thenw = Y5 wiyta" 1 Hence
u(ac,y;m) & : ls k,r+s—1—k
—, *ulzym) = D drulm)ve—i(m —1) | yFa
k=0 \I=0

= ;(u(:c, y;m) *v(z,y;m)).

Supposev, = 0, then 2zLm) — Zj?;é vy’ x¥~ 177, Hence

x
U(.Z' ym) r+s—1 k
. ' I — I(s—1) 1 —1 k, r+s—1—k
(o ayim) « L3 > (S )

— %(u(m, y;m) *v(zx,y;m)).

We now give a proof of Lemmi 4.
Proof: In order to simplify notations, we omit the dependence ofgbé/nomialsf andg on the

parametern. The proof goes by induction om. For v = 0, the result is trivial. For = 1, we have

) < glen)V = =5 [Far9) = glars) = flaw) = g(r.9)-
+ flaz.y) * g(z,y) — f(a,y) * 9(z,y)]
e —11)95 [f(qz,y) * (g(qz,y) — 9(z,y)) + (f(qz,y) — f(z,y)) * g(z,y)]
= f(qz,qy) * g(qwég)__l)g;w’y) f(qwég)__lj;(w’y) *g(x,y) (52)
= ¢ f(a,y) x9N (@,9) + FD(2,y) = g(x,y), (53)

where [52) follows Lemma_10.
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Now supposel[(8) is true far = v. In order to further simplify notations, we omit the depencie of

the various polynomials i: andy. We have

o+ _ N~ 7] 00 [0 . -0] Y
(f*g) > ik [f *g }
1=0 -
< -D- v—I)(r— r— v— v—
= A (q P 4 gr=l]) o p(4D) o l>> (54)
=0 - -
v -17- B B v+1 7 B )
_ Z l gPHIDE=D §O) o o (E=it1) +Z [l— 1] gPHDI=D) §O)  (=l4D)
1=0 -~ =1
Z v v — v v+1-0)(r— v— v r v v
S <H e l[z-J)‘J( HL=D=0) )y =D | (G417 f o (4D 4 poD) g
=1
o], 7
_ Z |: l :|q(u+1—l)(r—l)f(l) *g(l/—l'f‘l), (55)
=0
where [54) follows[(53), and (55) follows _(46). [ |

B. Proof of Lemmal6

We consider homogeneous polynomigls:, y;m) = >i_, fiy'a™* andu(z, y;m) = > g uy'a’
of degreer as well asg(z,y;m) = >"j_, g;472°~7 andv(z,y;m) = Y5_,vjy’a* of degrees. First,
we need a technical lemma.

Lemma 11:If ug = 0, then

L (utsm)) vl i) = 0L (o, g - 1), (56)
If vo =0, then
§(U(:ﬂ,y;m) *v(z,y;m)) = u(z, qy;m) * W (57)
Proof: Supposeyy = 0, then% = Sy w2 iyt Hence
(ﬂj, y; m) r+s—1 k L
qsuT xo(z,y;m—1) = ¢° ];) <ZZ; ¢ upave—i(m —1 - l)) ek

r+s

k
— qs Z < q(l_l)sulvk—l(m _ l)) $r+s—kyk—1
k=1 1

=

- é(u(gc, y;m) xv(z,y;m)).
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Supposevy = 0, then ”(m’g;m) = S ¥ vj1a¥ Iyl Hence

r+s—1 k
v(z,y;m 3 L
u(z, qy;m) * (@, y;m) — Z (Z ¢ dhugvg_p1 (m — l)) gl sk k
Y k=0 =0
r+s

k—1
— Z < qlsulvk—l(m _ l)) xr-i—s—kyk—l
k=1 =0

= ;(U(w,y;m)*v(:ﬂ,y;m))-

We now give a proof of Lemmal 6.

Proof: The proof goes by induction om, and is similar to that of Lemma 4. For= 0, the result

is trivial. For v = 1 we can easily show, by using Lemina 11, that
(@ ysm) = g(z,y;m)] M = fa,yim) « g (2, y3m) + ¢ F 1 (@, y5m) # g(a,y;m — 1), (58)

It is thus easy to verify the claim by induction on [ |

C. Proof of Proposition 13

It was shown in [29] that the generalized Krawtchouk polyiamare the only solutions to the

recurrence

Pia(i+Lm+1,n+1) = ¢ P+ 1;m,n) — ¢/ Pi(i;m,n) (59)
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with initial conditionsP;(0; m,n) = [?]a(m,j). Clearly, our polynomials satisfy these initial condition

We hence show thaP;(i;m,n) satisfy the recurrence in_(59). We have

+1 r. .
. . . Z+1 n—1 I o, l(n—i) .
Prr(itlimtLnt1) = ;{ Vvt -1+ 1-

+1 r.

. 1+1lm+1-—1 o L(n—i) s _

_ ;{ [ e am - -
AR 7 7 m — 1 m —1
98 Ul PR S Ul PR R o
(—1)'q7q" " Da(n —i,j+1 1) (60)

¢ [j L ] (—1)'gq" " Da(n —i,j+1 1)

|
+ Z ¢ m [”7 - 1 (=1'¢"q"" Da(n —i,j+1-1)

1=0 j—1
i+1 .
c 30 e o e am =i+ 1-0)
2|11 11 ’
i+1 .
? m—1 _1\L,o0 l(n—i) i _
D I o (S U R R

where [(60) follows[(4l7). Let us denote the four summationtharight hand side of (61) a4, B, C,

and D respectively. We havel = ¢/+1P; . (i;m,n), and

! Z. m - l —Z . . n_Z y
B =3 H [j _J (—1)'¢" ¢ " Da(n—i,5 = 1)(¢" " = ¢), (62)
=0
c = m ¢! [m - . 1} (—1)H g g a(n i 1)
] f—
1=0
= —gtn Z Dm0 gt —i T 1 (63)
e Ilji—1 ’ gn-t—1’
i : ) m—l p n—i L. ]_l_l
D = ¢S " D ¢ aln iy e (64)
1=0 Uli—1 q -1
where [6B) follows[(4B) and_(64) follows both (48) andl(49hnibining [62), [(6B), and (64), we obtain
L i [m—1 -
B D = _1l0'l l(n—1) S S A
rown = SN vtedtam-is -0
m j j l
ne—itl _ j il —@ o @ —q
{(] q q qm—l -1 q qm—l -1
= —¢/Pj(i;m,n).
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D. Proof of Propositiori b

Before proving Proposition] 5, we need two technical lemmas.

Lemma 12:For all m, v, andl, we have
i .
.\ def i o . . . N ilm—i
s(m,v,5) = M (—1)'g” a(m — i,v) = a(v, jla(m — j,v — j)¢ ™ 7). (65)
i=0
Proof: The proof goes by induction o The claim trivially holds forj = 0. Let us suppose it

holds forj = j. We have

Sl . .

+ +

= —
|

(¢[2) + [, 71]) cvraatm i (66)

M 1M 1M~ 1M

=
Il

=)
L

q (=) '¢"a(m—1—iv—1)¢" """ (¢" - 1)

3

= ¢ ¢ —1)é(m—1,v—1,))
= a(w,j+Dalm—j—1,v—j—1)gu+Dm=i-1),

where [66) follows[(417). [ |

Lemma 13:For all n, v, andj, we have

b.v3) S [ﬂ [” ‘J} ¢ (1 gy —1j — 1) = (-1)'q” [“ - } (67)

v—1 n—v
=0
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Proof: The proof goes by induction o The claim trivially holds forj = 0. Let us suppose it
holds forj = j. We have
]+1 - -
= _ J+1ljn—1-y lln—v)/_ 1\l o 1z _
o+ = T L e e

- H(mwﬂl-l[ T et ae - -0 e

e [—1 v—1
J iln—1—3 - =
= > M [ l ]ql(”‘”)(—l)lqma(v —Lj=D(@" =7
1=0 v
ARg Fll—1-7
j—l+1 - I(n—v)(_1\l,0u o E
+ g;q [L_J[ V_l]q (=1)'q"av —1,j = 1+1), (69)

where [68) follows[(46). Let us denote the first and secondnsations in the right hand side df (69) as

A and B, respectively. We have

v—1

i o= -
7 n—1- —1-v o =
A= @Y [ L e -1 -
0

= (@~ ) (-1q" [n o j] : (70)

and

j - .
_ G I = L= +1)(n—v); q\+101n 175
B = Y4 M [V_l_l]q (—)* g av —1— 1,5 - 1)

j+n—v -1~ n—v o 3
=~y m [ q ¢ (=)l alv 11,7 -1)

v—1-—1
1=0

= —¢T" V0 —1,v—1,))

= —fmﬁenw%r_l_q. (71)
n—v
Combining [68), [(7D), and (T1), we obtain

i +1) = v {1 gt

_ S L et B G Y i et R
= a+1 [ o }{ (¢ 1)qv—3_1+q } (72)
_ (Lt [”;i;ﬂ} (73)
where [(72) follows[(49). [ |
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We now give a proof of Propositidd 5.
Proof: We apply theg—!-derivative with respect tg to (22) v times, and we apply = y = 1. By
Lemmal® the LHS becomes

n

= v(1—=i)+o, a(, A — v(l—n)+o, L V("_Z)A 74
;(] ﬁ(l,l/) % q 5(V’V)Z|:V:|q ¢ ( )

1=V

The RHS becomeg™*~") 37" B;u;(1,1), where

Gilwy) E (e yim) * an(w,ysm)]
= i:H (==t Db (2, ym) « 0l @y m = 1) (75)
=0
= S [f]a e ysnse - s - e
ll%zol(w,ya ) xa(m =Ly —)an—j—ypyi(z,y;m —v) (76)
= w3 [0

bj—i(z,y;m) * a(m — L, v — Dan—j—pri(z,y;m —v),

where [75) and. (76) follow Lemmas 6 ahH 5 respectively.

We have

bi—ixa(m—1Lv—Dap,—j_pp) (1, 1;m —v)---
= Z [Zqi(n_j_uﬂ) {j Z_l]( Dig%alm—i—1v—1) [n_i:?+l]a(m— V—i,u—i)]
u=0 Li=

Jl —l

)

=0
- (m v)(n—v=j+l) ( j _l) ( _jvy_j)q(j_l)(m_j)7 (77)

where [Z7) follows Lemmé&12. Hence

Yi(L1) = By a(m — v — g/
J .
n-— bt 4 (o} .
ZH[,,_‘Z] (1) gl — 1,5 - 1)
=
m(n—v)+v(l—n)+o v— 'U,TL—'
o N LSV ] N R

where [78) follows Lemma_13. Incorporating this expresdimm;(1,1) in the definition of the RHS

and rearranging both sides, we obtain the result. [ |
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E. Proof of Propositior 7

Proof: Eq. (24) can be expressed in terms of thgm,u) and [Z]p functions as

S| A= o [ e daym v )B a9
i=v p Jj=0
We obtain
pmkz m A, = pmkzpmgp(l,z)sp(u,l)z m A; (80)
i=0 Lp 1=0 =l “APp
v l
= > B, 1Sy 1) lZ[n_J Pt ey (m — 51— §)B;  (81)
=0 7=0
= S B (08,0001 | 1] agtm =1 =)
Jj=0 =3 D
where [80) and[(81) follow(28) and_([79) respectively. [ |

F. Proof of Lemma&l9

Proof: We first prove [(3B):

e - Ergengloee

q—mk A A
— a(}\ )\) Z |:l:| l O'l n()\ 1) Zq(u A1) (n—1)
7T 1=0
1 A I o1 n(A—1)

O

1=
where [82) followsa (i, \) = S0, m( 1)!¢71¢"*~D . We now prove[(39): since

H“ B (%)M B ﬁé <5><—1>“qi“= (83)

n
Tl,,u,u(c) _ v(n—i AZZ <a> a za

we obtain
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G. Proof of Proposition I8

Proof: From [27, (3.3.6)], we obtain™ | = -7 [¥](~1)"~!¢7-1¢"™=), and hence

- a(vy)

q—mk En: |:’I’L ; ’L:| Az _ —mk Z A ( Z |: :|(_1)V—lqoqul(n—i)
=0

:| zx l o, lzq n—i)

I
l—|

) g7 To.04(C), (84)

I
T
|—|

7

where [84) follows[(317). By Corollafyl 2, we have fior< dp, > [}](=1)" "' q7 ' Tp,0.(C) = ¢-™ a(n,v),

and we obtain

v

ZV: [V.]a(n,j)q_mj > [ } li: H 1)771g7 1Ty 0,4(C)

i=o =0

= Tovo,l(C)m - {I{—Z](_l)j—zqaﬂ
j=0
= To0.(C), (85)

where [85) foIIowsZJ”;é [”;l](_l)jqaj = ¢,,;, Which in turn is a special case of [27, (3.3.6)]. This
proves|(4D). Thusly o, (C) is transparent to the code, and](41) can be shown by choGsing:F (¢™)"

without loss of generality.

SupposeS(v,n,m) gef >0 H (n,j)g~™, then S(v,n,m) = S(n,v,m) since ma(n,j) =

[*]a(v, j). Also, combining [4D) and(31) yieldS(v,n,m) = ¢"“~™S(n,m,v). Therefore, we obtain

S(v,n,m) = ¢*"=™ S(v,m,n), which proves[{4R). [}
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