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ABSTRACT. Possible deviations from linearity of the LMC Cepheid PL and PLC relations are
investigated. Two datasets are studied, respectively from the OGLE and MACHO projects. A
nonparametric test, based on linear regression residuals, suggests that neither PL relation is linear. If
colour dependence is allowed for then the MACHO PL relation is found to deviate more significantly
from the linear, while the OGLE PL relation is consistent with linearity. These finding are confirmed
by fitting “Generalised Additive Models” (nonparametric regression functions) to the two datasets.
Colour dependence is shown to be nonlinear in both datasets, distinctly so in the case of the MACHO
Cepheids. It is also shown that there is interaction between the period and colour functions in the
MACHO data.

Key words: methods: statistical - stars: variables: Cepheids - cosmology: distance scale

http://arxiv.org/abs/0706.1762v1


1 INTRODUCTION

Cepheids are important objects in Astrophysics, both because of their use in the extra-galactic distance scale
and their role in stellar evolution. Their regularly repeating light curves offer an important opportunity to test
theories of stellar evolution against stellar pulsation: mass-luminosity (ML) relations mandated from evolu-
tionary calculations can be used as input to full linear and non-linear hydrodynamic models of Cepheids and
compared to observations. These ML relations contain input about evolutionary physics such as the amount
of convective overshoot. Constraining theoretical models with observations can be used to gain considerable
insight into evolutionary/pulsation physics. On the other hand the Cepheid period-luminosity (PL) relation
has played an important role in establishing the extra-galactic distance scale and the subsequent estimation of
Hubble’s constant, H0. The HST Key Project (Freedman et al. 2001) has used HST observations of Cepheids
in a number of galaxies to estimate H0 to within 10% accuracy. The crucial step in this work has been the
Cepheid PL relation in the Large Magellanic Cloud (LMC) which has been used to characterize a Cepheid PL
relation template. This PL template has traditionally been thought to be linear, however there has also been
recent work implying a variation of the slope with period in the LMC (Tammann & Reindl 2002; Kanbur &
Ngeow 2004, 2006; Sandage et al. 2004; Kanbur et al. 2007a; Ngeow et al. 2005; Ngeow & Kanbur 2006a,b).

Ngeow and Kanbur (2006c) estimate the error in estimating H0, if a linear Cepheid PL relation is assumed
and the underlying relation is ”non-linear” at a period of 10 days, and find this can lead to an error of about
1−2%. Such an error seems small but with significant work being carried out to reduce zero point errors (Macri
et al 2006), it is important to construct as accurate a distance scale as possible that is independent of the CMB.
Further, table 2 of Spergel et al (2007) points to the fact that an independent estimate of H0, accurate to less
than 5%, will help to break the degeneracy between Ωmatter and H0 present from WMAP CMB studies. An
independent estimate of H0 accurate to 1% will result in a reduction of the 65% confidence interval on Ωmatter

by almost a factor of two over that with WMAP data alone.
In previous studies, a rigorous statistical test, the F test, was applied to the LMC Cepheids to test for the

linear versus non-linear PL relation. Here by “non-linear” we mean two lines of significantly differing slope
which are continuous at a period of 10 days. The F test results that were obtained from the OGLE (Optical
Gravitational Lensing Experiment, Udalski et al. 1999) and MACHO Cepheid data, in Kanbur & Ngeow (2004;
2006) and Ngeow et al. (2005) respectively, strongly imply that the LMC PC/PL relations are non-linear. It
is important to note that several other statistical tests, such as the χ2 tests, least absolute deviation, robust
estimation and loess procedures, were also applied to the MACHO data, and these results also point to a non-
linear LMC PL relation (Ngeow et al. 2005). Recently, Kanbur et al (2007a) developed the use of testimators
and a likelihood based method using the Schwarz Information Criterion, to study non-linearities in the LMC
PL relation (using both OGLE and MACHO Cepheid data) and again came to the same conclusion: the LMC
Cepheid PL relation is non-linear in the sense described above. The F test also suggested that the LMC
period-colour (PC) relation is non-linear, in contrast to the Galactic and SMC (Small Magellanic Cloud) PC
relations (Kanbur & Ngeow 2004). Since the question of the non-linearity of the LMC PL relation is important
in distance scale and stellar studies, it is vital to establish this as firmly as possible; this is one of the motivations
for this paper.

In addition to investigating the non-linearity of the LMC PL relation, we also study the LMC period-
luminosity-colour (PLC) relation. A number of authors, including Sandage (1958) and Madore and Freedman
(1991) have derived the Period-Luminosity-Color (PLC) relation and shown how it arises from the period-mean
density theorem, the Stefan-Boltzmann law and the existence of an instability strip. These authors also point
out that the PL/PC relations are obtained from the PLC relation by averaging over the variable not included
in the relation.

In Section 2, we briefly describe the data used in our study. In Section 3 we apply a preliminary test study on
the LMC PL relation. This is followed by more detailed analysis in Section 4, based on a non-parametric model
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fitting procedure. An extension to the PLC relation is presented in Section 5. The conclusion and discussion of
our results are given in Section 6.

We add a few sentences on the use of non-parametric methods in what follows. The term “non-parametric”
is actually used in three slightly different senses. First, the major innovation (sections 4 and 5) in this paper
is the use of “non-parametric regression”. The meaning is not necessarily the usual one of “distribution-free”:
rather, it means that the form of the regression is not specified – the regression function is “unstructured”,
being dictated by the data itself. Of course, this flexibility allows one to detect subtleties which may otherwise
be overlooked. Second, in the next section of the paper we use a well-known distribution-free statistic, the
“Wald-Wolfowitz runs test”. This non-parametric statistic uses only data ranks, and hence typically not very
powerful. Third, also in the next section use is made of a permutation method. This avoids distributional
assumptions about the data, by using re-orderings of the data itself to establish significance levels.

2 THE DATA

We use two sets of LMC Cepheid data in our study. The first data set is the extinction corrected V -band mean
magnitudes and (V −I) colours for the OGLE LMC Cepheids taken from Kanbur & Ngeow (2006), supplemented
with additional Cepheids from Sebo et al (2002), and referred as “OGLE” data in this paper. The second data
set is the MACHO Cepheids data, with extinction corrected V mean magnitudes and (V −R) colours, adopted
from Ngeow et al (2005). Using these two data sets allow us to compare the results, particularly for the different
photometric filters used.

A possible complication is that any apparent non-linearity in PL or PLC relations could be caused by
extinction errors which are a function of colour or period. Arguments against extinction errors as a cause of
observed non-linear LMC PL and PC relations were presented in Kanbur & Ngeow (2004), Kanbur & Ngeow
(2006), Kanbur et al. (2007b), Ngeow et al. (2005), Ngeow & Kanbur (2006b) and Sandage et al. (2004), and
will therfore not be repeated in detail here. In particular, a possible period dependency of extinction errors has
been investigated in Ngeow & Kanbur (2006b). If such extinction errors were present, then the PC relations at
maximum light would be such that LMC Cepheids would get hotter at maximum light as the pulsation period
increases: a fact which would be hard to reconcile with pulsation theory especially as Galactic Cepheids, in
common with LMC Cepheids, display a flat PC relation at maximum light (Kanbur & Ngeow 2004, 2006).
Further, the dependence of extinction error on colour would need to be very complicated to explain both the
non-linearity at mean light whilst preserving the flatness at maximum light.

It is also noted that the reddening values adopted here are the same as those used in many distance scale
studies (Freedman et al. 2001).

3 A PRELIMINARY INVESTIGATION BASEDON A TEST PRO-

CEDURE

Figs. 1 and 2 show the MACHO and OGLE PL data, with least squares linear fits of the form

V = a+ b logP + error . (1)

For the sake of completeness,

V = 17.08(0.026)− 2.70(0.039) logP (MACHO)

V = 17.05(0.020)− 2.69(0.028) logP (OGLE) (2)
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where standard errors of coefficient estimates are given in brackets. Although both fits are excellent, it is
nonetheless of some interest whether there may be subtle deviations from the strictly linear relations between
V and logP shown by the lines: although this may have little importance for prediction of luminosity given the
period, it could (e.g.) have an important bearing on the modelling of Cepheid pulsations.

A simple procedure which provides some insight into the problem is to study partial sums of the residuals
of the least squares fits. First arrange the data so that the period values are in ascending order:

P1 < P2 < P3 < . . . < PN

where N is the sample size. Then

C(j) =

j∑

k=1

[Vk − a− b logPk] =

j∑

k=1

rk (3)

are the partial sums of the residuals rk. If there are no deviations from linearity, then C(j) is the sum of
uncorrelated random numbers and hence a simple random walk. However, if there are deviations from linearity
successive residuals may be correlated, and hence C(j) will not be a simple random walk. Partials sums of the
rk can be seen in Figs. 3 and 4.

A statistic which can be used for testing whether the partial sum is a pure random walk is its vertical range

R = max
j

C(j)−min
j

C(j) :

this may be expected to be inflated by positively correlated residuals. Significance levels for the values of R are
readily obtained by permutation, as follows:

(i) Permute the rk; this will randomise the residuals by destroying any possible trends.

(ii) The partial sums of the permuted rk will be true random walks – find the statistic R for the permutation.

(iii) Repeat steps (i) and (ii) a large number of times, noting the values of R.

(iv) Determine the fraction of permutation R-values which exceeds the observed value – this estimates the
significance level of the observed R.

Applying 10000 permutations, significance levels of 3% and 4% were obtained for the MACHO and OGLE data
respectively, suggesting meaningful deviation of the observed rk from randomness. The implication is therefore
that the PL relation is not perfectly linear.

Study of Figs. 3 and 4 shows that there is an excess of positive residuals for logP ∼ 0.5 and logP > 1, and
an excess of negative values for 0.8 < logP < 1.

Interestingly, application of the standard Wald-Wolfowitz runs test (e.g. Conover 1971) for randomness of
the residuals gives conflicting results for the two datasets – significance levels of 45% and 0.9% for the OGLE
and MACHO data respectively. Of course, the procedure uses only the signs, and not the sizes, of the rk.

It is known that Cepheids follow a PLC, rather than simply a PL, relation. It may therefore be prudent to
replace (1) by

C(j) =

j∑

k=1

[Vk − a− b logPk − c(CI)k] (4)

where (CI) indicates a colour index, with regression coefficient c. This has a substantial influence on the
significance levels of the statistic R: for the OGLE data is increases to 33%, while the level for the MACHO
data is reduced to 0.7%. The corresponding Wald-Wolfowitz test levels are 43% and 1.5%.

To summarise, there is strong evidence of non-randomness in the residuals of the MACHO data, both for
the PL and the PLC relations. For the OGLE data the results are ambiguous.
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4 PL RELATION

An alternative to the imposition of a fully specified parametric model such as (1) is to allow the form of the
regression to be dictated by the data. The idea is conveniently illustrated by a technique known as “loess” (see
e.g. Cleveland & Devlin 1988). Ngeow et al (2005) initially used this method on MACHO data and found a
similar result to that reported here. Here we study it in more detail and apply it to both MACHO and OGLE
Cepheid data. The method entails fitting a low order polynomial (in the present case a straight line) over
restricted sections (“windows”) of the data by weighted least squares. In the implementation here the only free
parameter is the width α of the window, which is usually given as a fraction of the range of the independent
variable (i.e. 0 < α ≤ 1) . The smaller α the more “local” the estimated regression, and the more detail it
shows. Fig. 5 shows a loess regression of the OGLE data, using α = 0.05; if α is increased towards unity the
loess regression resembles the linear fit of Fig. 2.

A key element is then obviously the choice of window width α, and it is desirable to use an objective method
to find it. This is readily done by “cross-validation”:

(i) Choose a value of the window width α.

(ii) Leave out the first datapoint and obtain a loess estimate V̂1 of the magnitude V1 by fitting the regression
to the remaining data.

(iii) Note the discrepancy

∆1 = V1 − V̂1

between the true and predicted values.

(iv) Repeat steps (ii)-(iii) for the second, third,..., last datapoints, giving the set ∆1,∆2, . . . ,∆N of discrep-
ancies.

(v) The value of the cross-validation criterion for the value of α from (i) is the defined as

CV (α) =
1

N

N∑

j=1

∆2

j =
1

N

N∑

j=1

(Vj − V̂j)
2 (5)

Clearly, it evaluates the predictive power over all the observations of the loess fit based on the particular
value of α.

(vi) Repeat steps (i)-(v) for all candidate values of α.

(vii) The optimal α is that which minimises CV (α).

The cross-validation functions for the two datasets are plotted in Fig. 6; optimal window widths are 0.36 and
0.20 respectively for the MACHO and OGLE observations. In Figs. 7 and 8 the resultant loess functions are
compared to the regression lines from (1). A small difference between the curves over the approximate interval
0.8 < logP < 1 is visible in both diagrams. There is also a substantial disagreement at the longest periods
for the MACHO results in Fig. 7: this is clearly due to the systematic difference between the data and the
linear regression line for logP > 1.25 (see Fig. 1). Similarly, the slight divergence between the loess and linear
regression lines at the longest periods in Fig. 8, can be traced to the influence of the two OGLE datapoints
with logP > 1.7 (see Fig. 2).

The question arises as to whether the discrepancies between the loess curves and the straight line fits are
at all meaningful. In order to address this issue confidence intervals for the loess curves are estimated by
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bootstrapping (e.g. Efron & Tibshirani 1993). The results, based on 5000 bootstrap samples, are plotted in
Figs. 9 and 10. Rather than showing the linear regression line and the 95lower limits, the difference between
the linear fit and the confidence limits are plotted, in order to more clearly display the deviations. It is notable
that the linear fits lie outside the confidence intervals for the loess functions for 0.8 < logP < 1 roughly. This
supports previous work which has suggested a ”break” around a period logP ≈ 1 (Kanbur & Ngeow 2004,
Ngeow et al 2005, Kanbur et al 2007a).

The R software add-on package “mcgv” contains an alternative nonparametric regression facility in the form
of thin plate regression splines (TPRS) (e.g. Wood 2006). The form of cross-validation used is based on a
balance between the sum of squared model residuals (which measures the goodness of the model fit) and a
smoothness term. Cross-validation in mcgv is automated.

The loess and TPRS results are compared for the MACHO and OGLE respectively in Figs. 11 and 12. The
agreement is very good – in particular, the deviations from linearity for 0.8 < logP < 1 are also evident in
the TPRS results. Despite the fact that more effective degrees of freedom are required for the nonparametric
fits (6.41 and 8.71 for the TPRS fits to the MACHO and OGLE data respectively) than for linear regression
(3 degrees of freedom), the former fits follow the data considerably more closely. Model selection tools such as
the “Akaike Information Criterion” (AIC, e.g. Burnham & Anderson 2002) can be used to test whether the
improved model fit warrants the additional degrees of freedom expended. In this case, the TPRS fits are both
preferred by very wide margins.

5 PLC RELATION

Unusual datapoints can have substantial, often somewhat distorting, influences on regression surfaces. It is
therefore worthwhile examining the datasets carefully in order to identify such data. This is most easily done
using ordinary multiple linear least squares regression.

Fitting PLC relations to the two datasets give the results

V = 16.23(0.026)− 3.30(0.029) logP + 3.95(0.093)(V −R) (MACHO)

V = 15.97(0.025)− 3.23(0.018) logP + 2.30(0.049)(V − I) (OGLE) (6)

with residual standard deviations 0.164 and 0.097 mag. Regression diagnostics were examined in order to
identify observations which gave rise to large residuals and/or were unduly influential on parameter estimates.
“Cooks’s D” statistic was used for the latter purpose – see e.g. Montgomery, Peck & Vining (2001) (or almost
any other modern text devoted to linear regression theory). Three points were eliminated from the MACHO
data, and four from the OGLE data, on the basis of these diagnostics. The PLC relations were then re-estimated
for the reduced datasets, and the new sets of diagnostics examined. This led to a further two deletions from
the OGLE data. The final results, replacing (6), are

V = 16.23(0.026)− 3.32(0.029) logP + 4.00(0.092)(V −R) (MACHO)

V = 15.89(0.021)− 3.29(0.015) logP + 2.48(0.041)(V − I) (OGLE) (7)

with residual standard deviations of 0.162 and 0.074 mag. The substantial reduction in residual variance, and
large changes in regression coefficients for the OGLE results are particularly striking.

It is interesting to examine the positions of the rejected observations in three-dimensional dataplots. The
plots in Figs. 11 and 12 were obtained by selecting perspectives which clearly show the positions of all question-
able data. It is clear the observations for each dataset lie close to a plane, and that points with unsatisfactory
regression diagnostics (marked by squares) all deviate from the plane. The fact that the plane in Fig. 12 (OGLE
data) is so well-defined explains why removal of the outlying points made such a substantial difference to the
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estimated coefficients. In the remainder of this paper we work with the reduced datasets (N = 1213, 717 for
MACHO and OGLE data respectively). Note that one high-influence datum in the OGLE data is retained (for
the brightest Cepheid – see Fig. 12), since its associated residual is very small, and since its omission has very
little influence on the values of the three estimated parameters.

An obvious extension of the linear PLC relation to the nonparametric case is the so-called “Generalised
Additive Model”

V = α+ fP (logP ) + fC(CI) + error (8)

where α is a constant; CI denotes a colour index; and fP and fC are nonparametric regression functions such
as loess or TPRS fits. Due to the several attractive features (automated cross-validation, to mention but one)
the R add-on package is once again used to perform TPRS fits of (8) to the data.

The results can be seen in Figs. 15 and 16. The estimated fP for the OGLE data is linear: the effective
degrees of freedom, 1.00, confirms this. By implication the model (8) reduces to

V = α+ β logP + fC(CI) + error . (9)

Not surprisingly, the AICs of models (8) and (9) are exactly equal for the OGLE data.
The function fP for the MACHO data shows the familiar deviation from linearity in the range 0.8 < logP <

1; this is more clearly demonstrated in Fig. 17, where a linear fit to fP has been subtracted.
Inspection of the fC functions in Fig. 16 shows that both are distinctly nonlinear.
It is of obvious interest to investigate why fP reduces to the perfectly linear form in the case of the OGLE

data, when the dependence of V on logP in the PL relation is nonlinear. Examining the relationship between
logP and the colour index (V − I) gives some insight into this question. The results of a loess regression of
(V − I) on logP for the OGLE data are displayed in Fig. 18. The 95% confidence intervals, obtained from
5000 bootstrap samples, are also shown. Calculations were done using a smoothing window of width 0.20, as
indicated by cross-validation. The analogous plot for the MACHO data, based on a smoothing window width
of 0.33, is in Fig. 19. In the case of the OGLE data there is a clear change in the relationship between logP
and (V − I) in the neighbourhood 0.8 < logP < 1. It appears that small deviations from linearity in the PL
relation in Fig. 8 are compensated by the colour dependence. In the case of the MACHO data the kink in the
PC plot (Fig. 19) is of similar size to that in Fig. 18, but the deviation from linearity in the PL plot is larger
(Fig. 7). This may explain why the fP function remains nonlinear in the case of the MACHO PLC relation.
These results support similar work presented in Kanbur and Ngeow (2004) and Ngeow and Kanbur (2005) on
the non-linearity of the LMC PC relation using F tests, and on the linearity of the LMC Wessenheit function.

Nonparametric regression lends itself to much more flexible forms than ordinary multiple regression. Two
possible alternatives to (8) are

V = α+ fP (logP ) + fC(CI) + fPC(logP,CI) + error (10)

and
V = α+ fPC(logP,CI) + error (11)

which allows for interaction between the two independent variables.
The two Generalized Additive Models (10) and (11) were also fitted to both datasets. For the OGLE data,

the AIC-preferred model is (10), but a more detailed analysis (ANOVA) shows that the contribution from the
interaction function fPC is not significant – hence the model effectively reduces to (8). For the MACHO data
the pure interaction model (11) is preferred, with (10) the second choice. According to the AIC, the additive
model (8) is a very distant third choice. A contour plot of the fit of the model (11) can be seen in Fig. 20 –
this demonstrates why (8) is inadequate. Of course, in practice (11) would be more tedious to work with than
the simpler additive form (8).
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A few words of explanation of Fig. 20 may be in order. The form of a purely linear PLC relation would of
course be

V = a+ b logP + cCI + error .

One way of displaying this graphically would be to draw the lines

V = constant

in the logP -CI plane, for various values of the constant. The equations describing these contour lines are

CI = (V − b logP − constant)/c+ error ,

i.e. straight lines with slope −b/c. Fig. 20, the equivalent for the non-parametric function fPC , shows not only
that the relations are nonlinear, but also that there is “interaction” – the form of the relation depends on the
region of the logP–(V −R) plane it inhabits.

6 CONCLUSIONS & DISCUSSION

It should perhaps come as no surprise that with the acquisition of large amounts of new data finer detail in the
relationships between astrophysical observables are uncovered. The best-fitting models of the two datasets are
given by (11) (MACHO) and (9) (OGLE) respectively, which both are both nonlinear.

Estimates of the effect of such small non-linearities on the Cepheid distance scale and on Hubble’s constant
are given in Ngeow and Kanbur (2006c) and amount to 1 − 2%. Such an error seems small but in the era of
”precision cosmology” with a drive toward a distance scale accurate to 5%, such an effect is important. Perhaps
just as important, a proper characterization of the precise detail in the observed phenomena will assist in placing
improved constraints on pulsation models of Cepheids and in particular on their ML relations, and hence on
details of stellar evolutionary physics such as the amount of convective core overshoot.

A possible physical explanation for this non-linearity is outlined in the papers by Kanbur et al. (2004),
Kanbur & Ngeow (2006) and Kanbur et al. (2007b), which studied Galactic, LMC and SMC Cepheid models
respectively. Briefly, these papers suggest the non-linearity is caused by the interaction of the hydrogen ionization
front (HIF) and photosphere and the way this interaction varies with period. At low densities, if the HIF
and photosphere are engaged (i.e. the photosphere lies at the base of the HIF) then the temperature of the
photosphere and hence the colour of the star are almost independent of global stellar properties such as the
period. Since the relative location of the photosphere and HIF varies with the L/M ratio, and since this varies
with period, modelling has implied that for LMC Cepheids with a period greater than 10 days, the photosphere
and HIF are not engaged. Thus these stars have a different PC relation than their shorter period counterparts,
Because the PC and PL relations are really forms of the PLC relation, then a change in the PC relation results
in a change in the PL relation. Galactic Cepheids are such that the HIF-photosphere interaction only really
occurs at maximum light at low densities. LMC Cepheids are such that this HIF-photosphere interaction starts
to occur at low densities only for Cepheids with periods greater than 10 days. SMC Cepheids are such that
this HIF-photosphere interaction always occurs at high densities (Kanbur et al. 2004; Kanbur & Ngeow 2006;
Kanbur et al. 2007b).
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Figure 1: MACHO PL data for LMC Cepheids. The line is a linear least squares fit to the data.
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Figure 2: OGLE PL data for LMC Cepheids. The line is a linear least squares fit to the data.
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Figure 3: Partial sums of the residuals from the fit in Fig. 1.
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Figure 4: Partial sums of the residuals from the fit in Fig. 2.
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Figure 5: An illustrative loess regression on the OGLE PL data. The window width is 0.05, i.e. 5% of the range
of logP .
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Figure 6: Cross-validation functions for the loess window width α, for the MACHO (top) and OGLE (bottom)
data.
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Figure 7: A comparison of the optimal loess fit to the MACHO data, and the linear regression from (1).
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Figure 8: A comparison of the optimal loess fit to the OGLE data, and the linear regression from (1).

12



0.4 0.6 0.8 1 1.2 1.4

−0.1

0

0.1

0.2

0.3

Log P

(L
oe

ss
 c

on
fid

en
ce

 li
m

its
) 

−
 (

lin
ea

r 
fit

)

Figure 9: The positions (with respect to the linear regression line) of the upper and lower 95% confidence limits
on the loess fit to the MACHO data.
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Figure 10: The positions (with respect to the linear regression line) of the upper and lower 95% confidence
limits on the loess fit to the OGLE data.
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Figure 11: Differences between the linear fit and the loess (black, less smooth) and thin plate regression spline
(red, smooth) results for the MACHO data.
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Figure 12: Differences between the linear fit and the loess (black, less smooth) and thin plate regression spline
(red, smooth) results for the OGLE data.
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Figure 13: The 1216 observations constituting the MACHO dataset. Filled squares mark the three points
selected for deletion on the basis of residual diagnostics.
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Figure 14: The 723 observations constituting the OGLE dataset. Filled squares mark the six points selected
for deletion on the basis of residual diagnostics.
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Figure 15: The regression functions fP [see Eqn. (8)] for the OGLE (top)and MACHO (bottom) data. The ±2
standard error confidence limits are plotted as solid lines: these are indistinguishable from the functions except
for the longer period MACHO data.
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Figure 16: The regression functions fC [see Eqn. (8)] for the MACHO (left) and OGLE (right) data. The ±2
standard error confidence limits are plotted as solid lines.
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Figure 17: The regression functions fP for the MACHO data (see Fig. 15, bottom plot) prewhitend by a linear
fit, in order to show more clearly the deviations from linearity. The ±2 standard error bounds are also plotted.
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Figure 18: A loess regression function fitted to the logP–(V − I) data from the OGLE observations. The solid
lines are the 95% confidence envelopes, obtained by bootstrapping.
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Figure 19: A loess regression function fitted to the logP–(V − R) data from the MACHO observations. The
solid lines are the 95% confidence envelopes, obtained by bootstrapping.
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Figure 20: A contour plot of the function fPC in (11) fitted to the MACHO data. The contour values decrease
from +1.5 at the top left, in steps of 0.5, to -2 at the extreme right. The ±1 standard error bounds for each
contour line are also shown.
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