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Geometrical shock dynamics, also called CCW theory, yields approximate equations for
shock propagation in which only the conditions at the shock appear explicitly; the post-
shock flow is presumed approximately uniform and enters implicitly via a Riemann in-
variant. The nonrelativistic theory, formulated by G. B. Whitham and others, matches
many experimental results surprisingly well. Motivated by astrophysical applications, we
adapt the theory to ultra-relativistic shocks advancing into an ideal fluid whose pressure
is negligible ahead of the shock, but one third of its proper energy density behind the
shock. Exact results are recovered for some self-similar cylindrical and spherical shocks
with power-law pre-shock density profiles. Comparison is made with numerical solutions
of the full hydrodynamic equations. We review relativistic vorticity and circulation. In an
ultrarelativistic ideal fluid, circulation can be defined so that it changes only at shocks,
notwithstanding entropy gradients in smooth parts of the flow.

Gamma-ray-burst afterglows have spurred us to look into this problem. These cosmo-
logically distant events are believed to involve a shock launched by the death of a massive
star with initial Lorentz factor Γ0 > 102 relative to a pre-shock circumstellar wind (mass
density ρ0 ∝ r−2) or interstellar medium (ρ0 ∼ constant): see van Paradijs et al. (2000);
Piran (2005); Mészáros (2006) for reviews. Light curves fluctuate strongly at early times,
probably because of unsteadiness in the source; later, brightness falls approximately as
a power law in time but often with undulations that may be due to inhomogeneities
ahead of the shock. The observed radiation appears to be synchrotron emission, which
implies that & 10−2 of the postshock energy density takes the form of magnetic field and
highly relativistic electrons. Even after compression by the shock, typical circumstellar
or interstellar fields would be many orders of magnitude too small. Therefore, it is often
supposed that magnetic energy is created rapidly by plasma instabilities at the shock
front (Medvedev and Loeb 1999). We wish to explore whether the compressed preshock
field might instead be amplified gradually by macroscopic fluid turbulence. The source
of the turbulence is supposed to be vorticity produced as the shock passes over inho-
mogeneities in the ambient medium. Astrophysical applications, however, are deferred
to a later paper. Our purpose here is to develop and test suitable theoretical tools: a
relativistic version of geometric shock dynamics (hereafter GSD); and, independently, a
suitable redefinition of relativistic vorticity that leads to conservation of the circulation
on any fluid contour that does not cross a shock.
The elements of nonrelativistic GSD were developed in the 1950s (Moeckel 1952;

† Present address: Princeton University Observatory, Princeton, NJ 08544, U.S.A. e-mail:
jeremy@astro.princeton.edu

http://arxiv.org/abs/0706.1818v1


2 J. Goodman and A. MacFadyen

Chester 1954; Chisnell 1957; Whitham 1957, 1958, 1959). Whitham (1974) gives a ped-
agogical review, upon which we have relied heavily. The one-dimensional version of the
theory gives a functional or even algebraic relationship (rather than a partial differential
equation) between variations in the pre-shock density and variations in the shock Mach
number. The multidimensional version describes the effect of changes in shock area—
divergence or convergence of the shock normals—on the Mach number. Thus, the theory
reduces the dimensionality of the problem by one: in three dimensions, for example, it
gives a closed set of equations for the evolution of the shock surface. GSD has even been
adapted to reacting flows (detonation waves: Li and Ben-dor 1998).
Naturally, there is a price to be paid in accuracy for these simplifications. For a recent

critique, see Baskar and Prasad (2005). Nevertheless, GSD often performs remarkably
well when there is reason to expect that fluid gradients or geometrical constraints near
the shock ought to dominate, rather than reflections from boundaries behind the shock,
and even in some cases where there is no such expectation. GSD successfully describes
diffraction of shocks around corners, acceleration of converging shocks, and even the
propagation of kinks (“shock shocks”) along shock fronts, as judged by comparisons with
experiment and with exact self-similar solutions (Bryson and Gross 1961; Schwendeman
1988; Whitham 1974, and references therein).
Relativistic units in which the speed of light c = 1 will be used. We adopt the con-

ventions of Schutz (1990) for tensors; in particular, the metric in Minkowski coordinates
xµ = (x0 = t, x1, x2, x3) is ηµν = diag(−1, 1, 1, 1), while T µν and T µ̄ν̄ denote the compo-
nents of the same tensor in two Lorentz frames O, Ō. In all cases considered here, the
energy density of the pre-shock fluid will dominated by rest mass, so that pressure and
turbulent motions can be neglected ahead of the shock.

1. Planar shocks

Our goal is to transcribe GSD for an ultrarelativistic ideal fluid. Following Whitham
(1974), we begin with the case that the area of the shock is constant and the pre-shock
density (ρ0) is stratified on planes parallel to the shock front. In place of Mach number,
we will be concerned with shock Lorentz factor (Γ) or rapidity parameter (Φ), the two
being related by Γ ≡ coshΦ ≈ eΦ/2 ≫ 1. These quantities are defined in the rest-frame
of the pre-shock medium.
The construction of GSD proceeds in two parts. First, the jump conditions are derived

from the basic conservation laws; these relate the post-shock fluid properties to the pre-
shock ones if Γ is given. This step is potentially exact but simplifies after approximations
based on Γ ≫ 1, ρ ≈ 3P , and P0 ≪ ρ0. Next, characteristic equations are derived for the
post-shock flow, and the (uncontrolled) approximation is made that one of the Riemann
invariants has a known and uniform value behind the shock.

1.1. Jump conditions

For a planar shock propagating in the x1 direction, the relevant components of the
energy-momentum tensor are

T 00 = (ρ+ P )γ2 − P, T 01 = (ρ+ P )γ2β, T 11 = (ρ+ P )γ2β2 + P, (1.1)

where the fluid 4-velocity has components

Uµ → (γ, γβ, 0, 0) ≡ (coshφ, sinhφ, 0, 0)

measured in the shock rest frame. The proper energy density ρ and pressure P are defined
in the local fluid rest frame, so that they are Lorentz invariants.
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The jump conditions in the shock rest frame are that T 01 and T 11 should be continuous.
Since P ≈ ρ/3 behind the shock and P0 ≪ ρ0 in front of it, these conditions become

T 01 : 4Pγ2β = −ρ0 Γ2 T 11 : 4Pγ2β2 + P = ρ0 Γ
2. (1.2)

Consistent with the ultra-relativistic approximation, the pre-shock three-velocity has
been set to −1, which incurs an error ∼ O(Γ−2). Eliminating Γ2ρ0 between the two
equations, dividing through by P , and setting γ−2 → 1− β2 yields (3β + 1)(β + 1) = 0.
The root β = −1 corresponds to no shock at all. Therefore, β = −1/3 in the shock frame.
In terms of the rapidity parameters of the fluid and the shock, tanh(Φ− φ) = 1/3. The
latter is a covariant formulation since a Lorentz boost along x1 with velocity v simply
adds tanh−1 v to both φ and Φ. Substituting β = −1/3 and γ2 = 9/8 into either of
eqs. (1.2) yields P = (2/3)Γ2ρ0. So, the jump conditions are

φ = Φ− tanh−1 1
3
= Φ− ln

√
2 , (1.3a)

ζ ≡
√
3
4

lnP ≈
√
3
4

(ln ρ0 + 2Φ− ln 6) . (1.3b)

The peculiar factor
√
3/4 will simplify the characteristic equations below.

1.2. Whitham’s Characteristic Rule

Equations (1.3) give two relations among the four variables (φ,Φ, ζ, ln ρ0), or equivalently,
(γ,Γ, P, ρ0). They are exact up to terms O(Γ−2). Whitham’s formulation of GSD adds
one more condition: the Riemann invariant associated with the characteristics that go
upstream from the postshock flow toward the shock, R+, is supposed to have the same
value as it would if the shock were a transition between constant states. The rationale is
that the perturbations to the shock front are supposed to be localized; they are driven by
small-scale density variations in the pre-shock fluid, or by local geometrical constraints
on the shock, and therefore these perturbations are supposed to average out downstream.
So the next step is to derive the Riemann characteristics from the equations of motion

T µν
,ν = 0. This has been done in greater generality elsewhere (Mart́ı and Müller 1994),

but for completeness we shall rederive the special case we need. With eqs. (1.1), the
equations of motion become

T 0ν
,ν ∝ (2 cosh 2φ+ 1)

4√
3
ζ̇ + (4 sinh 2φ)φ̇+ (2 sinh 2φ)

4√
3
ζ′ + (4 cosh2φ)φ′ = 0,

T 1ν
,ν ∝ (2 sinh 2φ)

4√
3
ζ̇ + (4 cosh 2φ)φ̇+ (2 cosh 2φ− 1)

4√
3
ζ′ + (4 sinh 2φ)φ′ = 0,

in which the dots denote ∂/∂x0 and the primes ∂/∂x1. Rather than manipulate these
equations directly, it is easier to boost into the local rest frame where φ = 0, find the
characteristics there, and then boost back. Since cosh 2φ → 1 and sinh 2φ → 0, the
equations above reduce to

ζ̇ +
1√
3
φ′ = 0, φ̇+

1√
3
ζ′ = 0.

By adding and subtracting these, one sees that the characteristic velocities are ±1/
√
3,

and the corresponding invariants ζ ± φ. Boosting along x1 to any other frame simply
adds a constant to φ. Therefore,

R+ ≡ ζ + φ is constant on C+ :
(

dx
dt

)

+
= tanh

(

φ+ tanh−1 1√
3

)

, (1.4a)

R− ≡ ζ − φ is constant on C− :
(

dx
dt

)

− = tanh
(

φ− tanh−1 1√
3

)

. (1.4b)
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In Whitham’s approximation, R+ is constant not only along the C+ characteristics
but everywhere in the postshock flow, even immediately behind the shock. Therefore,
evaluating φ and ζ from the jump conditions (1.3), one obtains

Φ + λ ln ρ0 ≈ constant, where λ ≡
√
3− 3

2
≈ 0.232 (1.5)

This approximate equation predicts how the shock speed slows in response to a transitory
increase in pre-shock density: Γ ∝ ρ−λ

0 . With eqs. (1.3), we get the corresponding changes
in postshock rapidity and pressure:

φ+ λ ln ρ0 = constant; P ∝ ρ1−2λ
0 . (1.6)

1.3. Comparison with an exact self-similar solution

To reiterate, the approximation (1.5) is intended to describe localized and transitory
fluctuations in the propagation of a shock that has some prescribed average Lorentz
factor Γ̄ and advances into a “cold” medium with some prescribed, but spatially variable,
pre-shock density ρ0 and negligible internal motions and pressure. Whitham (1974) shows
that the original nonrelativistic version of his theory approximates rather well the self-
similar propagation of a planar shock from x < 0 into a power-law density profile ρ ∝
(−x)n, even though this situation does not entirely satisfy the assumptions of GSD.
The corresponding ultra-relativistic solution has been given by Sari (2006). In Sari’s

terminology, the case of interest is a planar (dimensionality parameter α = 0) “Type II”
shock with density exponent k = −n < 0. The Type I (II) solutions are those in which
the powerlaw scaling of shock position with time can (cannot) be deduced from global
energy conservation. Type II, where the scalings are determined by local conditions near
the shock—rather than the inertia of the “piston” behind it—is the case for which one
might hope that Whitham’s theory would have some success. Indeed, Sari’s equation
(26) shows that the shock evolves as Γ ∝ ρ−λ with λ exactly as in eq. (1.5)! It is not
clear why the agreement should be exact, but presumably the extreme simplicity of the
ultrarelativistic fluid equations is somehow responsible.

2. Non-planar shocks

No vorticity can be created by an exactly planar shock, yet the 1D theory above may be
adequate for estimating the vorticity produced by encounters between an ultrarelativistic
shock and a density inhomogeneity. Lorentz contraction causes the lateral dimension of
inhomogeneities viewed in the shock or postshock frame to be larger by a factor Γ ≫ 1
than the longitudinal ones, so that changes in speed and pressure are impressed upon the
immediately postshock flow before it “notices” that the changes differ at other lateral
positions. Thus it should usually be sufficient to evaluate the flow changes from the 1D
theory, and then take lateral derivatives to evaluate the resulting vorticity.
Nevertheless, it is worthwhile to extend the ultrarelativistic version of Whitham’s

theory to nonplanar shocks for several reasons:
• in order to study the stability of the shock;
• in order to compare with exact spherical and cylindrical self-similar solutions, and

with numerical tests such as refraction around an (oblique) corner;
• because the extension is not difficult.
The idea of Whitham’s nonplanar extension is to insert a factor representing changes in

shock area into the conservative form of the fluid equations. Thus let x1 be a coordinate
measuring arc length along the shock normal, and x2 and x3 be coordinates in the shock
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surface defined in such a way that a point moving along the shock normal maintains
constant (x2, x3). The equations of motion are taken to be

T 00
, 0 +A−1

(

AT 01
)

, 1
= 0

T 10
, 0 +A−1

(

AT 11
)

, 1
= 0. (2.1)

Here A is the 2D Jacobian relating the area of an element of the shock surface to its initial
area. More precisely, since the characteristic equation does not hold across the shock, A
represents the cross-sectional area of a bundle of streamlines immediately behind the
shock; since the pre-shock medium is assumed to be at rest, the flow behind the shock is
normal to it.

Equations (2.1) are not fully equivalent to T µν
; ν = 0: for µ = 1, they do not contain

the part of the covariant derivative associated with turning of the shock normal. They
do however represent the divergence or convergence of the normals, which leads to area
change and strengthens or weakens the shock. Because of the terms involving A, the
quantities R± are no longer invariant along their respective characteristics C±. The
equation for R+ works out to

(

d

ds

)

+

(ζ + φ) = − sinhφ√
3 sinhφ+ coshφ

(

d

ds

)

+

lnA

→ − 1√
3 + 1

(

d

ds

)

+

lnA , (2.2)

where (d/ds)+ ≡ ∂1 + (v+)
−1

∂1 is the derivative along the C+ characteristic, and v+ ≡
tanh[φ+tanh−1(1/

√
3)] is the characteristic velocity. The final form of eq. (2.2) is in the

pre-shock rest frame where coshφ ≈ sinhφ ≈ 1 up to O(Γ−2).

The jump conditions (1.3) are unchanged. Inserting these into (2.2) yields

d

ds
(Φ + λ ln ρ0 + µ lnA) ≈ 0, (2.3a)

λ ≡
√
3− 3

2
, µ ≡ 3

√
3− 5. (2.3b)

Following Whitham, we have made the approximation that the characteristic equation
applies on the shock, although its propagation speed [rapidity Φ = φ+tanh−1(1/3)] is not
quite the same as that of the characteristic [tanh−1 v+ = φ+ tanh−1(1/

√
3)] Consistent

with this approximation, the derivative d/ds in (2.3) is taken to be the derivative with
respect to arc length along the shock normal. Equation (2.3) predicts that the shock
decelerates locally where its area increases, and accelerates where the area decreases.
This will tend to stabilize corrugations in the shock front.

Equations (2.3) need to be supplemented by a vector equation for the shock normals.
Introduce a function τ(x, y, z) such that the locus of the shock in Minkowski coordinates

is described by t = τ(x, y, z). The normal to the shock is then ~n = ~∇τ/|~∇τ |, and its

3-velocity is ~V = ~n/|~∇τ |. The area function A of the shock satisfies

~∇ ·
(

~n

A

)

= 0. (2.4)

This is a purely geometrical, rather than dynamical, statement. Whitham (1974) demon-
strates it by applying Gauss’s Law to a “flux tube” whose sides are made up of integral
curves of ~n, and whose ends are elements of the shock surface at different times.
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2.1. Comparison with nonplanar self-similar solutions

Sari (2006)’s equation (26) for Type II solutions is equivalent to

d

dr
ln Γ = α(5− 3

√
3) −

(√
3− 3

2

)

d

dr
ln ρ,

ρ ∝ r−k being the pre-shock density. Here α = 0, 1, 2 for planar, cylindrical, and spher-
ical shocks, respectively. Since the area factor should scale as A ∝ rα in these three
geometries, equation (2.3) predicts Sari’s result perfectly.
In these self-similar solutions, dimensionality plays a limited role since individual shock

normals are constant. Whitham (1974) discusses applications of the nonrelativistic the-
ory to non-self-similar and truly multidimensional problems such as refraction of shocks
around corners and obstacles. Here we can expect eqs. (2.3 & (2.4) not to be exact since,
as noted above, they do not incorporate the full covariant derivatives in the equations of
motion, and since the streamlines behind the shock are not perfectly straight.

2.2. Detailed treatment of initially planar shocks in two dimensions.

These details will facilitate comparison with numerical solutions of the full hydrodynamic
equations for two-dimensional test cases (§4). They also serve to illustrate effects that
involve changes in the shock normal, including the transverse propagation of disturbances
along the shock front.
We take z to be the ignorable coordinate. Following Whitham again, let ψ be the

angle between the normal and the x axis, so that ∂τ/∂x = |~∇τ | cosψ = V −1 cosψ and
∂τ/∂y = V −1 sinψ. Equation (2.4) can then be rephrased as the two first-order equations

∂

∂x

(

V −1 sinψ
)

− ∂

∂y

(

V −1 cosψ
)

= 0 , (2.5a)

∂

∂x

(

A−1 cosψ
)

+
∂

∂y

(

A−1 sinψ
)

= 0 , (2.5b)

of which the first is simply the statement that ∂
2τ/∂y∂x = ∂

2τ/∂x∂y. Together with
(2.3), equations (2.5) form a hyperbolic system. This is especially clear in the paraxial
approximation where ψ ∼ O(Γ−2). To this order, we may then replace sinψ → ψ,
cosψ → 1, and V → 1− (2Γ2)−1, so that eqs. (2.5) become

∂ψ

∂x
+

1

2

∂

∂y

(

ψ2 − Γ−2
)

= 0, (2.6a)

∂

∂x
A−1 +

∂

∂y

(

A−1ψ
)

= 0. (2.6b)

With our ordering, the term in ψ2 is of higher order than the others—it results from
taking cosψ = 1− ψ2/2 rather than unity in the first of eqs. (2.6)—but it does no harm
and in fact makes the characteristic velocities work out more neatly.
If the shock is initially planar and the pre-shock density initially uniform, then (2.3)

implies that Φ + λ ln ρ0 + µ lnA is constant throughout the flow. Thus Γ in the first of
equations (2.6) is to be regarded as a function of A and (x, y), given by

Γ(A, x, y) = Γ̄ρ̄λĀµρ−λ
0 A−µ, (2.7)

in which the barred quantities are constants pertaining to the initially uniform medium
and planar shock, and ρ0(x, y) is a prescribed function. The characteristic velocities of
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the system (2.6)-(2.7) are
(

dy

dx

)

±
= ψ ± µ1/2Γ−1. (2.8)

The factor of Γ−1 is easy to interpret as a consequence of relativistic beaming. A distur-
bance propagating at the speed of light along an otherwise planar shock front would have
transverse velocity dy/dt = ±Γ−1 in the pre-shock rest frame. To leading order in Γ−1,
we may replace dt with dx in this expression, so with µ1/2 ≈ 0.4429, the characteristics
(2.8) are subluminal.
Since eqs. (2.5) and (2.6) are in conservation form, we may use them to study discon-

tinuities in the shock front itself: “shock shocks.” For a shock shock propagating at slope
U ≡ (dy/dx)ss, the jump conditions implied by (2.6) are

[

−2Uψ + ψ2 − Γ−2
]

= 0, (2.9a)
[

A−1(ψ − U)
]

= 0, (2.9b)

where [Q] denotes the discontinuity in quantity Q across the shock shock. Let us assume
a homogenous pre-shock medium, ρ0 = ρ̄ =constant, Γ =constant. Then if ψ = 0 and
A = 1 ahead of the shock shock, the post-shock-shock quantities (ψ′, A′) satisfy

(UΓ)2 =
(A′)2µ − 1

(A′)2 − 1
, ψ′ = U(1−A′). (2.10)

Thus in the limit A′ → 0, we have ψ′ = U = 1/Γ, and it follows from eq. (2.7) that
Γ′ → ∞. In the opposite limit A′ ≫ 1—but still A′ ≪ Γ1/µ so that Γ′ ≫ 1 (else the
ultrarelativisitic approximation would not apply)—we have ψ′ = −(A′)µ/Γ = −1/Γ′ and
U = −ψ′/Γ′.
Finally, because gamma-ray-burst shocks are believed to emanate from effectively

pointlike explosions, it is of interest to consider a nearly spherical rather than planar
shock. This case is effectively two-dimensional if the perturbations are axisymmetric. We
take polar coordinates (r, θ, φ) such that θ = 0,π is the axis of symmetry and define ψ
to be the angle between the normal and radial directions, i.e. ~n · ~r = cosψ. The analogs
of eqs. (2.5) then become

∂

∂r

(

r sinψ

V

)

− ∂

∂θ

(

cosψ

V

)

= 0, (2.11a)

∂

∂r

(

r2 cosψ

A

)

+
r

sin θ

∂

∂θ

(

sin θ sinψ

A

)

= 0, (2.11b)

and for ψ ≪ 1, Γ ≫ 1, eqs. (2.6) become

∂

∂r
(rψ) +

1

2

∂

∂θ

(

ψ2 − Γ−2
)

= 0, (2.12a)

∂

∂r

(

r2

A

)

+
r

sin θ

∂

∂θ

(

ψ sin θ

A

)

= 0, (2.12b)

while (2.7) is unchanged.

3. Relativistic vorticity

This discussion in this section is independent of the approximations of GSD, although
the ultrarelativistic equation of state P = ρ/3 figures prominently.
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As explained above, we are motivated by the need to explain the amplification of
magnetic field behind the shocks associated with gamma-ray bursts, and by the possible
role of turbulence in this amplification. Therefore, it may be worthwhile to record our
assumptions about the relation of post-shock vorticity to the magnetic field.
It follows from the induction equation of ideal magnetohydrodynamics,

∂t
~B = ~∇× (~v × ~B), (3.1)

that magnetic energy increases according to

d

dt

∫

~B · ~B d3~x =

∫

BiBj∂ivj d
3~x ,

which involves the instantaneous shear (∂ivj + ∂jvi − 2
3
~∇ · ~v) and convergence (~∇ · ~v)

of the velocity field rather than the vorticity, which is its curl. Nevertheless, vorticity
is important to secular amplification of the field by localized disturbances. In an ideal
fluid, a localized nonvortical disturbance evolves into sound waves, whose oscillations
produce only transitory changes in magnetic energy, and which propagate away from their
source. Energy in vortical motions, however, remains localized, and the shear between
neighboring eddies is expected to amplify the field exponentially on their turnover time.

3.1. Vorticity and circulation

Non-relativistically, the vorticity ~ω ≡ ~∇× ~v, where ~v is the fluid three-velocity. In a
compressible but isentropic fluid without shocks, Kelvin’s Circulation theorem is

d

dt

∮

C

~v · d~l = 0, (3.2)

where C is closed contour advected by the flow.
The generalization of ~ω and eq. (3.2) to relativistic flow is not entirely straightfor-

ward (Eshraghi 2003). Let ~U = (U0, U1, U2, U3) be the 4-velocity of the fluid, so that
ηµνU

µUν = −1. In terms of the local rest-frame energy density ρ and pressure P , the
energy-momentum tensor is

T µν = (ρ+ P )UµUν + ηµνP. (3.3)

The equations of motion

T µν
, ν = 0 (3.4)

must be supplemented by an equation of state. Normally this involves two independent
thermodynamic variables, e.g. P = P (ρ, T ), P (ρ,N), or P (N,S), where T is the rest-
frame temperature, N is the proper number density of conserved particles, and S is the
entropy per particle. An essential feature of ultra-relativistic shocks is that the postshock
particles are highly relativistic in the fluid rest frame, so that P = ρ/3.† To the extent
that the fluid is ideal [eq. (3.3)], entropy and temperature gradients then have no effect
on the flow—except at shocks, but even there they do not have to be addressed explicitly.
To illustrate this point, we consider a general equation of state in which entropy does

influence the dynamics. The conservation of particle number is expressed by

(NUµ),µ = 0. (3.5)

† This assumes that the stress is isotropic, which is not at all obvious in astrophysical appli-
cations where the plasma is collisionless.
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The vorticity turns out to be best formulated as

Ωµν ≡ −Hµ,ν +Hν,µ , (3.6)

in terms of the relativistic enthalpy h and its associated current Hµ:

h ≡ ρ+ P

N
, Hµ ≡ hUµ . (3.7)

With the First Law d(ρ/N) = TdS−Pd(1/N) in the form n−1dP = dh−TdS, eq. (3.4)
can be rewritten as

UνHµ,ν = TS, µ − h, µ . (3.8)

The vorticity equation then follows from the “curl” of this, namely

− (UνHα,ν), β + (UνHβ,ν), α = UνΩαβ, ν + Uν
, βΩαν + Uν

, αΩνβ

= T, αS, β − T, βS, α . (3.9)

The last line above vanishes if the entropy is uniform, S, µ = 0, or more generally if there
is only one independent thermodynamic quantity so that S = S(T ). The intermediate
expression is the Lie derivative L~U of the vorticity considered as a 2-form,

Ω ≡ dH ≡ Hν, µdx
µ ∧ dxν ,

with respect to the 4-velocity ~U . The statement of conservation of circulation is then

d

dτ

∮

∂A

Hα dx
α = L~U

∫∫

A

Ω = 0 ,

where A is a surface advected by ~U and ∂A is the curve bounding it, and d/dτ ≡ Uµ
∂µ

is the convective derivative. Since different parts of the fluid move with different Lorentz
factors, the surface A and curve ∂A will not (in general) remain within hyperplanes of
constant Minkowski time t, unfortunately.
Now we specialize to the ultra-relativistic equation of state P = ρ/3. The true entropy

per particle is S ∝ ln(P/N4/3), which will not be uniform after the shock passes over
density inhomogeneities. However, if we define an ersatz number density Ñ ∝ P 3/4

at some initial time, so that P/Ñ4/3 is spatially uniform, and if we demand that Ñ
evolve according to (3.5) with Ñ instead of N , then P/Ñ4/3 will remain uniform in

smooth parts of the flow, though not across shocks. This follows because UµT
µν

,ν =

−3UνP, ν − 4PUµ
,µ = 0, whence Uν(P/Ñ4/3),ν = 0.

We don’t actually have to deal with Ñ directly. Since h̃ ≡ (ρ+P )/Ñ = 4P 1/4, we can
simply redefine the enthalpy current as

Hµ = P 1/4Uµ (when P = ρ/3 only). (3.10)

Then eq. (3.8) becomes

UνHµ,ν = −
(

P 1/4
)

, µ
, P = (HµHµ)

2
. (3.11)

The vorticity defined in terms of this ~H via (3.6) is conserved in the sense that the
righthand side of (3.9) vanishes in all smooth parts of the flow, even after shocks. In
particular, if Ω = 0 initially then it remains zero as long as the flow remains smooth.
The jump conditions that follow from integrating (3.4) across shocks are not equivalent
to the corresponding integral of (3.9), however, and so this vorticity can be created at
shocks.
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3.2. Vorticity vector

Ωαβ = −Ωβα would appear to have six algebraically independent components. In fact it
has only three. To see this, note that

−h, µ = (HνU
ν), µ = Hν, µU

ν +HνU
ν
, µ = Hν, µU

ν + h(UνU
ν) , µ = Hν, µU

ν .

Therefore if the fluid is isentropic, or if it is ultrarelativistic and the enthalpy current is
defined by eq. (3.10), then eq. (3.8) becomes

UνΩµν = 0. (3.12)

This means that in the local rest frame, where Uν → δν0 , the “electric” components
Ωi0 = −Ω0i of the vorticity vanish, and only the three “magnetic” components Ωij =
−Ωji survive. Let ~ω be the three-vector field with components ωi = ǫijkΩjk/2 in an
arbitrary inertial frame (not necessarily coinciding with the local fluid rest frame). If one
uses eq. (3.12) to eliminate the inertial components Ωi0 from the identity

Ωαβ,γ +Ωβγ,α +Ωγα,β = 0,

which is the tensorial expression of d(dH) = 0, the result is

∂t~ω − ~∇× (~v × ~ω) = 0, (3.13)

where ~v is the three-velocity, vi = U i/U0. This is formally identical to the nonrelativistic

vorticity equation of an isentropic fluid, except that ~ω is ~∇× ~H rather than ~∇× ~v. The
derivation just given, which parallels that of the induction equation (3.1), shows that
eq. (3.13) is relativistically covariant.

4. Numerical simulations and tests

In order to test the predictions of the GSD theory we have performed a series of numeri-
cal simulations with the the RAM special relativistic hydrodynamics code Zhang and MacFadyen
(2006). The simulations test the variations of pressure and Lorentz factor behind a strong
shock as it passes over density perturbations in the pre-shock medium. The simulations
are performed on the domain x = [0.0, 1.0] with reflecting boundary at x = 0.0 and
outflow (zero gradient) boundary at x = 1 and adiabatic index γa = 4/3. In the notation
of the present paper, the equation of state is P = (γa − 1)(ρ−mN), where m is the rest
mass per particle.
We have performed ten simulations in which the pressure is initially set to P = 105

for x < 0.001 and P = 10−6 elsewhere, to create a plane-parallel analog of an ex-
plosively driven spherical gamma-ray-burst shock. The rest-mass contribution mN to
the energy density for x = [0.8, 0.9] is initially set to one of the ten perturbed val-
ues ρp = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 5.0, 10.0, 20.0, 30.0} and to ρi = 1.0 elsewhere. The ten
simulations are otherwise identical. A strong relativistic shock with Lorentz factor Γ ∼ 10
is initially driven into the medium as the over-pressured region expands and a thin rela-
tivistic shell forms behind it. As the shock crosses the (positive) density perturbation, its
Lorentz factor decreases and post-shock pressure increases with the values seen in Fig.
1. Note that γ is the Lorentz factor of the fluid rather than that of the shock itself; for
an ultrarelativistic shock advancing into a cold, stationary medium, the jump condition
(1.3a) implies that these two Lorentz factors are represented simply by γ = Γ/

√
2, a

relation that does not depend upon the approximations of GSD. We measure γ and P
at t = 0.9, after the shock has crossed the perturbation region and is at x ≈ 0.9, and we
record for that time slice the values Pm and γm where the pressure reaches its maximum
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Figure 1. Comparison between analytic GSD predictions and numerical simulations for
post-shock Lorentz factor and pressure as a function of the pre-shock density perturbation.
The right panel shows the fractional difference between the GSD prediction XGSD and the sim-
ulation value Xsim, where X stands for maximum pressure Pm (plus signs) or Lorentz factor γm
(asterisks).

post-shock value. In Fig. 1 (left panel) we show the logarithms of Pm (plus signs) and
γ−1
m (asterisks) versus log(ρp/ρi). The ordinates have been scaled by the values P◦ and
γ◦ obtained from a fiducial run with uniform density (ρp = ρi = 1). The lines show the
scaling predicted by the GSD approximation with slopes λ =

√
3 − 3

2
≈ 0.232 (solid)

and 1 − 2λ ≈ 0.536 (dashed). In Fig. 1 (right panel), we show the fractional difference
between the GSD prediction and the numerical simulation for maximum pressure (plus
signs) and Lorentz factor (asterisks).
We find that the GSD approximation works surprisingly well even for large density

perturbations, justifying its use up to density contrasts of factors of ten or more.

We acknowledge the use of the Scheides cluster at the Institute for Advanced Study.
The software used in this work was in part developed by the DOE-supported ASCI/Alliance
Center for Astrophysical Thermonuclear Flashes at the University of Chicago.
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P. Mészáros. Gamma-ray bursts. Reports of Progress in Physics, 69:2259–2321, August 2006. .
W. E. Moeckel. Interaction of oblique shock waves with regions of variable pressure, entropy,

and energy. Technical Report 2725, Nat. Adv. Comm. Aero, Washington, 1952.
T. Piran. Magnetic Fields in Gamma-Ray Bursts: A Short Overview. In E. M. de Gouveia dal



12 J. Goodman and A. MacFadyen

Pino, G. Lugones, and A. Lazarian, editors, AIP Conf. Proc. 784: Magnetic Fields in the
Universe: From Laboratory and Stars to Primordial Structures., pages 164–174, September
2005. .

R. Sari. First and second-type self-similar solutions of implosions and explosions containing
ultrarelativistic shocks. Physics of Fluids, 18:027106, 2006. .

B. F. Schutz. A first course in general relativity. Cambridge University Press, 1990.
D. W. Schwendeman. Numerical scheme for shock propagation in three dimensions. Proc. Roy.

Soc. London Ser. A, 416(1850):179–198, Mar 1988.
J. van Paradijs, C. Kouveliotou, and R. A. M. J. Wijers. Gamma-Ray Burst Afterglows. Ann.

Rev. Astron. Astrophys., 38:379–425, 2000. .
G. B. Whitham. A new approach to problems of shock dynamics. Part I. Two-dimensional

problems. J. Fluid Mech., 2:146–171, 1957.
G. B. Whitham. On the propagation of shock waves through regions of non-uniform area or

flow. J. Fluid Mech., 4:337–360, 1958.
G. B. Whitham. New approach to problems of shock dynamics. Part II. Three-dimensional

problems. J. Fluid Mech., 5:369–386, 1959.
G. B. Whitham. Linear and Nonlinear Waves. Wiley, 1974.
W. Zhang and A. I. MacFadyen. RAM: A Relativistic Adaptive Mesh Refinement Hydrody-

namics Code. Astrophys. J. Suppl., 164:255–279, May 2006. .


	Planar shocks
	Jump conditions
	Whitham's Characteristic Rule
	Comparison with an exact self-similar solution

	Non-planar shocks
	Comparison with nonplanar self-similar solutions
	Detailed treatment of initially planar shocks in two dimensions.

	Relativistic vorticity
	Vorticity and circulation
	Vorticity vector

	Numerical simulations and tests

