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ABSTRACT

Afterglows of gamma-ray bursts are believed to require magnetic fields much stronger

than that of the compressed pre-shock medium. As an alternative to microscopic plasma

instabilities, we propose amplification of the field by macroscopic turbulence excited by

the interaction of the shock with a clumpy pre-shock medium, for example a stellar wind.

Using a recently developed formalism for localized perturbations to an ultra-relativistic

shock, we derive constraints on the lengthscale, amplitude, and volume filling factor

of density clumps required to produce a given magnetic energy fraction within the

expansion time of the shock, assuming that the energy in the field achieves equipartion

with the turbulence. Stronger and smaller-scale inhomogeneities are required for larger

shock Lorentz factors. Hence it is likely that the magnetic energy fraction evolves as the

shock slows. This could be detected by monitoring the synchrotron cooling frequency

if the radial density profile ahead of the shock, smoothed over clumps, is known.

1. Introduction

Since their discovery, gamma-ray burst afterglows have been attributed to synchrotron radia-

tion from the forward shock wave (Meszaros & Rees 1997), although it has been recently argued

(Uhm & Beloborodov 2007; Genet et al. 2007) that observations might support a model in which

the forward shock is invisible and the afterglow is emitted by a long-lived reverse shock in the burst

ejecta. Assuming anyway a forward-shock origin for the afterglow emission, it is difficult to account

for the magnetic energy density behind the forward shock by simple compression of the pre-shock

field. Interstellar magnetic energy densities are typically comparable to thermal pressures and are

therefore a fraction ǫb,0 ≡ ρmag,0/ρ0 = 10−9 − 10−7 of the total internal energy density when rest

mass is included. It is possible that the pre-shock medium is the stellar wind of the burst progeni-

tor; while the magnetic energy fraction in winds is less well known, it is unlikely to be much larger

than this. Simply compressing the medium would produce approximately the same ratio ρmag/ρ

behind the shock. Instead, phenomenological models of afterglow light curves typically require

ǫb = 10−3 − 10−1 (Panaitescu & Kumar 2002; Yost et al. 2003; Panaitescu 2005). It follows that

the magnetic energy per baryon must be increased by ∼ 104 − 108.

http://arxiv.org/abs/0706.1819v1
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In fact, gamma-ray burst (hereafter GRB) afterglows present the most compelling case among

astrophysical collisionless shocks for prompt creation of magnetic energy. The synchrotron emission

from supernova remnants is generally consistent with compression of the interstellar field, although

some modest additional amplification may be required in particular cases (Völk et al. 2005). We

focus here on GRB afterglows rather than GRB internal shocks, which also emit by some com-

bination of synchrotron and synchrotron self-Compton, because it may be that the burst ejecta

are magnetically dominated (Coburn & Boggs 2003; Zhang et al. 2003), and so the internal shock

emission is driven by the progenitor magnetic field.

The leading hypothesis for field amplification in GRB afterglows is the relativistic Weibel

instability, which extracts free energy from the anisotropy of the particles’ velocity distribution

function, producing filamentary currents aligned with the shock normal; these currents are respon-

sible for the creation of transverse magnetic fields (Medvedev & Loeb 1999). This process is able

to violate MHD flux-freezing because it occurs on a microscopic scale—the relativistic electron or

ion skin depth—where the inertia of individual charged particles is significant. While the Weibel

instability provides a plausible mechanism to isotropize the particle velocities, it is unclear whether

the small-scale fields that it produces can survive mutual annihilation long enough to explain the

observed synchrotron afterglow emission. Several groups (Silva et al. 2003; Frederiksen et al. 2004;

Spitkovsky 2005) have attempted to simulate the long-term nonlinear outcome of the instability,

but a consensus on this question has not been achieved yet (Waxman 2006, and references therein).

One might have thought that if this instability were the source of post-shock fields, then ǫb should

have a universal value for highly relativistic, highly collisionless shocks. Yet, while ǫb is mod-

eled by a constant for individual GRB afterglows, it seems to vary from one afterglow to another

(Panaitescu & Kumar 2002; Yost et al. 2003; Panaitescu 2005).

In this paper, we explore a traditional magnetohydrodynamic explanation for magnetic field

growth: turbulence. It is well known in non-relativistic fluid dynamics that oblique shocks produce

or alter the vorticity of a fluid (Ishizuka et al. 1964). In this paper we will show that the same is true

for an ultra-relativistic shock passing over density inhomogeneities in the pre-shock circumburst

medium. The formalism described in a previous paper (Goodman & MacFadyen 2007) has let

us define the vorticity created in an ultra-relativistic fluid in which the energy-momentum tensor

can be approximated by that of an ideal fluid with pressure equal to one third of the proper

energy density (P = ρ/3). In the same work, we have introduced a remarkably simple but accurate

general approximation for the local modulation of the shock Lorentz factor (Γ) by pre-shock density

inhomogeneities; within this approximation, it is not necessary to follow the details of the flow far

downstream in order to predict the evolution of the shock, provided that Γ ≫ 1, that the pre-shock

pressure is negligible and that the post-shock pressure satisfies P = ρ/3. This approximation,

which is modeled on non-relativistic results described by Whitham (1974), reproduces exactly the

self-similar evolution of Γ for a shock advancing into a cold pre-shock medium with a power-law

density profile in planar, cylindrical, or spherical symmetry (Sari 2006). More importantly for the

present purpose, it allows us to estimate the post-shock vorticity resulting from a prescribed pre-
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shock density that varies along as well as perpendicular to the shock normal. Given the vorticity,

we divide the post-shock velocities, which are marginally non-relativistic in the average post-shock

rest frame, into vortical and non-vortical parts. We presume that the energy density in vortical

motions is a measure of the magnetic energy density that will eventually result after the eddies

wind up the field to the point where its backreaction on the turbulence becomes important. These

methods are described in §II.

In §III, we briefly review the present state of knowledge concerning the density inhomogeneities

that may exist ahead of the shock. Both the amplitude and the lengthscale of the inhomogeneities

are important. The former controls the amount of vortical energy—and then of magnetic energy—

that is produced, while the latter determines the eddy-turnover time of the turbulence, which—

when multiplied by the number of eddy rotations necessary to amplify the field up to the observed

ǫb—must be less than the shock deceleration time, so that the field can be significantly amplified

before adiabatic expansion reduces the particle energies available to be radiated. The uncertainties

are large because one doesn’t know whether the pre-shock medium is more like a stellar wind or like

some component of the Galactic interstellar medium, and because the lengthscales of interest are

too small (. 1014 cm) to be directly resolved even in the interstellar medium. Inhomogeneities on

somewhat larger scales have been invoked to explain undulations in afterglow light curves (Wang

& Loeb 2000; Lazzati et al. 2002; Schaefer et al. 2003; Nakar et al. 2003).

In §IV, we use the formalism of §II to characterize the density contrasts and lengthscales that

pre-shock clumps should have in order to amplify the magnetic field up to the observed value, in the

light of the circumburst picture outlined in §III. We find that, for smaller shock Lorentz factors, the

constraints on clump sizes and overdensities become less stringent; as a consequence, the magnetic

energy fraction produced by pre-shock clumps via macroscopic turbulence is expected to evolve as

the shock slows down. In §V, we comment on the plausibility of our proposed mechanism to explain

the magnetic field amplification in GRB afterglows and we discuss how the results obtained in §IV
could be tested by inferring the time dependence of ǫb from the time evolution of the observed

synchrotron cooling frequency as the shock ages.

2. Geometrical Shock Dynamics

The evolution of a shock advancing into an inhomogeneous medium depends, in principle, upon

the details of the downstream flow behind the shock and of the “piston” that drives it. Geometrical

Shock Dynamics (hereafter GSD) is an approximation for this evolution in which only the conditions

at the shock appear explicitly. Originally formulated by Whitham (1974) for non-relativistic fluids,

GSD has been extended by Goodman & MacFadyen (2007, hereafter Paper I) to strong (Γ ≫ 1)

ultra-relativistic shocks advancing into an ideal fluid whose pressure is negligible ahead of the shock,

but one third of its proper energy density behind the shock (P = ρ/3).

The fundamental approximation of GSD is to evaluate the forward-going Riemann character-
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istics in the post-shock flow as if that flow were (i) isentropic and (ii) homogeneous far downstream

with properties determined by the mean shock speed and the mean pre-shock density. Actually,

pre-shock density inhomogeneities lead to post-shock entropy variations, so assumption (i) is wrong

in principle, but it turns out to be a useful fiction. In this respect, an ultra-relativistic flow has

the advantage that since pressure depends only on energy density and not on any other thermody-

namic variable (such as the proper number density of baryons, N), the actual entropy is irrelevant

to the Riemann characteristics, which therefore enjoy exact Riemann invariants. So assumption

(i) is well justified except insofar as it may be compromised by secondary shocks created by the

inhomogeneities themselves behind the main shock. Assumption (ii) is reasonable when pre-shock

density inhomogeneities are small in lengthscale, so that they may be expected to average out far

downstream.

With assumption (i), the Riemann invariant on the forward characteristics has the same value

just behind the shock as it does far downstream, and therefore, with assumption (ii), the same

value that it would have in the mean flow. Together with the jump conditions across the shock,

this provides a relation between the local Lorentz factor of the shock, Γ, and the proper pre-shock

energy density ρ0 ≈ mN0c
2, in whichN0 is the proper number density of nucleons ahead of the shock

and m is the rest mass per nucleon. In the essentially one-dimensional case that ρ0 varies along the

shock normal but not perpendicular to it, the ultra-relativistic GSD relation for the response of the

shock Lorentz factor Γ to localized and transitory variations in the pre-shock density ρ0 becomes

(Paper I)

Γ = Γ̄

(

ρ0
ρ̄0

)−λ

where λ ≡
√
3− 3

2
≈ 0.232 (1)

and the corresponding change in the post-shock pressure is

P = P̄

(

ρ0
ρ̄0

)1−2λ

≈ P̄

(

ρ0
ρ̄0

)0.536

, (2)

where the overbars indicate mean values. As in non-relativistic GSD, these relations can be extended

to multidimensional flows in which ρ0 varies laterally as well as longitudinally (with respect to the

shock normal), causing convergence or divergence of the shock normals. Relations (1) and (2) are

then modified by factors involving the ratio of the local shock area to its mean value (Paper I). It

is shown, however, that these corrections are of higher order in Γ−1 unless the density contrasts

are ∼ O(Γ). For the conditions contemplated in this paper, eqs. (1) and (2) will be adequate even

in two or three dimensions.

As in the original non-relativistic theory, rigorous error estimates for ultra-relativistic GSD

are difficult. Informally, the following conditions are probably necessary for the approximation to

be useful. First, the pre-shock medium should be cold, meaning that pre-shock pressure satisfies

P0 ≪ ρ0 and that internal velocities are≪ c; this is very likely true of the external forward shocks of

GRBs. Second, the lengthscales of the pre-shock inhomogeneities should be small compared to the

shock radius, so that the shock responds to local perturbations before conditions far downstream

have time to react. Third, since Γ−1 is used as a small parameter, the pre-shock density fluctuations
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should not be so large as to cause the shock to become sub-relativistic, i.e. one requires ρ0/ρ̄0 ≪
Γ̄1/λ. Finally, transitions in density should not be so abrupt as to cause strong reverse shocks,

which would alter the forward shock dynamics. Paper I describes tests of ultra-relativistic GSD

by comparison with exact self-similar solutions (some of which it reproduces exactly) and with

numerical simulations. The latter indicate, for example, that eqs. (1) and (2) are in error by only

a few percent for a Γ̄ = 102 shock encountering overdensities as large as ρ0/ρ̄0 . 30.

2.1. Relativistic vorticity

This subsection is independent of GSD. We review the meaning of enthalpy current and vortic-

ity in ideal relativistic fluids, especially those with the ultra-relativistic equation of state P = ρ/3.

When the shock passes over a local density excess—considered, for simplicity, in isolation

from other inhomogeneities—the resulting post-shock velocities are of two kinds. First, since the

shocked clump is overpressured compared to its post-shock surroundings [eq. (2)], it will expand

and drive an outgoing pressure wave. If the density contrast of the clump is small, then the wave

is essentially a linear disturbance from the start and travels at the sound speed, c/
√
3, in the

rest frame of the mean post-shock flow; waves launched by large overdensities will be somewhat

faster and may steepen into secondary shocks, but whatever its strength, the pressure wave rapidly

departs its source. Overlapping pressure waves launched by many distant clumps may contribute

significant local velocity perturbations, but, because of their oscillatory nature, intuition suggests

that these velocities will not secularly amplify the magnetic field (except insofar as secondary shocks

may contribute to vorticity—see §IV). It would be interesting to test this expectation in numerical

simulations.

Unless the density excess is constant along the shock front, the post-shock velocity field will

also contain a vortical component, whose strength is estimated below for an initially spherical

overdensity with a gaussian radial profile. As shown in Paper I, the equation of state P = ρ/3

allows some freedom in how one defines relativistic vorticity, but to be useful in constraining the

evolution of the flow, the vorticity should be associated with a conservation law such as Kelvin’s

Circulation Theorem,
d

dt

∮

C

Hµdx
µ = 0, (3)

where C is a closed contour comoving with the fluid four-velocity Uµ, and Hµ = hUµ for an

appropriate thermodynamic function h (see below). Equation (3) is equivalent to

∂ω

∂t
−∇× (v × ω) = 0 , ω ≡ c∇×H , (4)

where vi ≡ cU i/U0 is the three-velocity of the fluid, and H is the spatial part of Hµ. Although

formally identical to the non-relativistic vorticity equation and written with three-vectors, eq. (4)

is actually relativistically covariant.
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Because vorticity and circulation travel with the local flow velocity and are nonoscillatory

in the local fluid frame, they have the potential to twist up and secularly amplify any magnetic

field frozen into the flow. A fundamental assumption of this paper is that the magnetic energy will

eventually reach equipartition with the kinetic energy invested in the vortical part of the flow. This

assumption would also be well worth testing numerically.

For a general equation of state P = P (ρ,N), whereN is the proper number density of conserved

particles (e.g., baryons), it is conventional to take the quantity h in the relation Hµ = hUµ to be the

enthalpy per particle: h ≡ (ρ + P )/N . One assumes an ideal fluid, so that the energy-momentum

tensor is

T µν ≡ (ρ+ P )UµUν + Pgµν , (5)

(gµν → diag(−1, 1, 1, 1) in Minkowski coordinates), and the equations of motion are

T µν
; ν = 0 and (NUµ);µ = 0. (6)

The First Law of Thermodynamics dh = TdS+N−1dP implies h, µ = P, µ/N if the fluid is isentropic;

the first equation of motion in eq. (6) can then be recast as

UνHµ
; ν = −h, µ , (7)

the “curl” of which implies eqs. (3) and (4) (e.g., Eshraghi 2003, and Paper I). These relations do

not hold across shocks, of course, since there is an entropy jump. But if the pre-shock medium

is inhomogeneous, then even if the flow behind the shock is smooth, it will not be isentropic in

general; that is, P/N4/3 (for an ultra-relativistic equation of state) will not be uniform. Therefore,

the conventional choice of h does not lead to a conserved circulation under the circumstances

contemplated in this paper. Fortunately, as pointed out in Paper I, if one defines Hµ using h ∝
P 1/4 instead of the true enthalpy, then eq. (7) always holds in smooth parts of the flow. This

is a consequence of the equation of state P = ρ/3, which is “barytropic” if not isentropic. It is

convenient to choose the constant of proportionality so that Hµ reduces to the fluid four-velocity

when pressure is uniform. Therefore, we replace the conventional enthalpy current with

Hµ ≡
(

P/P̄
)1/4

Uµ . (8)

With this choice, circulation is conserved [eqs. (3) & (4)] everywhere except across shocks.

2.2. Vorticity production by shocks

The goal of this subsection is to use the one-dimensional GSD approximation to derive eqs. (15)-

(16), which relate the post-shock vorticity to the pre-shock fractional overdensity δ ≡ (ρ0/ρ̄0)− 1.

Figure 1 illustrates four stages in the interaction of an ultra-relativistic shock with a density clump.

We begin by recalling some basic consequences of the shock jump conditions that will be

needed below. Let [Q] denote the discontinuity in a fluid property Q across the shock front. In



– 7 –

the instantaneous local rest frame of the shock, where the outward unit normal to the shock front

is n, the jump conditions are [T µjnj] = 0. Using eq. (5) for T µν (ideal fluid) and assuming that

P0 ≪ ρ0 ahead of the shock and P = ρ/3 behind it, one finds that the post-shock three-velocity of

the fluid is v · n = −c/3 in the shock frame (hence subsonic, since the sound speed is c/
√
3). The

post-shock energy density is ρ = 2Γ2ρ0, where Γ ≫ 1 is the local Lorentz factor of the shock in the

rest frame of the pre-shock fluid. Similarly, conservation of particles implies [NU ini] = 0, whence

N = 2
√
2ΓN0. The quantities ρ, P , and N will always denote proper values, meaning that they

are defined in the local fluid rest frame and are therefore Lorentz invariants by fiat, with subscript

“0” denoting a pre-shock value rather than a spacetime index.

To facilitate Lorentz boosts between the pre-shock and post-shock or shock frames, it is often

convenient to use the rapidity parameter tanh−1(v/c), where v is the three-velocity in the pre-

shock frame. The relativistic addition of colinear three-velocities is equivalent to addition of the

corresponding rapidity parameters. Thus, for example, using Φ = cosh−1 Γ ≈ ln(2Γ) for the rapidity

parameter of the shock and φ for the rapidity of the post-shock fluid, it follows from the above that

tanh(φ−Φ) = −1/3, whence φ = Φ− ln
√
2. The Lorentz factor of the post-shock fluid relative to

the pre-shock frame is coshφ = cosh(Φ− ln
√
2) = Γ/

√
2 +O(Γ−1).

Pre-shock clumps will typically have comparable longitudinal and lateral dimensions (meaning:

along and perpendicular to the mean direction of shock propagation) in their own rest frame. In the

shock and post-shock frames, the clumps will be longitudinally contracted by factors ∼ Γ−1 ≪ 1.

During the transit of the shock over a clump, and even during the subsequent expansion of the

shocked clump as it comes to pressure equilibrium with the surrounding post-shock fluid, there

will not be enough time for signals (sound waves) to communicate laterally from one end of the

clump to the other. Therefore, the interaction of the shock with the clump can be calculated in a

one-dimensional approximation, in which the area of the shock is constant and the pre-shock mass

density (ρ0/c
2) is stratified on planes parallel to the shock front.

Nevertheless, lateral density gradients do produce post-shock vorticity, ω, even in our one-

dimensional approximation. First of all, the longitudinal component H‖ of the non-conventional

enthalpy current defined in eq. (8) varies with lateral position behind the shock. Secondly, since the

shock itself is delayed differently at different lateral positions, the shock normal develops a lateral

component, which leads to a small lateral current, H⊥. Although the magnitude of H⊥ is O(Γ−1)

compared to H‖ for a given clump amplitude, its longitudinal derivative makes a contribution to

ω that is comparable to the lateral derivative of H‖, as a consequence of Lorentz contraction.

Let δ(r) be the density contrast of the clump: ρ0(r) = ρ̄0[1 + δ(r)], where ρ̄0 is the mean pre-

shock value. The shock propagates along z on average; let us choose a cartesian coordinate system

x, y, z0 in the pre-shock rest frame, where the subscript “0” is used to distinguish between the post-

shock (z) and pre-shock (z0) longitudinal coordinates. In our one-dimensional GSD approximation,

it follows from eq. (1) that

Γ(r) = Γ̄[1 + δ(r)]−λ , (9)



– 8 –

if Γ̄ ≫ 1 is the value for a smooth pre-shock medium. As discussed at the beginning of this section,

it will be assumed that |δ|λ ≪ Γ̄ so that Γ ≫ 1 at all times; since λ ≈ 0.232 is fairly small, rather

hefty density contrasts can be compatible with this condition.

First of all, let us focus on the contribution of H⊥ to the post-shock vorticity. Let τ(r) be the

time in the pre-shock frame at which the shock reaches pre-shock position r:

c τ(x, y, z0) ≈ z0 +
1

2
Γ̄−2

z0
∫

[1 + δ(x, y, z′0)]
2λ dz′0 ≡ z0 +

1

2
Γ̄−2I(x, y, z0). (10)

where we have assumed that the typical size of a density clump is small compared to the char-

acteristic lengthscale for variations in Γ̄. The shock surface at time t is determined implicitly by

τ(r) = t, so that the shock normal is n = |∇0τ |−1
∇0τ (the subscript reminds that derivatives

are taken ahead of the shock). To leading order in Γ̄−1, the lateral components of the normal are

therefore

n⊥ ≈ λΓ̄−2
∇⊥I = λΓ̄−2

z0
∫

(1 + δ′)2λ−1(∇⊥δ
′) dz′0. (11)

Here δ′ is shorthand for δ(x, y, z′0) and ∇⊥ ≡ (∂/∂x, ∂/∂y, 0) is the same in the pre-shock and

post-shock reference frames. The lateral part of the post-shock fluid 4-velocity is U⊥ ≈ n⊥U‖ ≈
n⊥Γ/

√
2. With use of eqs. (8) and (9), the post-shock lateral enthalpy current becomes

H⊥ ≈ 2−1/2λΓ̄−1(1 + δ)(1−6λ)/4
∇⊥I. (12)

Of course the lateral components of the enthalpy current take the same values in the mean post-

shock and pre-shock frames since these frames differ by a longitudinal boost. However, in order to

compute the vorticity in the mean post-shock fluid frame, we should remember that the longitudinal

derivative in this reference system ∇‖ is related to the corresponding derivative ∇0,‖ in the pre-

shock frame by ∇‖ = cosh φ̄∇0,‖ because of Lorentz contraction. Thus the contribution of H⊥ to

the post-shock vorticity is

∇‖ ×H⊥ ≈ 1

2
λ(1 + δ)(2λ−3)/4(n̄×∇δ)

+
λ(1− 6λ)

8
(1 + δ)−3(1+2λ)/4 ∂δ

∂z0
(n̄×∇I) (13)

where n̄ = ez is the mean shock normal and clearly the differential operator n̄×∇ is the same in

the pre-shock and post-shock mean rest frames.

A comparable contribution to the post-shock vorticity comes from H‖. The longitudinal

component of the post-shock 4-velocity is U || = sinh(φ − φ̄)ez when measured in the mean post-

shock frame. Since φ− φ̄ = Φ− Φ̄ = −λ ln(1 + δ),

U‖ = −1

2

[

(1 + δ)λ − (1 + δ)−λ
]

ez (14)

in the mean post-shock frame. This tends to be quite subluminal: for unit overdensity (δ = 1), for

example, U ‖ ≈ −0.1615ez, and the corresponding fluid Lorentz factor is ≈ 1.013. The longitudinal
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post-shock enthalpy current is H‖ = (P/P̄ )1/4U‖ = (1+δ)(1−2λ)/4U‖. Taking the lateral derivative

of this and combining with eq. (13) and the definition of I in eq. (10), we can write the total post-

shock vorticity as

ω ≈ c (n̄×∇δ)f(δ)

+ c
λ(1− 6λ)

8
(1 + δ)−3(1+2λ)/4 ∂δ

∂z0

z0
∫

(1 + δ′)2λ−1(n̄×∇δ′) dz′0 , (15)

where the coordinate system is in the pre-shock rest frame and the derivatives are taken ahead of

the shock. We have introduced the function

f(δ) ≡ (1 + δ)−(2λ+3)/4

[

6λ+ 1

8
(1 + δ)λ +

6λ− 1

8
(1 + δ)−λ

]

. (16)

For |δ| ≪ 1, f(δ) ≈ 3λ/2 ≈ 0.348. It is interesting that in the total post-shock vorticity there are

no surviving factors of Γ̄.

2.3. Vortical energy

We have not been able to formulate a rigorous relativistically covariant way of dividing the

energy of the post-shock flow into vortical and non-vortical parts. In a non-relativistic flow, how-

ever, this would be straightforward. One would divide the three-velocity field into potential and

solenoidal parts,

v = ∇ψ +∇×A , (17)

and then define the vortical energy by

Evort ≡
1

2

∫

ρm |∇×A|2 d3x , (18)

where ρm is the non-relativistic mass density. To make the decomposition (17) unique, some mild

additional restrictions are necessary: for example, that the region of interest is simply connected,

and that ψ and A have some specified behavior on the boundary or at infinity. Then one can

impose ∇ ·A = 0 and solve for A from

∇2
A = −ω , (19)

with ω ≡ ∇× v, using an appropriate Green’s function to invert ∇2. The nonvortical part follows

similarly from ∇2ψ = ∇ · v.

It isn’t clear how to proceed in the relativistic case because the coordinate energy density T 00

isn’t simply quadratic in v, in general. However, for the applications we have in mind, the vortical

motions are plausibly subsonic in the mean post-shock frame (as long as δ is not too large), and

therefore only mildly relativistic, (v/c)2 . 1/3. Therefore, we will use the decomposition (17),
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except for three changes: (i) cH replaces v, and therefore ω → c∇×H in eq. (19); (ii) ρm, the

non-relativistic mass density, is replaced by ρ/c2, where ρ is the proper internal energy density; (iii)

the factor 1/2 in eq. (17) is replaced by 4/3. The reason for (iii) is that if v/c ≪ 1 and P = ρ/3,

then T 00 ≈ ρ+ (4/3) ρ (v/c)2 , and we assume that Evort derives from the second term.1

A pre-shock density clump will experience, after the transit across the shock front, a contraction

of its longitudinal size by a factor α−1, where α ≡ N/N0 ≈ 2
√
2Γ̄ ≫ 1. What was an approximately

spherical clump becomes a pancake, with all of its associated vorticity in or near the interior. We

adopt post-shock cylindrical coordinates R, θ, z with the z axis parallel to the mean direction of

propagation of the shock. Taking the origin at the center of the clump, assuming the clump to be

axisymmetric, and recalling that the vorticity computed in eq. (15) has been expressed in pre-shock

coordinates, we may write ω = ω(R, z0)eθ = ω(R,αz)eθ ≈ σ(R)δd(z)eθ, where δd(z) is the Dirac

delta function, and

σ(R) ≡
+∞
∫

−∞

ω(R,αz) dz =
1

α

+∞
∫

−∞

ω(R, z0) dz0 (20)

will be referred to as the “projected vorticity”.

Just after the shock passage, a clump will be at higher pressure than its surroundings, as already

discussed, and will therefore expand until it reaches approximate pressure equilibrium. Since the

sound-crossing time in the longitudinal direction will be much less than that in lateral directions,

equilibrium will be reached with only a small fractional change in the lateral size. The fractional

change in the longitudinal size will be of order unity, but for Γ̄ ≫ 1 and clump overdensities

δ ≪ Γ̄γad/(1−2λ) (γad = 2 is the adiabatic index appropriate for the one-dimensional expansion of

an ultra-relativistic fluid) the clump will remain highly flattened even after equilibration. Since the

vortex lines lie parallel to the clump midplane (i.e., in the direction eθ) and are “frozen” into the

clump (as a consequence of Kelvin’s Circulation Theorem), the expansion will have little effect on

the projected vorticity in eq. (20). We may therefore solve eq. (19) in the approximation that the

vorticity is confined to a thin sheet with the projected vorticity computed in eq. (20). The problem

is mathematically equivalent to finding the vector potential due to an axisymmetric current sheet

carrying a toroidal current:

A(R, z) = A(R, z)eθ =
1

2

+∞
∫

0

σ̃(k)J1(kR) e
−k|z| dk eθ (21)

1Why 4/3 rather than 1/2, as one might expect in the non-relativistic limit? The answer is that the rest-

mass density of non-relativistic fluid mechanics is actually ρm = γNm, where m is the mass per particle and

γ = U0, whereas the proper energy density is ρ = Nm(c2 + u), where mu is the internal energy per particle.

Thus, for a general equation of state, T 00 = γ2ρ + (γ2
− 1)P = γρm(c2 + u) + (γ2

− 1)P . For (v/c)2 ≪ 1, this

reduces to T 00
≈ ρmc2 + ρm(v2/2 + u) + [(v/c)2(ρmu/2 + P )]. The middle term is now recognizable as the non-

relativistic kinetic-plus-internal energy density. The term in square brackets would normally be negligible for a cold

fluid because u ∼ P/ρm ≪ c2; however, for an ultra-relativistic ideal fluid u ≈ 3Pγ/ρm ≫ c2 and the result is

T 00
≈ ρmc2 + ρmv2/2 + 3P + 4P (v/c)2, of which the first two terms are now negligible.
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where J1(kR) is the Bessel function of order 1 and σ̃(k) is the Hankel transform of the projected

vorticity σ(R):

σ̃(k) ≡
+∞
∫

0

σ(R)J1(kR)R dR . (22)

As soon as the clump is at the same pressure as its surroundings, if the vortical motions are sub-

relativistic we can use the decomposition (17) with vvort → cHvort = ∇×A. Moreover, pressure

equilibrium between the clump and the average post-shock medium implies 2 that the clump proper

energy density ρ is approximately equal (neglecting terms of order O(v2/c2)) to the mean post-shock

value ρ̄. Then the vortical energy of a single clump becomes

Evort ≡
4

3
ρ̄

∫ |∇×A|2
c2

d3x = −4

3
ρ̄

∫

A ·∇2
A

c2
d3x =

4

3
ρ̄

∫

A · ω
c2

d3x . (23)

In accordance with the discussion following (19), we have replaced the factor 1/2 in (18) with 4/3.

Also, we have used integration by parts to replace the integral over all space with an integral over

the source of vorticity only. This is particularly convenient when the source is represented by a

vortex sheet, because we may express the energy as an integral in k space:

Evort =
8π

3
ρ̄

+∞
∫

0

A(R, 0)σ(R)

c2
R dR =

4π

3
ρ̄

+∞
∫

0

σ̃2(k)

c2
dk . (24)

We shall assume that the vortical energies of different clumps can simply be added. This

is justified if the clumps are well separated compared to their larger (i.e., lateral) dimensions.

Then if the number density of clumps in the pre-shock frame is Nc,0 and all the clumps have the

same axisymmetric density profile, the vortical energy density in the average post-shock frame is

ρvort = αNc,0Evort, and the vortical energy fraction becomes

ǫvort ≡
ρvort
ρ̄

=
4π

3
αNc,0

+∞
∫

0

σ̃2(k)

c2
dk . (25)

Recall from eq. (20) that the projected vorticity is proportional to α−1 = (2
√
2Γ̄)−1. Since this

factor is squared in computing the vortical energy, it follows from eq. (25) that ǫvort ∝ Γ̄−1 for a

fixed pre-shock density field. This scaling is perhaps the most important conclusion of our analysis

up to this point.

2In the mean post-shock rest frame, if T µν is the energy-momentum tensor of the fluid in turbulent motion

and T̄ µν for the mean fluid (whose four-velocity has spatial components Ūi = 0 in this reference frame), pressure

equilibrium requires T ij = T̄ ij ; under the assumption of spatial statistical isotropy for the turbulent motions, this

implies T kk = 3P̄ , which yields, for an ultra-relativistic fluid (T µµ = T̄ µµ = 0), the equality T 00 = ρ̄; then, since

T 00
≈ ρ+ (4/3) ρ (v/c)2, if the vortical motions are sub-relativistic we obtain ρ ≈ ρ̄.
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3. The circumburst medium

Observations support the idea that long-duration GRBs are associated with the deaths of

massive Wolf-Rayet (WR) stars, presumably arising from their core-collapse (Woosley & Bloom

2006, and references therein). Then the circumburst environment is determined by the star’s mass-

loss history. At the onset of the WR phase, the WR stellar wind is expected to expand with

a typical velocity vwr ≈ 2000 km s−1 inside the pre-existing slower wind emitted during the red

supergiant (RSG) phase, whose characteristic speed is vrsg ≈ 20 km s−1. The winds from massive

RSGs are characterized by a mass-loss rate Ṁrsg between 10−6 and 10−4 M⊙yr
−1 (Chevalier et al.

2006), while the mass-loss rates Ṁwr of WR stars are between 10−5 and 10−4 M⊙yr
−1 (Crowther

2006). Several solar masses are shed by the star during these evolutionary phases. The mass

equivalent to the energy of a GRB, on the other hand, is only ≈ 0.06Eiso,53 M⊙. Therefore,

the GRB forward shock is expected to become non-relativistic long before it escapes the wind to

encounter the interstellar medium. There are at least four regions of the wind that are relevant

to the relativistic phase of the afterglow (Ramirez-Ruiz et al. 2005): from the inside out, these

are an expanding WR wind (ρ̄0/c
2 = Ṁwr/4πvwrr

2, where r is the distance from the star), the

shocked WR wind (ρ̄0 ≈ constant), the shocked RSG wind (ρ̄0 ≈ constant), and a freely expanding

RSG wind (ρ̄0/c
2 = Ṁwr/4πvrsgr

2). Beyond these lie another shocked part of the RSG wind, the

shocked ISM, and finally the unshocked ISM.

Density inhomogeneities in such a stratified structure could be produced by several processes.

First of all, the acceleration region of the WR wind, which extends to a few times the stellar radius,

is known to be clumpy. Emission-line data indicate accelerating “blobs” (Moffat et al. 1988) with

density filling factors f ≈ 0.05 − 0.25 (Crowther 2006, and references therein). These must occur

where the continuum is optically thin and must be large enough transversely to cover an appreciable

part (& 10%) of the stellar photosphere. The clumpiness of this region is in accord with theory,

since the line-driving mechanism of Castor et al. (1975), which explains the gross properties of WR

and main-sequence O-star winds rather satisfactorily, is known to be unstable both radially and

nonradially on scales larger than the “Sobolev length” lSob ∼ r vth/vwr ≈ 10−2r (Dessart & Owocki

2005, and references therein), where vth ≈ 20 km s−1 is the thermal velocity in the wind. Clump

dimensions at least as small as ∼ 1010 cm with density contrasts ∼ f−1 ∼ 10 are therefore expected.

These clumps may dissolve beyond the acceleration region (r ≫ 1012 cm) if the optically thin wind

maintains a uniform temperature comparable to the color temperature of the star; the clumps are

then at higher density than their surroundings and will expand on their sound-crossing time. After

crossing the reverse shock, the wind reaches temperatures ∼ 108 K, a regime that is thermally

unstable (Field 1965). Beyond the contact discontinuity, the shocked RSG wind lies at T ∼ 106 K,

which is even more unstable. Thermal instability may give rise to new clumps, whose minimum

size is controlled by thermal conduction and is therefore very uncertain because the conduction

rate is probably sensitive to magnetic field. Furthermore, the contact discontinuity is subject to

Rayleigh-Taylor instability as the shocked RSG wind is accelerated by the less dense WR wind;

however, Garcia-Segura & Franco (1996) found that clump formation is not efficient for the case of
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pure Rayleigh-Taylor instabilities in thick shells and concluded that a necessary condition for clump

development to occur is that the shocked shell be thin enough to allow Vishniac-like instabilities

(Vishniac 1983). Ramirez-Ruiz et al. (2005) point out that rapid cooling of the shocked RSG wind

is indeed likely to lead to a thin shell. Clump development in the shell is controlled by the Kelvin-

Helmholtz damping of the coupling between the Rayleigh-Taylor and Vishniac instabilities, while

the lifetime of small dense clumps, once formed, probably again depends upon conduction.

In short, there are ample reasons to expect a strongly inhomogeneous medium ahead of the

GRB forward shock, but the sizes of the smallest clumps are uncertain. We make no attempt to

estimate these sizes but simply state below the properties (lengthscale, density contrast and number

density) that the clumps would have to have in order to produce post-shock turbulence capable of

amplifying the magnetic field sufficiently.

It is of course essential for our proposed mechanism that a seed field exist in the pre-shock

medium. Magnetic and thermal energy densities are generally comparable in the ISM, but much

less is known about the magnetic component of the winds of early-type stars. Since such winds

are believed to be driven by radiative rather than centrifugal forces, as in late-type main-sequence

stars, and since such stars do not possess surface convection zones, the magnetic field might be

very small a priori. However, magnetic effects have been invoked to explain X-ray emission and

anisotropy in the winds of early-type stars (Wolf et al. 1999; ud-Doula & Owocki 2002; Schulz

et al. 2003). Furthermore, since the amplification of a weak (kinematic) magnetic energy density

by turbulence proceeds exponentially on the timescale of the energy-bearing eddies (Schekochihin

et al. 2002, and references therein), the number Neddy of eddy-turnover times required to reach

saturation is only logarithmically dependent on the strength of the seed field. Therefore, in the

estimates of the required turnover time made below, we shall simply assume that the magnetic

energy fraction ǫb in the pre-shock medium is comparable to that in the ISM, ∼ 10−8, so that the

number of eddy rotations necessary to explain the value of ǫb inferred from afterglow observations

is of order Neddy ∼ 10.

4. Results

The formalism described in §II can be used to predict the eddy-turnover time and vortical

energy fraction of the turbulent motions produced by an ultra-relativistic shock sweeping-up a

clumpy medium; if the pre-shock average (i.e., smoothed over clumps) density profile is known, a

comparison with afterglow models will then let us constrain the lengthscale, overdensity and volume

filling factor of the circumburst inhomogeneities. Unfortunately, observations have not yet clearly

determined the density profile ahead of the GRB forward shock (Chevalier & Li 2000; Panaitescu &

Kumar 2001, 2002; Chevalier et al. 2004), so that we will consider both free winds (energy density

ρ̄0 ∝ r−2) and shocked uniform winds (ρ̄0 ≈ constant) as possible circumburst media, keeping in

mind that, as described by Ramirez-Ruiz et al. (2005) and outlined in §III, the actual surrounding

environment is much more complex.
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Assuming that the blast wave is adiabatic and effectively spherical and thatEiso = 1053Eiso,53 erg

is its isotropic equivalent energy, as derived from the gamma-ray output, we can compute the decel-

eration radius of the GRB forward shock when about half of the initial energy has been transferred

to the shocked matter; for an initial Lorentz factor Γ0 = 102Γ0,2, the typical swept-up mass where

this happens is

Mdec =
Eiso

Γ2
0 c

2
≈ 5.6× 10−6Eiso,53 Γ

−2
0,2 M⊙ . (26)

For the two circumburst density profiles mentioned above, the deceleration radius of the shock is

then

rdec =







Mdec vwr

Ṁwr

≈ 3.5× 1015 Eiso,53 vwr,8.3 Ṁ
−1
wr,−5 Γ

−2
0,2 cm for ρ̄0 ∝ r−2

(

3Mdec

4πmp nism

)1/3
≈ 1.2× 1017 (Eiso,53/nism,0)

1/3 Γ
−2/3
0,2 cm for ρ̄0 ≈ const.

(27)

where in the first case we have chosen typical WR wind parameters (Ṁwr = 10−5Ṁwr,−5 M⊙yr
−1

and vwr = 2000 vwr,8.3 km s−1), whereas in the second case a baryon number density comparable

to the ISM value (nism = nism,0 cm
−3) has been assumed. This corresponds to a deceleration time

in the post-shock rest frame

tdec =
√
2
rdec
Γ0 c

≈
{

1.7 × 103Eiso,53 vwr,8.3 Ṁ
−1
wr,−5 Γ

−3
0,2 s for ρ̄0 ∝ r−2

5.7 × 104 (Eiso,53/nism,0)
1/3 Γ

−5/3
0,2 s for ρ̄0 ≈ const.

(28)

since the Lorentz factor of the post-shock material in the pre-shock rest frame is Γ0/
√
2.

4.1. Clump properties

We consider a pre-shock medium with number density Nc,0 of identical clumps. Each clump is

characterized by a gaussian overdensity profile with central density contrast δmax and typical size

L; if the origin of the axes is in the center of the clump and R, z0 and θ are pre-shock cylindrical

coordinates, we choose a clump energy density profile

ρ0(R, z0) = ρext[1 + δmaxe
−(R2+z2

0
)/L2

] , (29)

where ρext is the energy density of the inter-clump homogeneous medium. In order to use the

formalism introduced in §II—where the density contrast δ was defined with respect to the mean

pre-shock energy density ρ̄0 (averaged over clumps), whereas here the inter-clump density ρext has

been used—we should set

δ(R, z0) =
ρext
ρ̄0

[1 + δmaxe
−(R2+z2

0
)/L2

]− 1 ; (30)

however, the ratio between ρext and ρ̄0 can be easily computed for the density profile in eq. (29):

ρext
ρ̄0

=
1

1 + π3/2δmaxNc,0L3
≈ 1 (31)
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provided that δmaxNc,0L
3 . 1. In this section, we will always assume ρext/ρ̄0 ≈ 1, so that the

formulae in §II can be used with a pre-shock overdensity profile

δ(R, z0) = δmaxe
−(R2+z2

0
)/L2

. (32)

For small density contrasts, we can perform analytical calculations taking into account just

the leading (first) order term in δ within eq. (15); the corresponding vorticity will be referred to

as the “leading-order vorticity” ωlo, and the Hankel transform of its projected vorticity will be

used in eq. (25) to analytically compute the leading (second) order in δmax of the vortical energy

fraction (ǫvort,lo). This approximation is certainly well justified for δmax ≪ 1, but Figure 2 shows

that the full numerical computation for ǫvort is still in reasonable agreement with our analytical

approximation ǫvort,lo even for δmax ∼ 1. For larger central overdensities a numerical calculation is

required, and we could fit the numerical results with a fitting function

ǫvort = ǫvort,lo
1

1 + c1 (δmax)c2
(33)

(c1 and c2 are fitting parameters), so that for small overdensities (δmax ≪ 1) we recover the result

of the analytical computation.

4.2. Eddy-turnover time

Vorticity embedded in clumps by the passage of the GRB forward shock can be responsible

for the magnetic fraction inferred from afterglow models only if vortical motions are fast and

energetic enough to amplify the field up to the observed value before the shock deceleration time,

when adiabatic expansion would significantly reduce the particle energies available for the afterglow

emission.

In the leading-order approximation described above, an estimate of the eddy-turnover time for

the density contrast in eq. (32) is

teddy =
1

|ωlo(L, 0)|
≈ 6.5× 102 L13

2

δmax
s (34)

where L = 1013L13 cm; the reference value chosen for the central overdensity δmax is in agreement

with observations (see §III) and reasonably satisfies the requirements for the leading-order approx-

imation (see Figure 2). If Neddy = 10Neddy,1 is the number of eddy rotations necessary to explain

the observed ǫb, the requirement Neddyteddy ≤ tdec for a wind-like or ISM-like circumburst medium

gives respectively
{

L13
2

δmax
. 0.3Eiso,53 vwr,8.3 Ṁ

−1
wr,−5 Γ

−3
0,2N

−1
eddy,1 for ρ̄0 ∝ r−2

L13
2

δmax
. 8.7 (Eiso,53/nism,0)

1/3 Γ
−5/3
0,2 N−1

eddy,1 for ρ̄0 ≈ const.
(35)

Let us emphasize that, for smaller initial shock Lorentz factors Γ0, a larger size L and weaker

overdensity δmax are enough to satisfy the constraint Neddyteddy ≤ tdec.
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4.3. Vortical energy fraction

The kinetic energy density invested in the vortical part of the post-shock flow should be

a significant fraction of its proper energy density, since—as stated in §II—we assume that the

amplified magnetic fraction, which is required to match the observational inference ǫb & 10−3,

will eventually be comparable to the vortical fraction, ǫb ∼ ǫvort. However, ǫb might be smaller

than ǫvort if the backreaction of magnetic field on turbulent motions is important well before

equipartition between the magnetic and vortical energy densities; on the other hand, ǫvort may also

be a lower limit for ǫb if secondary shocks created by the overlapping sound waves of many different

overpressured clumps significantly contribute to magnetic field amplification.

The results of a numerical calculation for the vortical fraction of clumps with overdensity profile

in eq. (32) are shown in Figure 3 (solid line), but for small central overdensities the leading-order

analytical computation described above gives a reliable estimate of the magnetic energy fraction

produced by turbulence in GRB afterglows:

ǫb ∼ ǫvort,lo ≈ 1.8× 10−3 Γ̄−1
2

(

δmax

2

)2 Nc,0L
3

0.25
(36)

where Γ̄ = 102 Γ̄2 and the reference values for the central overdensity δmax and the clump volume

filling factor Nc,0L
3 have been chosen in order to match the observational constraint ǫb & 10−3. So,

clumps with moderate density contrasts (δmax ≈ 2, in agreement with the observational evidences

reviewed in §III) can justify the lower limit of the magnetic energy fraction inferred from afterglow

models. Higher density contrasts (see Figure 3) would be necessary to achieve larger magnetic

fractions; however, it is worth recalling that our model is applicable only under the assumptions

that the clump overdensity is not larger than ∼ Γ (see §II) and that δmaxNc,0L
3 . 1, so that the

overdensity profile can actually be described by eq. (32).

Eq. (36) suggests that smaller overdensities would be enough to satisfy the observational con-

straints on ǫb as the forward shock slows down, since ǫb ∝ Γ̄−1; the magnetic fraction is then

expected to change during the afterglow stage, and in §V we will discuss the possible observational

consequences of its time evolution.

5. Summary and Discussion

We have proposed that the post-shock magnetic fields of GRB afterglows may arise from macro-

scopic MHD turbulence rather than microscopic plasma instabilities. The source of turbulence is

vorticity produced when the shock encounters density inhomogeneities in the pre-shock medium.

We presume that the magnetic energy fraction (ǫb) that results is comparable to the energy frac-

tion of the turbulence. The ultra-relativistic Geometrical Shock Dynamics formalism of Paper I

(Goodman & MacFadyen 2007) allows an easy, though approximate, calculation of the vorticity

produced by a given density inhomogeneity in the limit that the shock Lorentz factor Γ ≫ 1.
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In this picture, the observational inference that ǫb & 10−3 constrains both the amplitude and

the lengthscale of inhomogeneities. Eqs. (33) and (36) roughly relate the total energy fraction in

vortical motions to the volume filling factor and density contrast of the clumps; this energy fraction

must be comparable to the inferred post-shock ǫb. Filling factors and density contrasts of order

unity are required when the shock is still highly relativistic. Eq. (35), on the other hand, express

the constraint on the lengthscale and density contrast of individual clumps (independently of their

volume filling factor) so that the eddies can wind the magnetic field up to the observed value in

less than the expansion time of the shock. This second constraint favors small lengthscales, so that

the clumps responsible for field amplification would probably be too small, at least individually,

to modulate the afterglow light curve. Actually, Nakar & Granot (2006) have recently shown that

any pre-shock inhomogeneity can hardly be responsible for the rebrightenings observed in some

afterglow light curves.

There is a question whether a fluid treatment of the post-shock flow is justified at all since

the plasma is collisionless. The same question arises in supernova remnants, to which the standard

answer is that magnetization of the plasma ensures a short effective mean free path. The present

case is more extreme because the particles are relativistic, the lengthscales on which fluid-like be-

havior is required are smaller, especially in the present work, and the pre-shock field is energetically

negligible. The relativistic Larmor radius of the post-shock ions based on the compressed ambi-

ent field is rl ≈ Γmpc
2/eB ≈ 1012(3 µG/B0) cm, where B0 is the pre-shock field strength. This

is smaller than the maximum tolerable clump size for field amplification at the beginning of the

afterglow phase, though only barely so (§4.2). Furthermore, whether or not the Weibel instability

can produce persistent magnetic fields, it should enforce fluid-like behavior by isotropizing particle

distribution functions whenever counterstreaming plasmas overlap.

A basic conclusion of this work is that vortical turbulence becomes easier to produce with

decreasing shock Lorentz factor. Both the energy and timescale constraints become easier to satisfy

as Γ decreases (however, our ultra-relativistic approximations break down as Γ → 1). Therefore, if

the post-shock magnetic energy density is produced by macroscopic turbulence, it is likely that ǫb
will evolve as the shock ages, complicating the task of drawing physical inferences about the GRB

environment from the observational data. The abundance of early X-ray light curves provided by

the Swift satellite has already led to models that are more complicated than the rather simple

theoretical description of the sparser BeppoSAX results (Galama et al. 1998). The light curves

are not single power laws in time, but show breaks and sometimes “flares”, suggesting a need for

extended energy input from the central source (Zhang et al. 2006, and references therein). But, to

date, most modelers have assumed constant ǫb and ǫe (the post-shock energy fraction in relativistic

e±) within individual afterglows, although these parameters are often allowed to vary from one

afterglow to another.

The effect of an evolving ǫb depends upon the relationship between the observed frequency

and certain critical frequencies in the synchrotron spectrum. Particularly important is the cooling

frequency, the doppler-shifted synchrotron frequency of a post-shock electron or positron that



– 18 –

radiates much of its energy on a timescale comparable to the age of the shock. For a pre-shock

medium with mass density profile ρ̄m(r) ≡ c−2ρ̄0(r) = Kr−ω averaged over clumps, and for an

adiabatic relativistic shock with constant isotropically equivalent energy Eiso (notwithstanding the

above-cited inferences from Swift data), the cooling frequency evolves as (up to dimensionless

constants of order unity)

νcool ≈ eme

(1 + zgrb)σ2t
[ǫb ρ̄m(rs)]

−3/2 r−2
s

≈ eme

(1 + zgrb)σ2t
ǫ
−3/2
b K−4/(4−ω)

[

Eiso

c
(1 + zgrb)

−1t

](3ω−4)/2(4−ω)

, (37)

where rs is the shock radius, t the astronomical observer’s time and zgrb the GRB cosmological

redshift. Evidently, the shock energy and Lorentz factor scale out of the cooling frequency when the

latter is expressed in terms of the shock radius. If one could be confident that the early afterglow

evolves in a freely expanding wind (ω = 2), which seems a priori likely in collapsar models, then

the evolution of ǫb could be inferred by measuring that of νcool.

Present evidence suggests that the cooling frequency lies below the X-ray regime in the early

afterglow phase. This conclusion rests on the usual assumption that the synchrotron-emitting

electrons are injected with a power law distribution of energies, N(γ)dγ ∝ γ−pdγ for γ > γmin ≫ 1,

in which p > 2 so that the total energy is dominated by electron energies near γminmec
2, whose

characteristic observed frequency is νmin. The observed specific flux is often described as a power

law in time and frequency, Fν ∝ t−αν−β, despite various breaks and the aforementioned flares.

If synchrotron emission dominates and νcool > νmin (slow-cooling regime), the spectral index is

β = (p− 1)/2 if νmin < ν < νcool and β = p/2 if ν > νcool. It is believed that the acceleration index

p is not much larger than 2, perhaps p ≈ 2.2−2.3, which is then consistent with the observed X-ray

indices β ≈ −1 observed by Swift (Zhang et al. 2006, and references therein) only if hνcool < 1 keV.

Evaluating eq. (37) at the deceleration radius appropriate for a Wolf-Rayet wind (see eq. (27)), we

find that the afterglow phase begins with a cooling frequency that is plausibly consistent with this

constraint:

hνcool,dec ≈ 0.2 (1 + zgrb)
−1(104ǫb)

−3/2 v
5/2
wr,8.3 Ṁ

−5/2
WR,−5Eiso,53 Γ

−2
0,2 keV. (38)

Unless the cooling frequency passes through the observed band, one cannot learn much about the

evolution of ǫb from observations at ν > νcool > νmin, because (up to numerical factors of order

unity)

νFν ≈ ǫeEiso

4πd2L (1 + zgrb)−1 t

(

γ

γmin

)2−p

(39)

in this regime, where dL is the luminosity distance; ǫb enters the above expression only via the

correspondence ν ≈ (1 + zgrb)
−1(γΓ)2(ǫbρ̄m)1/2e/me between observed frequency ν and electron

Lorentz factor γ, and hence is raised to the small exponent (p − 2)/4 . 0.1. On the other hand,

relation (39) indicates that the flux above the cooling frequency provides an excellent measure of

the energy in the electron population (Freedman & Waxman 2001).
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Schaefer, B. E., Gerardy, C. L., Höflich, P., Panaitescu, A., Quimby, R., Mader, J., Hill, G. J.,

Kumar, P., Wheeler, J. C., Eracleous, M., Sigurdsson, S., Mészáros, P., Zhang, B., Wang,
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(c)

(b)

(d)

(a)

Fig. 1.— History of a density clump overrun by an ultra-relativistic shock (mean Lorentz factor Γ̄),

viewed in the shock rest frame. (a) The Lorentz-contracted (by a factor ∼ Γ̄−1) spherical clump

approaches the shock (thick line) with v ≈ c. (b) After the shock, the clump contracts further by

×1/3 (or ×(2
√
2)−1 in its rest frame) and moves downstream at c/3. (c) The clump re-expands

to reach pressure equilibrium and emits sound waves or weak shocks. (d) Vorticity created by the

shock passage begins to roll up the clump.
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Fig. 2.— Ratio between the exact numerical calculation of the vortical energy fraction (ǫvort) and

its analytical approximation (ǫvort,lo in eq. (36), keeping only the leading order in the central over-

density δmax within the vorticity ω) as a function of δmax; deviations from the anaytical calculation

are significant only for δmax & 1. Dotted line: Taking into account, in the numerical calculation,

only the non-integral contribution to the vorticity (i.e., neglecting the second row in eq. (15)). Solid

line: Full numerical calculation, including both the integral and non-integral terms in eq. (15); the

non-integral contribution is found to be dominant even for large overdensities.
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Fig. 3.— Solid line: Full numerical calculation of the vortical energy fraction ǫvort as a function

of the central overdensity δmax, assuming an average shock Lorentz factor Γ̄ = 100 and a clump

volume filling factor Nc,0L
3 = 0.25 (a different choice for this parameter would simply shift the

curve). Dotted line: Analytical best-fit with the fitting function in eq. (33) and fitting parameters

c1 ≈ 0.176 and c2 ≈ 1.054. The area between the dashed lines gives the region allowed by afterglow

observations for the magnetic energy fraction ǫb.


