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We study a nonlinear quenching of turbulent magnetic diffusion and effective drift velocity of large-
scale magnetic field in a developed two-dimensional MHD turbulence at large magnetic Reynolds
numbers. We show that transport of the mean-square magnetic potential strongly changes quenching
of turbulent magnetic diffusion. In particularly, the catastrophic quenching of turbulent magnetic
diffusion does not occur for the large-scale magnetic fields B ≫ Beq/

√
Rm when a divergence of the

flux of the mean-square magnetic potential is not zero, where Beq is the equipartition mean magnetic
field determined by the turbulent kinetic energy and Rm is the magnetic Reynolds number. In this
case the quenching of turbulent magnetic diffusion is independent of magnetic Reynolds number.
The situation is similar to three-dimensional MHD turbulence at large magnetic Reynolds numbers
whereby the catastrophic quenching of the α effect does not occur when a divergence of the flux of
the small-scale magnetic helicity is not zero.

PACS numbers: 47.65.Md

I. INTRODUCTION

The magnetic fields of the Sun, solar type stars, galax-
ies and planets are believed to be generated by a dynamo
process due to the simultaneous action of the α effect (the
helical motions of turbulence) and differential rotation
(see, e.g., [1, 2, 3, 4, 5, 6]). The kinematic stage of the
mean-field dynamo, i.e. the growth of a weak mean mag-
netic field with negligible effect on the turbulent flows,
is well understood, while the nonlinear stage of dynamo
evolution is a topic of intensive discussions (for reviews,
see [7, 8, 9]). The most contentious issue is the ques-
tion of the equilibrium magnetic field strength at which
dynamo action saturates. In particular, the problem of
catastrophic quenching of the α effect in a developed
three-dimensional magnetohydrodynamic (MHD) turbu-
lence with large magnetic Reynolds numbers has been
intensively discussed in astrophysics and magnetohydro-
dynamics during last years (see, e.g., [10, 11, 12, 13]).
The catastrophic quenching implies very strong reduc-
tion of the α effect during the growth of the mean mag-
netic field so that the dynamo generated magnetic field
should be saturated at a very low level. However, this is
in contradiction with observations of the magnetic fields
of the Sun, stars and galaxies.

In a two-dimensional MHD turbulence with imposed
large-scale magnetic field at large magnetic Reynolds
numbers, the catastrophic quenching can occur for tur-
bulent magnetic diffusion (see, e.g., [10, 14]). In particu-
lar, small-scale magnetic fluctuations strongly affect the
large-scale magnetic field dynamics even for very weak
mean fields. This causes a strong reduction of turbu-
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lent magnetic diffusion [10]. This conclusion is based on
Zeldovich theorem [16]. In a two-dimensional MHD tur-
bulence energy is transferred from large-scale stirring to
small scales and dissipated due to an Alfvenized cascade,
whereby eddy energy is converted to Alfven wave energy
(see, e.g., [17, 18]). The above discussed quenching is
caused by the tendency of the mean magnetic field to
Alfvenize the turbulence.

A principal difference between two-dimensional and
three-dimensional MHD turbulence is related to differ-
ent integral of motions for these kind of turbulence. In
particular, square of total (small-scale and large-scale)
magnetic potential is conserved in two-dimensional MHD
turbulence, while total (small-scale and large-scale) mag-
netic helicity is conserved in three-dimensional MHD tur-
bulence. The magnetic helicity and the α effect can be
positive and negative, while the squared magnetic po-
tential is only positive. A comprehensive comparison be-
tween two-dimensional and three-dimensional MHD tur-
bulence has been performed in [14, 15].

It has been recently recognized [19, 20] that in three-
dimensional MHD turbulence the catastrophic quench-
ing of the α effect does not arises when a divergence
of the flux of magnetic helicity is not zero (see also
[9, 21, 22]). In the present study we show that in a devel-
oped two-dimensional MHD turbulence with large mag-
netic Reynolds numbers Rm, a non-zero divergence of
the flux of the mean-square magnetic potential strongly
changes a balance in the equation for these fluctuations
and results in that the catastrophic quenching of turbu-
lent magnetic diffusion does not occur for the magnetic
fields B ≫ Beq/

√
Rm, where Beq is the equipartition

mean magnetic field determined by the turbulent kinetic
energy.

This paper is organized as follows. In Sec. II we formu-
late the governing equations, the assumptions, the pro-
cedure of the derivations. In Sec. III we determine the
nonlinear turbulent magnetic diffusion coefficients and
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the nonlinear drift velocities of the mean magnetic field
in a developed two-dimensional MHD turbulence. Fi-
nally, we draw conclusions in Sec. IV. In Appendix A we
perform the derivation of the nonlinear turbulent mag-
netic diffusion and the nonlinear drift velocities of the
mean magnetic field and in Appendix B we present the
nonlinear functions used in Sec. III and their asymptotic
formulas.

II. GOVERNING EQUATIONS AND THE

PROCEDURE OF DERIVATION

Let us consider a developed two-dimensional MHD tur-
bulence with large hydrodynamic and magnetic Reynolds
numbers. We study nonlinear quenching of the turbu-
lent magnetic diffusion and the effective drift velocity
of the magnetic field. We use a mean field approach
whereby the velocity, pressure and magnetic field are sep-
arated into the mean and fluctuating parts. In a two-
dimensional MHD turbulence the mean magnetic field is
B = ∇×[A(x, y) e], where A(x, y) is the mean magnetic
potential and e is the unit vector perpendicular to the
plane of the two-dimensional MHD turbulence, i.e., it is
directed along z-axis. The equation for the evolution of
the mean magnetic potential for an incompressible tur-
bulent flow with a zero mean velocity reads:

∂A

∂t
+ div 〈u a〉 = η∆A , (1)

where u are the velocity fluctuations and η is the mag-
netic diffusion caused by an electrical conductivity of a
fluid. The mean electromotive force is Ez = 〈u × b〉z =
−divΓa, where the spatial flux of magnetic potential
Γa = 〈u a〉 and magnetic fluctuations b = ∇×[a(x, y) e]
are described by the fluctuations of the magnetic poten-
tial a(x, y). The mean electromotive force Ez(B) in a
two-dimensional MHD turbulence is given by:

Ez(B) = {[Veff(B)×B]i − ηij(B) (∇×B)j} ei , (2)

where the nonlinear turbulent magnetic diffusion ηij(B)
and the nonlinear effective drift velocity V

eff(B) of the
mean magnetic field are determined in Sec. III.
In order to derive equations for the nonlinear turbu-

lent magnetic diffusion and the nonlinear effective drift
velocity of the mean magnetic field in a two-dimensional
MHD turbulence we use a procedure outlined below (see
Appendix A for details). This procedure is similar to
that used in [23] for a study of a three-dimensional MHD
turbulence. We use equations for fluctuations of velocity
and magnetic field

∂u(t,x)

∂t
= −∇p

ρ
+

1

µ ρ
[(b ·∇)B+ (B ·∇)b]

+u
N + F , (3)

∂b(t,x)

∂t
= (B ·∇)u− (u ·∇)B+ b

N , (4)

where ρ is the fluid density, F is a random external stir-
ring force, u

N and b
N are the nonlinear terms which

include the molecular dissipative terms, p are the fluc-
tuations of total (hydrodynamic and magnetic) pressure.
Hereafter we omit the magnetic permeability of the fluid
µ and include µ−1/2 in the definition of magnetic field,
we also omit the density ρ of incompressible fluid and
include ρ1/2 in the definition of velocity field. We rewrite
Eqs. (3) and (4) in a Fourier space and derive equations
for the two-point second-order correlation functions of
the velocity fluctuations 〈ui uj〉, the magnetic fluctua-
tions 〈bi bj〉 and the cross-helicity 〈bi uj〉. The equations
for these correlation functions are given by Eqs. (A1)-
(A3) in Appendix A.
The second-moment equations include the first-order

spatial differential operators N̂ applied to the third-order
moments M (III). A problem arises how to close the sys-
tem, i.e., how to express the set of the third-order terms
N̂M (III) through the lower moments M (II) (see, e.g.,
[24, 25, 26]). We use the spectral τ approximation which
postulates that the deviations of the third-moment terms,
N̂M (III)(k), from the contributions to these terms af-

forded by the background turbulence, N̂M (III,0)(k), are
expressed through the similar deviations of the second
moments, M (II)(k)−M (II,0)(k):

N̂M (III)(k) − N̂M (III,0)(k)

= − 1

τ(k)
[M (II)(k) −M (II,0)(k)] , (5)

(see, e.g., [23, 26, 27, 28, 29]), where τ(k) is the
scale-dependent relaxation time, which can be identi-
fied with the correlation time of the turbulent velocity
field, and the quantities with the superscript (0) corre-
spond to the background turbulence. A justification of
the τ approximation for different situations has been per-
formed in numerical simulations and analytical studies in
[9, 30, 31, 32, 33, 34].
Next, we split all second-order correlation functions,

M (II), into symmetric and antisymmetric parts with re-
spect to the wave vector k. We assume that the char-
acteristic time of variation of the mean magnetic field
B is substantially larger than the correlation time τ(k)
for all turbulence scales. This allows us to get a sta-
tionary solution for the equations for the second-order
moments, M (II). We use a model of the background
anisotropic and inhomogeneous two-dimensional MHD
turbulence determined by Eqs. (A16)-(A17) in Appendix
A.
In this study we consider an intermediate nonlinearity

which implies that the mean magnetic field is not enough
strong in order to affect the correlation time of turbulent
velocity field. The theory for a very strong mean mag-
netic field can be modified after taking into account a
dependence of the correlation time of the turbulent ve-
locity field on the mean magnetic field.
Using the solution of the derived second-moment equa-

tions, we determine the mean electromotive force, Ei =



3

εimn

∫

〈bn um〉k dk (see Appendix A for details), where
εijk is the fully antisymmetric Levi-Civita tensor. This
procedure allows us to determine the nonlinear turbulent
magnetic diffusion and the nonlinear effective drift veloc-
ity of the mean magnetic field in a two-dimensional MHD
turbulence.

III. TURBULENT TRANSPORT

COEFFICIENTS

The derivation outlined in Sec. II yields the nonlin-
ear turbulent magnetic diffusion of the mean magnetic
field. In particular, in order to determine the nonlinear
turbulent magnetic diffusion ηij(B) we use an identity:
ηij = (εikpbjkp + εjkpbikp)/4, where the tensor bijk is de-
termined by Eq. (A19) in Appendix A. The nonlinear
turbulent magnetic diffusion coefficient along the mean
magnetic field, η

B
, and the cross-field turbulent magnetic

diffusion coefficient, η
⊥
, are given by:

η
B

= τ0 [〈u2〉(0) − 〈b2〉(0)] Ψ1(β) , (6)

η
⊥

= τ0 [〈u2〉(0) − 〈b2〉(0)] Ψ(β) , (7)

where τ0 = l0/u0 and u0 =
√

〈u2〉(0) is the characteris-
tic turbulent velocity in the maximum scale of turbulent
motions l0. The quantities with the superscript (0) cor-
respond to the background turbulence. The functions
Ψ(β), Ψ1(β) and their asymptotic formulas are given in

Appendix B, β = 4 (B/Beq) and Beq =
√

〈u2〉(0) is the
equipartition field. More general equations for η

B
and

η
⊥

in the case of an anisotropic background turbulence
are given by Eqs. (A20) and (A21) in Appendix A. It
follows from Eqs. (6) and (7) that in the case of Alfvenic
equipartition, 〈u2〉(0) = 〈b2〉(0), the nonlinear turbulent
magnetic diffusion vanishes.
The nonlinear turbulent magnetic diffusion depends on

a flux of mean-square magnetic potential. This flux can
change properties of the quenching of the cross-field tur-
bulent magnetic diffusion. Indeed, let us determine the
parameter ǫ = 〈b2〉(0)/〈u2〉(0) using budget equation for
the evolution of the mean-square magnetic potential 〈a2〉:

∂〈a2〉
∂t

+ divFA = 2η
⊥
B

2 − 2η〈b2〉 , (8)

where the flux F
A = 〈u a2〉 − η∇〈a2〉 determines the

transport of 〈a2〉. The first term 2η
⊥
B

2 in the right
hand side of Eq. (8) describes a production of the mean-
square magnetic potential 〈a2〉, while the term −2η〈b2〉
determines the resistive dissipation of 〈a2〉. In the ab-
sence of the flux of the mean-square magnetic potential,
F

A = 0, Eq. (8) implies the catastrophic quenching of
the cross-field turbulent magnetic diffusion. In partic-
ular, in a steady-state Eq. (8) reads η

⊥
= η 〈b2〉/B2.

Since the magnetic energy is less than the kinetic energy,
〈b2〉 < 〈u2〉(0), we get

η
⊥

η
T

<
1

Rm(B/Beq)2
, (9)

where η
T

= l0 u0/2 and Rm = u0 l0/η is the mag-
netic Reynolds number. This estimate implies a strong
quenching of the cross-field turbulent magnetic diffusion
with increasing Rm (B/Beq)

2 due to Alfvenization of tur-
bulence by tangling of a weak mean magnetic field by
velocity fluctuations [14].
Situation is drastically changed when divFA 6= 0. In-

deed, Eq. (8) is not closed because it depends on the
magnetic energy 〈b2〉. The energy of magnetic fluctu-
ations 〈b2〉 can be determined in the same way as we
derived the cross-helicity tensor. In particular, 〈b2〉 is
obtained from Eq. (A8) given in Appendix A, after the
integration in k-space. The result is given by

〈b2〉 =
1

2

[

〈u2〉(0)[1− φ(β)] + 〈b2〉(0)[1 + φ(β)]
]

,

(10)

where the function φ(β) and its asymptotic formulas are
given in Appendix B. More general equation for 〈b2〉 for
anisotropic background turbulence is given by Eq. (A22)
in Appendix A.
Equation (8) allows us to determine the energy of

magnetic fluctuations of the background turbulence self-
consistently. In particular, combining Eq. (10) with the
steady-state solution of Eq. (8) we determine the pa-
rameter ǫ = 〈b2〉(0)/〈u2〉(0) [see, e.g., Eq. (A23) in Ap-
pendix A for anisotropic background turbulence]. When

B ≫ Beq/
√
Rm, the parameter ǫ is given by

ǫ = 1− divFA

4η
T
B2Ψ(β)

. (11)

Therefore, Eqs. (6), (7) and (11) yield the nonlinear tur-
bulent magnetic diffusion in two directions:

η
B

=
divFA

2B2

(

Ψ1(β)

Ψ(β)

)

, (12)

η
⊥

=
divFA

2B2
. (13)

where η
B

is the nonlinear turbulent magnetic diffusion
along the mean magnetic field and η

⊥
is the cross-field

nonlinear turbulent magnetic diffusion. Remarkably,
Eq. (13) can be obtained directly from Eq. (8) written
in a steady-state if we neglect the resistive dissipation
term −2η〈b2〉 in the right hand side of Eq. (8).
In order to determine the parameter ǫ we use the

steady-state solution of Eq. (8). However, the steady-
state solution of this equation exists not for all values of
the mean magnetic field. Indeed, let us plot in Fig. 1 the
function Ψ(β) for the exponent of the energy spectrum
of the background turbulence q = 5/3. At B → 0.18Beq

the function Ψ(β) tends to zero (see Fig. 1). In the range
B ≥ 0.18Beq the steady-state solution of Eq. (8) does not
exist. The turbulent magnetic diffusion should be pos-
itive, which implies that divFA > 0. Therefore, when
divFA < 0 there is no steady-state solution of Eq. (8)
for B ≥ 0.18Beq as well. More detailed discussion of this
facet is given in Appendix A after Eq. (A26).
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FIG. 1: The function Ψ(B/Beq) for q = 5/3.

In inhomogeneous turbulence there are also turbulent
diamagnetic and paramagnetic effects. In particular,
an inhomogeneity of the velocity fluctuations leads to a
transport of mean magnetic flux from regions with high
intensity of the velocity fluctuations (turbulent diamag-
netism, see, e.g., [3, 16]). On the other hand, an inhomo-
geneity of magnetic fluctuations due to the small-scale
dynamo causes turbulent paramagnetic velocity, i.e., the
magnetic flux is pushed into regions with high intensity of
the magnetic fluctuations (see, e.g., [35, 36]). In order to
determine the nonlinear turbulent diamagnetic and para-
magnetic drift velocities V

eff(B) of the mean magnetic

field, we use an identity: V
(eff)
k = εkjiaij/2, where the

tensor aij is determined by Eq. (A18) in Appendix A.
The inhomogeneities of the velocity and magnetic fluctu-
ations of the background turbulence are characterized by

the following parameters Λ
(v)
i = ∇i〈u2〉(0)/〈u2〉(0) and

Λ
(b)
i = ∇i〈b2〉(0)/〈b2〉(0). The nonlinear effective drift

velocity of the mean magnetic field is given by

V
eff = −2η

T
[Λ(v) − ǫΛ(m)]Ψ1(β) , (14)

where the function Ψ1(β) and its asymptotic formulas are

given in Appendix B. When B ≫ Beq/
√
Rm, Eqs. (11)

and (14) yield

V
eff = −2η

T

[

Λ
(v) −Λ

(m) +
divFA

4η
T
B2Ψ(β)

Λ
(m)

]

Ψ1(β) .

(15)

The first term ∝ Λ
(v) in Eq. (15) determines the tur-

bulent diamagnetic drift velocity while the second term
∝ Λ

(m) describes the turbulent paramagnetic drift veloc-
ity. The last term ∝ divFA in Eq. (15) determines the
turbulent diamagnetic drift velocity caused by magnetic
fluctuations for B < 0.18Beq. More general equation for
V

eff for anisotropic background turbulence is given by
Eq. (A28) in Appendix A.

IV. CONCLUSIONS

In the present study we investigate nonlinear quench-
ing of the turbulent magnetic diffusion and the effective
drift velocity of the magnetic field in a developed two-
dimensional MHD turbulence at large magnetic Reynolds
numbers. We elucidate an important role of transport
of the mean-square magnetic potential which strongly
changes quenching properties of turbulent magnetic dif-
fusion. In particular, we show that the catastrophic
quenching of turbulent magnetic diffusion does not arises
for the magnetic fields B ≫ Beq/

√
Rm for a non-zero

divergence of the flux of the mean-square magnetic po-
tential. In this case the quenching of turbulent magnetic
diffusion is independent of magnetic Reynolds number.
This is similar to a three-dimensional MHD turbulence
at large magnetic Reynolds numbers whereby the catas-
trophic quenching of the α effect does not occur when
a divergence of the flux of the small-scale magnetic he-
licity is not zero. Note that in a two-dimensional MHD
turbulence, the magnetic field may only decay, while in
three-dimensional MHD turbulence magnetic field may
grow by dynamo mechanism.
Note that a quenching of turbulent magnetic diffusiv-

ity in a ’wavy’ magnetohydrodynamic turbulence in two
dimensions was recently studied in [37]. They found that
the turbulent magnetic diffusivity in the fourth-order
does not vanish when the magnetic Reynolds number
tends to infinity. In particularly, the second-order (quasi-
linear) contribution to the spatial flux of the mean mag-
netic potential is quenched as Rm−1, while the fourth-
order contribution to the flux is independent of Rm.
This implies that the turbulent magnetic diffusivity is
not quenched catastrophically in the presence of disper-
sive waves which can transfer the mean-square magnetic
potential. These findings are in an agrement with our
results.
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APPENDIX A: DERIVATIONS OF THE

NONLINEAR TURBULENT TRANSPORT

COEFFICIENTS

We use equations for fluctuations of velocity and mag-
netic field written in a Fourier space and derive equations
for the second moments in two-dimensional MHD turbu-
lence using a procedure which is similar to that used in
[23] for a study of a three-dimensional MHD turbulence.
In order to exclude the pressure term from the equation
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of motion (3) we determine ∇×(∇×u). We also apply
the two-scale approach, e.g., we use large-scaleR, K and
small-scale r, k variables (see, e.g., [38]). We assume that
there exists a separation of scales, i.e., the maximum scale
of turbulent motions l0 is much smaller then the charac-
teristic scale LB of inhomogeneities of the mean magnetic
field. We derive equations for the following correlation
functions: fij(k,R) = L̂(ui;uj), hij(k,R) = L̂(bi; bj)

and gij(k,R) = L̂(bi;uj), where

L̂(a; c) =

∫

〈a(k +K/2)c(−k+K/2)〉

× exp (iK·R) dK .

The equations for these correlation functions are given
by

∂fij(k)

∂t
= i(k·B)Φ

(M)
ij + Ifij + Fij + N̂fij , (A1)

∂hij(k)

∂t
= −i(k·B)Φ

(M)
ij + Ihij + N̂hij , (A2)

∂gij(k)

∂t
= i(k·B)[fij(k)− hij(k)] + Igij + N̂ gij ,

(A3)

where hereafter we omit arguments t and R in the cor-
relation functions and neglect terms ∼ O(∇2). Here

Φ
(M)
ij (k) = gij(k) − gji(−k), Fij(k) = 〈F̃i(k)uj(−k)〉 +

〈ui(k)F̃j(−k)〉, and F̃(k) = k×(k×F(k))/k2ρ. The stir-
ring force F(k) is an external parameter, that determines

the background turbulence. The source terms Ifij , Ihij
and Igij which contain the large-scale spatial derivatives
of the mean magnetic field and turbulence are given by

Ifij =
1

2
(B·∇)Φ

(P )
ij + [gqj(k)(2P

(2)
in (k)− δ

(2)
in )

+gqi(−k)(2P
(2)
jn (k)− δ

(2)
jn )]Bn,q −Bn,qknΦ

(P )
ijq ,

(A4)

Ihij =
1

2
(B·∇)Φ

(P )
ij − [giq(k)δ

(2)
jn + gjq(−k)δ

(2)
in ]Bn,q

−Bn,qknΦ
(P )
ijq , (A5)

Igij =
1

2
(B·∇)(fij + hij) + hiq(2P

(2)
jn (k)− δ

(2)
jn )Bn,q

−fnjBi,n −Bn,qkn(fijq + hijq) , (A6)

where P
(2)
ij (k) = δ

(2)
ij − kij , kij = kikj/k

2, Φ
(P )
ij (k) =

gij(k) + gji(−k), and Bi,j = ∇jBi, the terms N̂fij ,

N̂hij and N̂ gij are the third-order moment terms ap-
pearing due to the nonlinear terms, fijq = (1/2)∂fij/∂kq,

and similarly for hijq and Φ
(P )
ijq . For the derivation of

Eqs. (A1)-(A3) we use identities given in [23]. We take
into account that in Eq. (A3) the terms with symmet-
ric tensors with respect to the indexes ”i” and ”j” do
not contribute to the mean electromotive force because
Em = εmji gij .

We use the spectral τ approximation which postu-
lates that the deviations of the third-moment terms,
N̂M (III)(k), from the contributions to these terms af-

forded by the background turbulence, N̂M (III,0)(k), are
expressed through the similar deviations of the second
moments, M (II)(k) −M (II,0)(k) [see Eq. (5)]. The su-
perscript (0) corresponds to the background turbulence.
First, we solve Eqs. (A1)-(A3) neglecting the sources

Ifij , I
h
ij , I

g
ij with the large-scale spatial derivatives. Then

we will take into account the terms with the large-scale
spatial derivatives by perturbations. We assume that
ηk2 ≪ τ−1(k) and νk2 ≪ τ−1(k) for the inertial range of
turbulent flow, where ν is the kinematic viscosity and η
is the magnetic diffusion due to the electrical conductiv-
ity of fluid. We also assume that the characteristic time
of variation of the mean magnetic field B is substantially
larger than the correlation time τ(k) for all turbulence
scales. We split all correlation functions into symmetric
and antisymmetric parts with respect to the wave number

k, e.g., fij = f
(s)
ij +f

(a)
ij , where f

(s)
ij = [fij(k)+fij(−k)]/2

is the symmetric part and f
(a)
ij = [fij(k) − fij(−k)]/2 is

the antisymmetric part, and similarly for other tensors.
Thus, in a steady-state Eqs. (A1)-(A3) yield:

f̂
(s)
ij (k) ≈ 1

1 + 2ψ
[(1 + ψ)f

(0)
ij (k) + ψh

(0)
ij (k)] ,

(A7)

ĥ
(s)
ij (k) ≈ 1

1 + 2ψ
[ψf

(0)
ij (k) + (1 + ψ)h

(0)
ij (k)] ,

(A8)

ĝ
(a)
ij (k) ≈ iτ(k·B)

1 + 2ψ
[f

(0)
ij (k)− h

(0)
ij (k)] , (A9)

where ψ(k) = 2(τ k·B)2, f̂ij , ĥij and ĝij are solutions

without the sources Ifij , I
h
ij and Igij . The correlation func-

tions f̂
(a)
ij (k), ĥ

(a)
ij (k) and ĝ

(s)
ij (k) vanish if we neglect the

large-scale spatial derivatives, i.e., they are proportional
to the first-order spatial derivatives.
Next, we take into account the large-scale spatial

derivatives in Eqs. (A1)-(A3) by perturbations. Their
effect determines the following steady-state equations for
the second moments f̃ij , h̃ij and g̃ij :

f̃
(a)
ij (k) = iτ(k·B)Φ̃

(M,s)
ij (k) + τIfij , (A10)

h̃
(a)
ij (k) = −iτ(k·B)Φ̃

(M,s)
ij (k) + τIhij , (A11)

g̃
(s)
ij (k) = iτ(k·B)(f̃

(a)
ij (k)− h̃

(a)
ij (k)) + τIgij ,

(A12)

where Φ̃
(M,s)
ij = [Φ̃

(M)
ij (k) + Φ̃

(M)
ij (−k)]/2. The solution

of Eqs. (A10)-(A12) yield

Φ̃
(M,s)
ij (k) =

τ

1 + 2ψ
{Igij − Igji + iτ(k·B)(Ifij − Ifji

+Ihji − Ihij)} . (A13)
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Substituting Eq. (A13) into Eqs. (A10)-(A12) we obtain

the final expressions in k-space for the tensors f̃
(a)
ij (k),

h̃
(a)
ij (k), g̃

(s)
ij (k) and Φ̃

(M,s)
ij (k). In particular,

Φ̃(M,s)
mn (k) =

τ(k)W (k)〈u2〉(0)
(1 + 2ψ)2

[

(1 + ǫ)(1 + 2ψ)(δ
(2)
nj δ

(2)
mk

−δ(2)mjδ
(2)
nk + knkδ

(2)
mj − kmkδ

(2)
nj )− 2(ǫ+ 2ψ)(knjδ

(2)
mk

−kmjδ
(2)
nk )

]

Bj,k . (A14)

The correlation functions f̃
(s)
ij (k), h̃

(s)
ij (k) and g̃

(a)
ij (k) are

of the order of ∼ O(∇2), i.e., they are proportional to
the second-order spatial derivatives. Thus ĝij + g̃ij is the
correlation function of the cross-helicity, and similarly for
other second moments. Now we calculate the mean elec-
tromotive force Ei(r = 0) = (1/2)εinm

∫

Φ̃
(M,s)
mn (k) dk.

Thus,

Ei = εinm

∫

τ

1 + 2ψ
[Igmn + iτ(k·B)(Ifmn − Ihmn)] dk .

(A15)

We use the following model of the background
anisotropic and inhomogeneous two-dimensional MHD
turbulence:

〈ui uj〉(0)(k) = 〈u2〉(0)W v(k)

{

(1− σv)
[

δ
(2)
ij − kij

+
i

2k2
(kiΛ

(v)
j − kjΛ

(v)
i )

]

+ σvβijδ(k ·B)

}

, (A16)

〈bi bj〉(0)(k) = 〈b2〉(0)Wm(k)

{

(1− σm)
[

δ
(2)
ij − kij

+
i

2k2
(kiΛ

(m)
j − kjΛ

(m)
i )

]

+ σmβijδ(k ·B)

}

,

(A17)

where δ
(2)
ij = δij − eiej , δij is the Kronecker tensor, ei

is the unit vector which is perpendicular to the plane
of the two-dimensional MHD turbulence, kij = kikj/k

2,
σv and σm are the degrees of anisotropy of the velocity
and magnetic fluctuations of the background turbulence,
and σv > σm, βij = BiBj/B

2, W v(k) = Wm(k) =
E(k)/2πk. The energy spectrum of the velocity and
magnetic fluctuations is E(k) = k−1

0 (q − 1) (k/k0)
−q,

the turbulent correlation time is τ(k) = 2τ0(k/k0)
1−q,

where 1 < q < 3 is the exponent of the energy spectrum,
k0 = 1/l0, and l0 is the maximum scale of turbulent mo-
tions, τ0 = l0/u0, u0 is the characteristic turbulent ve-
locity in the scale l0. The inhomogeneities of the veloc-
ity and magnetic fluctuations of the background turbu-

lence are characterized by Λ
(v)
i = ∇i〈u2〉(0)/〈u2〉(0) and

Λ
(b)
i = ∇i〈b2〉(0)/〈b2〉(0). Note that 〈ui bj〉(0)(k) = 0. In

Eqs. (A16) and (A17) we neglected small quadratic terms

in the parameters Λ
(v)
i and Λ

(b)
i .

After the integration in k-space we obtain Ei = aijBj+
bijkBj,k, where Bj,k = ∇kBj and

aij = 2η
T
[(1− σv)Λ(v)

n − ǫ(1− σm)Λ(m)
n ] εipnK

(1)
pj ,

(A18)

bijk = 2η
T

[

[1− σv + ǫ(1− σm)] (εijkK
(1)
pp − εijpK

(1)
pk )

−2ǫ(1− σm)εinkK
(1)
nj + 2 εinkK̃

(1)
nj [1− σv

−ǫ(1− σm)]

]

+ 2η
T
βpk [(σ

v + ǫσm)εijp

−2ǫσm εinp(e×β̂)n(e×β̂)j ] . (A19)

Here β̂ = B/B,

K
(1)
ij =

1

π

∫ 1

Rm−c

xKij [y(x)] dx ,

K̃
(1)
ij =

1

π

∫ 1

Rm−c

x y(x)
dKij(y)

dy
dx ,

Kij(y) =

∫ 2π

0

kij
1 + y cos2 ϕ

dϕ = D1(y)δ
(2)
ij +D2(y)βij ,

D1(y) =
2π

y
(
√

y + 1− 1), D2(y) =
2π

y

[

2− y + 2√
y + 1

]

,

y(x) =
2β2

xγ
, γ =

2 (2− q)

q − 1
, c =

q − 1

3− q
,

β = 4 (B/Beq) and Beq =
√

〈u2〉(0) is the equipartition
field. For q = 5/3 the parameters γ = 1 and c = 1/2,
and for q = 3/2 the parameters γ = 2 and c = 1/3.
To determine the nonlinear turbulent magnetic dif-

fusion ηij(B) we use an identity: ηij = (εikpbjkp +
εjkpbikp)/4. The nonlinear turbulent magnetic diffusion
coefficient along the mean magnetic field, η

B
, and the

cross-field turbulent magnetic diffusion coefficient, η
⊥
,

are given by:

η
B

= 2η
T

[

σv − ǫσm + [1− σv − ǫ(1− σm)]Ψ1(β)

]

,

(A20)

η
⊥

= 2η
T
[1− σv − ǫ(1− σm)]Ψ(β) , (A21)

where η
T

= l0 u0/2, the functions Ψ(β), Ψ1(β) and
their asymptotic formulas are given in Appendix B, β =

4 (B/Beq), Beq =
√

〈u2〉(0) is the equipartition field and

the parameter ǫ = 〈b2〉(0)/〈u2〉(0). To derive Eqs. (A20)
and (A21) we used the following identities:

eiεijpβpk∇kBj = ∆xA , eiεipkβpj∇kBj = ∆yA ,

eiεinpβpk∇kBj(e×β̂)n(e×β̂)j = ∆xA ,

where B = exB. The nonlinear turbulent magnetic dif-
fusion coefficients η

B
and η

⊥
for σv = σm = 0 are given

in Sec. III [see Eqs. (6) and (7)].
Now we determine the parameter ǫ = 〈b2〉(0)/〈u2〉(0)

using budget equation for the evolution of the mean-
square magnetic potential 〈a2〉 [see Eq. (8)]. To this end
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we determine the energy of magnetic fluctuations 〈b2〉
which is obtained from Eq. (A8) by the integration in
k-space. The result is given by

〈b2〉 =
〈u2〉(0)

2

[

(1− σv)[1− φ(β)] + ǫ[1 + σm

+φ(β)(1 − σm)]
]

, (A22)

where the function φ(β) and its asymptotic formulas are
given in Appendix B. Combining Eq. (A22) with the
steady-state solution of Eq. (8) we determine the param-
eter S(ǫ) ≡ 1− σv − ǫ(1− σm):

S(ǫ) = 2

[

1− σv

1− σm
+Rm

divFA

4η
T
B2

eq

] [

1 + σm

1− σm
+ φ(β)

+2RmΨ(β)
B2

B2
eq

]−1

. (A23)

When B ≫ Beq/
√
Rm, Eq. (A23) yields the parameters

ǫ:

ǫ =
1

1− σm

[

1− σv − divFA

4η
T
B2Ψ(β)

]

. (A24)

Using Eqs. (A20), (A21) and (A24) we obtain the non-
linear turbulent magnetic diffusion in two directions:

η
B

=
2η

T

1− σm

[

σv − σm +
divFA

4η
T
B2Ψ(β)

[σm

+(1− σm)Ψ1(β)]

]

, (A25)

η
⊥

=
divFA

2B2
. (A26)

Note that there is a small range of the magnitudes of the
mean magnetic field when there can be an anomalous
behaviour of the nonlinear turbulent magnetic diffusion.
At B → 0.18Beq the function Ψ(β) changes sign (see
Fig. 1). On the other hand, the function S(ǫ) changes
sign for slightly larger value of the magnetic field B >
0.18Beq [see Eq. (A23)]. Therefore, this implies that at
B > 0.18Beq the nonlinear turbulent magnetic diffusion
can be anomalously large. The width of the range of the
anomalous behaviour of the nonlinear turbulent magnetic
diffusion is very small, δB ∼ 1/Rm. In this range the
steady-state solution of Eq. (8) for B > 0.18Beq does
not exist.
To determine the nonlinear effective drift velocity

V
eff(B) of the mean magnetic field we use an identity:

V
(eff)
k = εkjiaij/2, which yields

V
eff = −2η

T
[(1 − σv)Λ(v) − ǫ(1− σm)Λ(m)]Ψ1(β) ,

(A27)

where the function Ψ1(β) and its asymptotic formulas are

given in Appendix B. When B ≫ Beq/
√
Rm, Eqs. (A24)

and (A27) yield

V
eff = −2η

T

[

(1− σv) (Λ(v) −Λ
(m))

+
divFA

4η
T
B2Ψ(β)

Λ
(m)

]

Ψ1(β) . (A28)

The nonlinear effective drift velocityV
eff(B) of the mean

magnetic field for σv = σm = 0 is given in Sec. III [see
Eq. (15)].

APPENDIX B: FUNCTIONS Ψ(β), Ψ1(β) AND φ(β)

In this section we present the functions Ψ(β), Ψ1(β)
and φ(β) used in Sec. III:

Ψ(β) =
1

π

∫ 1

Rm−c

x

[

1 + 2y(x)
d

dy

]

[D1(y) +D2(y)] dx,

Ψ1(β) =
1

π

∫ 1

Rm−c

x

[

1 + 2y(x)
d

dy

]

D1(y) dx ,

φ(β) =
1

2π

∫ 1

Rm−c

[2D1(y) +D2(y)] dx .

These functions for q = 5/3 are given by

Ψ(β) =
β4

6
[M(β) −M(βRm1/4)] +

25

2
L(β,Rm) ,

(B1)

Ψ1(β) =
1

6β2
{2− [2− 5β2(1− 3β2)]

√

2β2 + 1}

+
5

2
L(β,Rm) , (B2)

φ(β) =
1

2

[

√

2β2 + 1− 2

β2
L(β,Rm)

]

, (B3)

L(β,Rm) = β4

[

ln

√

2β2
√
Rm+ 1− 1

√

2β2
√
Rm+ 1 + 1

− ln

√

2β2 + 1− 1
√

2β2 + 1 + 1

]

, (B4)

M(y) =
1

y4
√

2y2 + 1

[

5[1− 5y2(1 + 6y2)]

+
2

y2
(1−

√

2y2 + 1)

]

. (B5)

Asymptotic formulas for the functions Ψ(β), Ψ1(β) and

φ(β) are as follows. For β ≪ Rm−1/4 these functions are
given by

Ψ(β) =
1

2

[

1− 9β2 +
25

2
β4 lnRm

]

,

Ψ1(β) =
1

2

[

1− 3β2 +
5

2
β4 lnRm

]

,

φ(β) = 1− 1

2
β2 lnRm ,
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for Rm−1/4 ≪ β ≪ 1 they are given by

Ψ(β) =
1

2

[

1− 9β2 + 50β4| lnβ|
]

,

Ψ1(β) =
1

2

[

1− 3β2 + 10β4| lnβ|
]

,

φ(β) = 1− 2β2 | lnβ| ,

and for β ≫ 1 these functions are given by

Ψ(β) = − 1

3β2

[

1− 1.7

β

]

,

Ψ1(β) =
1

3β2
, φ(β) = −0.24

β
.
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